

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	64MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	24
Program Memory Size	16KB (8K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	768 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 19x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SSOP (0.209", 5.30mm Width)
Supplier Device Package	28-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18lf24k22t-i-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 5-2: REGISTER FILE SUMMARY FOR PIC18(L)F2X/4XK22 DEVICES (CONTINUED)
--

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	<u>Value on</u> POR, BOR
F3Ah	ANSELC	ANSC7	ANSC6	ANSC5	ANSC4	ANSC3	ANSC2	_		1111 11
F39h	ANSELB	_	_	ANSB5	ANSB4	ANSB3	ANSB2	ANSB1	ANSB0	11 1111
F38h	ANSELA		-	ANSA5		ANSA3	ANSA2	ANSA1	ANSA0	1- 1111

Legend: x = unknown, u = unchanged, — = unimplemented, q = value depends on condition

Note 1: PIC18(L)F4XK22 devices only.

2: PIC18(L)F2XK22 devices only.

3: PIC18(L)F23/24K22 and PIC18(L)F43/44K22 devices only.

4: PIC18(L)F26K22 and PIC18(L)F46K22 devices only.

Operations on the FSRs with POSTDEC, POSTINC and PREINC affect the entire register pair; that is, rollovers of the FSRnL register from FFh to 00h carry over to the FSRnH register. On the other hand, results of these operations do not change the value of any flags in the STATUS register (e.g., Z, N, OV, etc.).

The PLUSW register can be used to implement a form of indexed addressing in the data memory space. By manipulating the value in the W register, users can reach addresses that are fixed offsets from pointer addresses. In some applications, this can be used to implement some powerful program control structure, such as software stacks, inside of data memory.

5.6.3.3 Operations by FSRs on FSRs

Indirect addressing operations that target other FSRs or virtual registers represent special cases. For example, using an FSR to point to one of the virtual registers will not result in successful operations. As a specific case, assume that FSR0H:FSR0L contains FE7h, the address of INDF1. Attempts to read the value of the INDF1 using INDF0 as an operand will return 00h. Attempts to write to INDF1 using INDF0 as the operand will result in a NOP.

On the other hand, using the virtual registers to write to an FSR pair may not occur as planned. In these cases, the value will be written to the FSR pair but without any incrementing or decrementing. Thus, writing to either the INDF2 or POSTDEC2 register will write the same value to the FSR2H:FSR2L.

Since the FSRs are physical registers mapped in the SFR space, they can be manipulated through all direct operations. Users should proceed cautiously when working on these registers, particularly if their code uses indirect addressing.

Similarly, operations by indirect addressing are generally permitted on all other SFRs. Users should exercise the appropriate caution that they do not inadvertently change settings that might affect the operation of the device.

5.7 Data Memory and the Extended Instruction Set

Enabling the PIC18 extended instruction set (XINST Configuration bit = 1) significantly changes certain aspects of data memory and its addressing. Specifically, the use of the Access Bank for many of the core PIC18 instructions is different; this is due to the introduction of a new addressing mode for the data memory space.

What does not change is just as important. The size of the data memory space is unchanged, as well as its linear addressing. The SFR map remains the same. Core PIC18 instructions can still operate in both Direct and Indirect Addressing mode; inherent and literal instructions do not change at all. Indirect addressing with FSR0 and FSR1 also remain unchanged.

5.7.1 INDEXED ADDRESSING WITH LITERAL OFFSET

Enabling the PIC18 extended instruction set changes the behavior of indirect addressing using the FSR2 register pair within Access RAM. Under the proper conditions, instructions that use the Access Bank – that is, most bit-oriented and byte-oriented instructions – can invoke a form of indexed addressing using an offset specified in the instruction. This special addressing mode is known as Indexed Addressing with Literal Offset, or Indexed Literal Offset mode.

When using the extended instruction set, this addressing mode requires the following:

- The use of the Access Bank is forced ('a' = 0) and
- The file address argument is less than or equal to 5Fh.

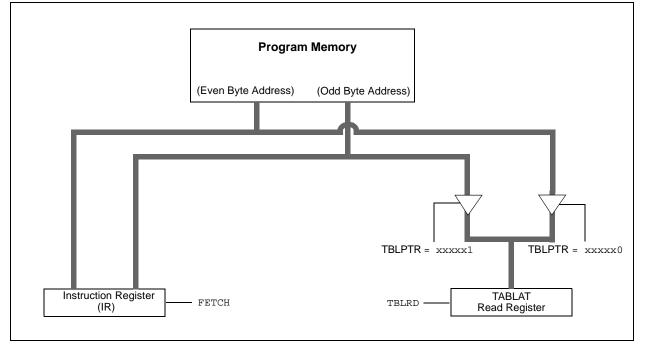
Under these conditions, the file address of the instruction is not interpreted as the lower byte of an address (used with the BSR in direct addressing), or as an 8-bit address in the Access Bank. Instead, the value is interpreted as an offset value to an Address Pointer, specified by FSR2. The offset and the contents of FSR2 are added to obtain the target address of the operation.

5.7.2 INSTRUCTIONS AFFECTED BY INDEXED LITERAL OFFSET MODE

Any of the core PIC18 instructions that can use direct addressing are potentially affected by the Indexed Literal Offset Addressing mode. This includes all byte-oriented and bit-oriented instructions, or almost one-half of the standard PIC18 instruction set. Instructions that only use Inherent or Literal Addressing modes are unaffected.

Additionally, byte-oriented and bit-oriented instructions are not affected if they do not use the Access Bank (Access RAM bit is '1'), or include a file address of 60h or above. Instructions meeting these criteria will continue to execute as before. A comparison of the different possible addressing modes when the extended instruction set is enabled is shown in Figure 5-11.

Those who desire to use byte-oriented or bit-oriented instructions in the Indexed Literal Offset mode should note the changes to assembler syntax for this mode. This is described in more detail in **Section 25.2.1** "Extended Instruction Syntax".


^{© 2010-2016} Microchip Technology Inc.

6.4 Reading the Flash Program Memory

The TBLRD instruction retrieves data from program memory and places it into data RAM. Table reads from program memory are performed one byte at a time.

TBLPTR points to a byte address in program space. Executing TBLRD places the byte pointed to into TABLAT. In addition, TBLPTR can be modified automatically for the next table read operation. The internal program memory is typically organized by words. The Least Significant bit of the address selects between the high and low bytes of the word. Figure 6-4 shows the interface between the internal program memory and the TABLAT.

FIGURE 6-4: READS FROM FLASH PROGRAM MEMORY

EXAMPLE 6-1: READING A FLASH PROGRAM MEMORY WORD

	MOVLW MOVWF	CODE_ADDR_UPPER TBLPTRU		Load TBLPTR with the base address of the word
	MOVLW	CODE_ADDR_HIGH	'	address of the word
	MOVWF	TBLPTRH		
	MOVLW	CODE_ADDR_LOW		
	MOVWF	TBLPTRL		
READ_WORD				
	TBLRD*+		;	read into TABLAT and increment
	MOVF	TABLAT, W	;	get data
	MOVWF	WORD_EVEN		
	TBLRD*+		;	read into TABLAT and increment
	MOVFW	TABLAT, W	;	get data
	MOVF	WORD_ODD		

U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0							
_	—	—	—	—	TMR6IF	TMR5IF	TMR4IF							
bit 7 bit 0														
Levend														
Legend:														
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'														
-n = Value at F	-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown													
bit 7-3	Unimplemen	ted: Read as '	0'											
bit 2	TMR6IF: TMF	R6 to PR6 Mate	ch Interrupt Fl	ag bit										
	1 = TMR6 to	PR6 match oc	curred (must	be cleared in s	oftware)									
	0 = No TMR6	to PR6 match	occurred											
bit 1	TMR5IF: TMF	R5 Overflow Int	errupt Flag bi	it										
	1 = TMR5 register overflowed (must be cleared in software)													
	0 = TMR5 reg	0 = TMR5 register did not overflow												
bit 0	TMR4IF: TMF	TMR4IF: TMR4 to PR4 Match Interrupt Flag bit												
				be cleared in s	oftware)									
	0 = NO IMR4	to PR4 match	occurred											

REGISTER 9-8: PIR5: PERIPHERAL INTERRUPT (FLAG) REGISTER 5

ECCP Mode	PxM<1:0>	CCPx/PxA	PxB	PxC	PxD
Single	00	Yes ⁽¹⁾	Yes ⁽¹⁾	Yes ⁽¹⁾	Yes ⁽¹⁾
Half-Bridge	10	Yes	Yes	No	No
Full-Bridge, Forward	01	Yes	Yes	Yes	Yes
Full-Bridge, Reverse	11	Yes	Yes	Yes	Yes

TABLE 14-12: EXAMPLE PIN ASSIGNMENTS FOR VARIOUS PWM ENHANCED MODES

Note 1: PWM Steering enables outputs in Single mode.

FIGURE 14-6: EXAMPLE PWM (ENHANCED MODE) OUTPUT RELATIONSHIPS (ACTIVE-HIGH STATE)

PxM<1:0>	Signal	0 ◀ Pulse Width	PRX+1
		-	— Period →
00 (Single Output)	PxA Modulated	 Delay ⁽¹⁾	Delaý ⁽¹⁾
	PxA Modulated		
10 (Half-Bridge)	PxB Modulated	_ ' _ <u>'</u>	
	PxA Active		
(Full-Bridge,	PxB Inactive		
⁰¹ Forward)	PxC Inactive		
	PxD Modulated		
	PxA Inactive		
11 (Full-Bridge,	PxB Modulated		
Reverse)	PxC Active		
	PxD Inactive		

Period = 4 * Tosc * (PRx + 1) * (TMRx Prescale Value)
Pulse Width = Tosc * (CCPRxL<7:0>:CCPxCON<5:4>) * (TMRx Prescale Value)
Delay = 4 * Tosc * (PWMxCON<6:0>)

Note 1: Dead-band delay is programmed using the PWMxCON register (Section 14.4.5 "Programmable Dead-Band Delay Mode").

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
ECCP1AS	CCP1ASE		CCP1AS<2:0>		PSS1A	SS1AC<1:0> PSS1BD<1:0>			202
CCP1CON	P1M-	<1:0>	DC1B	<1:0>		CCP1M	1<3:0>		198
ECCP2AS	CCP2ASE		CCP2AS<2:0>		PSS2A	C<1:0>	PSS2B	D<1:0>	202
CCP2CON	P2M-	<1:0>	DC2B	<1:0>		CCP2M	1<3:0>		198
ECCP3AS	CCP3ASE		CCP3AS<2:0>		PSS3A	C<1:0>	PSS3B	D<1:0>	202
CCP3CON	P3M-	<1:0>	DC3B	<1:0>		CCP3N	1<3:0>		198
CCPTMRS0	C3TSE	L<1:0>	—	C2TSE	L<1:0>	—	C1TSE	L<1:0>	201
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INTOIE	RBIE	TMR0IF	INT0IF	RBIF	109
IPR1	_	ADIP	RC1IP	TX1IP	SSP1IP	CCP1IP	TMR2IP	TMR1IP	121
IPR2	OSCFIP	C1IP	C2IP	EEIP	BCL1IP	HLVDIP	TMR3IP	CCP2IP	122
IPR4	_	—	—	—	_	CCP5IP	CCP4IP	CCP3IP	124
PIE1	—	ADIE	RC1IE	TX1IE	SSP1IE	CCP1IE	TMR2IE	TMR1IE	117
PIE2	OSCFIE	C1IE	C2IE	EEIE	BCL1IE	HLVDIE	TMR3IE	CCP2IE	118
PIE4	_	—	—	—	_	CCP5IE	CCP4IE	CCP3IE	120
PIR1	_	ADIF	RC1IF	TX1IF	SSP1IF	CCP1IF	TMR2IF	TMR1IF	112
PIR2	OSCFIF	C1IF	C2IF	EEIF	BCL1IF	HLVDIF	TMR3IF	CCP2IF	113
PIR4	_	—	—	—	_	CCP5IF	CCP4IF	CCP3IF	115
PMD0	UART2MD	UART1MD	TMR6MD	TMR5MD	TMR4MD	TMR3MD	TMR2MD	TMR1MD	52
PMD1	MSSP2MD	MSSP1MD	—	CCP5MD	CCP4MD	CCP3MD	CCP2MD	CCP1MD	53
PR2		•		Timer2 Peric	od Register			•	—
PR4				Timer4 Peric	od Register				—
PR6				Timer6 Peric	od Register				—
PSTR1CON	_	_	—	STR1SYNC	STR1D	STR1C	STR1B	STR1A	203
PSTR2CON	_	_	—	STR2SYNC	STR2D	STR2C	STR2B	STR2A	203
PSTR3CON	_	_	—	STR3SYNC	STR3D	STR3C	STR3B	STR3A	203
PWM1CON	P1RSEN				P1DC<6:0>				203
PWM2CON	P2RSEN				P2DC<6:0>				203
PWM3CON	P3RSEN				P3DC<6:0>				203
T2CON	_		T2OUT	PS<3:0>		TMR2ON	T2CKP	S<1:0>	166
T4CON	_		T4OUTI	PS<3:0>		TMR4ON	T4CKP	S<1:0>	166
T6CON	_		T6OUTI	PS<3:0>		TMR6ON	T6CKP	S<1:0>	166
TMR2		•		Timer2 R	legister				_
TMR4				Timer4 R	legister				—
TMR6				Timer6 R	legister				—
TRISA	TRISA7	TRISA6	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	151
TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	151
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	151
TRISD ⁽¹⁾	TRISD7	TRISD6	TRISD5	TRISD4	TRISD3	TRISD2	TRISD1	TRISD0	151
TRISE	WPUE3	—		—	_	TRISE2 ⁽¹⁾	TRISE1 ⁽¹⁾	TRISE0 ⁽¹⁾	151

TABLE 14-13: REGISTERS ASSOCIATED WITH ENHANCED PWM

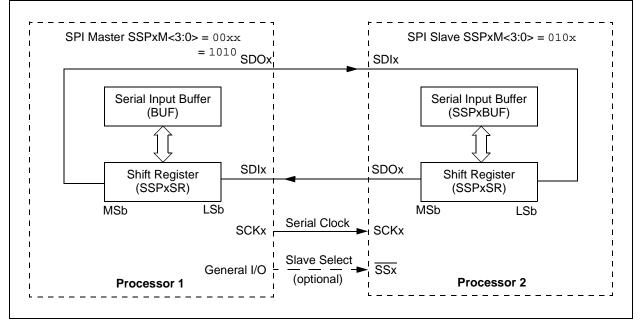
 Legend:
 — = Unimplemented location, read as '0'. Shaded bits are not used by Enhanced PWM mode.

 Note
 1:
 These registers/bits are available on PIC18(L)F4XK22 devices.

TABLE 14-14: CONFIGURATION REGISTERS ASSOCIATED WITH ENHANCED PWM

	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
С	ONFIG3H	MCLRE		P2BMX	T3CMX	HFOFST	ССРЗМХ	PBADEN	CCP2MX	348

Legend: — = Unimplemented location, read as '0'. Shaded bits are not used by Enhanced PWM mode.


Any serial port function that is not desired may be overridden by programming the corresponding data direction (TRIS) register to the opposite value.

The MSSPx consists of a transmit/receive shift register (SSPxSR) and a buffer register (SSPxBUF). The SSPxSR shifts the data in and out of the device, MSb first. The SSPxBUF holds the data that was written to the SSPxSR until the received data is ready. Once the 8 bits of data have been received, that byte is moved to the SSPxBUF register. Then, the Buffer Full Detect bit, BF of the SSPxSTAT register, and the interrupt flag bit, SSPxIF, are set. This double-buffering of the received data (SSPxBUF) allows the next byte to start reception before reading the data that was just received. Any write to the SSPxBUF register during transmission/reception of data will be ignored and the write collision detect bit, WCOL of the SSPxCON1 register, will be

set. User software must clear the WCOL bit to allow the following write(s) to the SSPxBUF register to complete successfully.

When the application software is expecting to receive valid data, the SSPxBUF should be read before the next byte of data to transfer is written to the SSPxBUF. The Buffer Full bit, BF of the SSPxSTAT register, indicates when SSPxBUF has been loaded with the received data (transmission is complete). When the SSPxBUF is read, the BF bit is cleared. This data may be irrelevant if the SPI is only a transmitter. Generally, the MSSPx interrupt is used to determine when the transmission/reception has completed. If the interrupt method is not going to be used, then software polling can be done to ensure that a write collision does not occur.

15.3 I²C Mode Overview

The Inter-Integrated Circuit Bus (I²C) is a multi-master serial data communication bus. Devices communicate in a master/slave environment where the master devices initiate the communication. A slave device is controlled through addressing.

The I²C bus specifies two signal connections:

- Serial Clock (SCLx)
- Serial Data (SDAx)

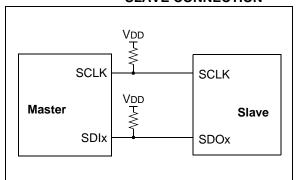
Figure 15-2 shows the block diagram of the MSSPx module when operating in I^2C mode.

Both the SCLx and SDAx connections are bidirectional open-drain lines, each requiring pull-up resistors for the supply voltage. Pulling the line to ground is considered a logical zero and letting the line float is considered a logical one.

Figure 15-11 shows a typical connection between two processors configured as master and slave devices.

The I²C bus can operate with one or more master devices and one or more slave devices.

There are four potential modes of operation for a given device:


- Master Transmit mode (master is transmitting data to a slave)
- Master Receive mode
 (master is receiving data from a slave)
- Slave Transmit mode (slave is transmitting data to a master)
- Slave Receive mode (slave is receiving data from the master)

To begin communication, a master device starts out in Master Transmit mode. The master device sends out a Start bit followed by the address byte of the slave it intends to communicate with. This is followed by a single Read/Write bit, which determines whether the master intends to transmit to or receive data from the slave device.

If the requested slave exists on the bus, it will respond with an Acknowledge bit, otherwise known as an ACK. The master then continues in either Transmit mode or Receive mode and the slave continues in the complement, either in Receive mode or Transmit mode, respectively.

A Start bit is indicated by a high-to-low transition of the SDAx line while the SCLx line is held high. Address and data bytes are sent out, Most Significant bit (MSb) first. The Read/Write bit is sent out as a logical one when the master intends to read data from the slave, and is sent out as a logical zero when it intends to write data to the slave.

FIGURE 15-11: I²C MASTER/ SLAVE CONNECTION

The Acknowledge bit (\overline{ACK}) is an active-low signal, which holds the SDAx line low to indicate to the transmitter that the slave device has received the transmitted data and is ready to receive more.

The transition of data bits is always performed while the SCLx line is held low. Transitions that occur while the SCLx line is held high are used to indicate Start and Stop bits.

If the master intends to write to the slave, then it repeatedly sends out a byte of data, with the slave responding after each byte with an ACK bit. In this example, the master device is in Master Transmit mode and the slave is in Slave Receive mode.

If the master intends to read from the slave, then it repeatedly receives a byte of data from the slave, and responds after each byte with an \overline{ACK} bit. In this example, the master device is in Master Receive mode and the slave is Slave Transmit mode.

On the last byte of data communicated, the master device may end the transmission by sending a Stop bit. If the master device is in Receive mode, it sends the Stop bit in place of the last ACK bit. A Stop bit is indicated by a low-to-high transition of the SDAx line while the SCLx line is held high.

In some cases, the master may want to maintain control of the bus and re-initiate another transmission. If so, the master device may send another Start bit in place of the Stop bit or last ACK bit when it is in receive mode.

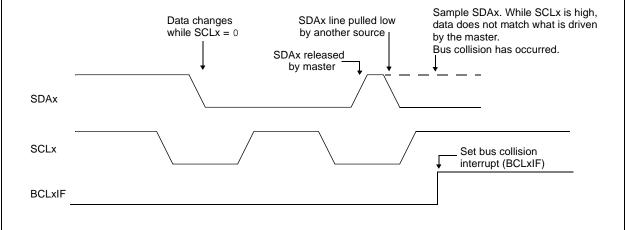
The I²C bus specifies three message protocols;

- Single message where a master writes data to a slave.
- Single message where a master reads data from a slave.
- Combined message where a master initiates a minimum of two writes, or two reads, or a combination of writes and reads, to one or more slaves.

15.6.13 MULTI -MASTER COMMUNICATION, BUS COLLISION AND BUS ARBITRATION

Multi-Master mode support is achieved by bus arbitration. When the master outputs address/data bits onto the SDAx pin, arbitration takes place when the master outputs a '1' on SDAx, by letting SDAx float high and another master asserts a '0'. When the SCLx pin floats high, data should be stable. If the expected data on SDAx is a '1' and the data sampled on the SDAx pin is '0', then a bus collision has taken place. The master will set the Bus Collision Interrupt Flag, BCLxIF, and reset the I²C port to its Idle state (Figure 15-32).

If a transmit was in progress when the bus collision occurred, the transmission is halted, the BF flag is cleared, the SDAx and SCLx lines are deasserted and the SSPxBUF can be written to. When the user services the bus collision Interrupt Service Routine and if the I^2C bus is free, the user can resume communication by asserting a Start condition.


If a Start, Repeated Start, Stop or Acknowledge condition was in progress when the bus collision occurred, the condition is aborted, the SDAx and SCLx lines are deasserted and the respective control bits in the SSPxCON2 register are cleared. When the user services the bus collision Interrupt Service Routine and if the I^2C bus is free, the user can resume communication by asserting a Start condition.

The master will continue to monitor the SDAx and SCLx pins. If a Stop condition occurs, the SSPxIF bit will be set.

A write to the SSPxBUF will start the transmission of data at the first data bit, regardless of where the transmitter left off when the bus collision occurred.

In Multi-Master mode, the interrupt generation on the detection of Start and Stop conditions allows the determination of when the bus is free. Control of the l^2C bus can be taken when the P bit is set in the SSPxSTAT register, or the bus is Idle and the S and P bits are cleared.

16.1.2 EUSART ASYNCHRONOUS RECEIVER

The Asynchronous mode would typically be used in RS-232 systems. The receiver block diagram is shown in Figure 16-2. The data is received on the RXx/DTx pin and drives the data recovery block. The data recovery block is actually a high-speed shifter operating at 16 times the baud rate, whereas the serial Receive Shift Register (RSR) operates at the bit rate. When all eight or nine bits of the character have been shifted in, they are immediately transferred to a two character First-In-First-Out (FIFO) memory. The FIFO buffering allows reception of two complete characters and the start of a third character before software must start servicing the EUSART receiver. The FIFO and RSR registers are not directly accessible by software. Access to the received data is via the RCREGx register.

16.1.2.1 Enabling the Receiver

The EUSART receiver is enabled for asynchronous operation by configuring the following three control bits:

- CREN = 1
- SYNC = 0
- SPEN = 1

All other EUSART control bits are assumed to be in their default state.

Setting the CREN bit of the RCSTAx register enables the receiver circuitry of the EUSART. Clearing the SYNC bit of the TXSTAx register configures the EUSART for asynchronous operation. Setting the SPEN bit of the RCSTAx register enables the EUSART. The RXx/DTx I/O pin must be configured as an input by setting the corresponding TRIS control bit. If the RXx/DTx pin is shared with an analog peripheral the analog I/O function must be disabled by clearing the corresponding ANSEL bit.

16.1.2.2 Receiving Data

The receiver data recovery circuit initiates character reception on the falling edge of the first bit. The first bit, also known as the Start bit, is always a zero. The data recovery circuit counts one-half bit time to the center of the Start bit and verifies that the bit is still a zero. If it is not a zero then the data recovery circuit aborts character reception, without generating an error, and resumes looking for the falling edge of the Start bit. If the Start bit zero verification succeeds then the data recovery circuit counts a full bit time to the center of the next bit. The bit is then sampled by a majority detect circuit and the resulting '0' or '1' is shifted into the RSR. This repeats until all data bits have been sampled and shifted into the RSR. One final bit time is measured and the level sampled. This is the Stop bit, which is always a '1'. If the data recovery circuit samples a '0' in the Stop bit position then a framing error is set for this character, otherwise the framing error is cleared for this character. See Section 16.1.2.5 "Receive Framing Error" for more information on framing errors.

Immediately after all data bits and the Stop bit have been received, the character in the RSR is transferred to the EUSART receive FIFO and the RCxIF interrupt flag bit of the PIR1/PIR3 register is set. The top character in the FIFO is transferred out of the FIFO by reading the RCREGx register.

Note:	If the receive FIFO is overrun, no additional characters will be received until the overrun condition is cleared. See Section 16.1.2.6
	"Receive Overrun Error" for more information on overrun errors.

16.1.2.3 Receive Data Polarity

The polarity of the receive data can be controlled with the DTRXP bit of the BAUDCONx register. The default state of this bit is '0' which selects high true receive idle and data bits. Setting the DTRXP bit to '1' will invert the receive data resulting in low true idle and data bits. The DTRXP bit controls receive data polarity only in Asynchronous mode. In Synchronous mode the DTRXP bit has a different function.

FIGURE 16-12:	SYNCHRONOUS RECEPTION (MASTER MODE, SREN)
RXx/DTx pin TXx/CKx pin (SCKP = 0)	
TXx/CKx pin (SCKP = 1) Write to bit SREN	
SREN bit	
CREN bit <u>'0'</u> RCxIF bit (Interrupt)	.0, .0,
Read RCREGx	gram demonstrates Sync Master mode with bit SREN = 1 and bit BRGH = 0.

TABLE 16-8: REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER RECEPTION

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page			
BAUDCON1	ABDOVF RCIDL DTRXP CKTXP BRG16 — WUE ABDEN								271			
BAUDCON2	ABDOVF RCIDL DTRXP CKTXP BRG16 — WUE ABDEN											
INTCON	GIE/GIEH PEIE/GIEL TMR0IE INT0IE RBIE TMR0IF INT0IF RBIF											
IPR1	_	- ADIP RC1IP TX1IP SSP1IP CCP1IP TMR2IP TMR1IP										
IPR3	SSP2IP	BCL2IP	RC2IP	TX2IP	CTMUIP	TMR5GIP	TMR3GIP	TMR1GIP	123			
PIE1	_	ADIE	RC1IE	TX1IE	SSP1IE	CCP1IE	TMR2IE	TMR1IE	117			
PIE3	SSP2IE BCL2IE RC2IE TX2IE CTMUIE TMR5GIE TMR3GIE TMR1GIE											
PIR1	- ADIF RC1IF TX1IF SSP1IF CCP1IF TMR2IF TMR1IF											
PIR3	SSP2IF BCL2IF RC2IF TX2IF CTMUIF TMR5GIF TMR3GIF TMR1GIF											
PMD0	UART2MD	UART1MD	TMR6MD	TMR5MD	TMR4MD	TMR3MD	TMR2MD	TMR1MD	52			
RCREG1			E	USART1 Re	ceive Regis	ter			—			
RCSTA1	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	270			
RCREG2			E	USART2 Re	ceive Regis	ter			—			
RCSTA2	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	270			
SPBRG1			EUSART	1 Baud Rate	e Generator,	Low Byte			—			
SPBRGH1			EUSART	1 Baud Rate	Generator,	High Byte			—			
SPBRG2			EUSART	2 Baud Rate	e Generator,	Low Byte			—			
SPBRGH2			EUSART	2 Baud Rate	Generator,	High Byte			—			
TXSTA1	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	269			
TXSTA2	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	269			

Legend: — = unimplemented locations, read as '0'. Shaded bits are not used for synchronous master reception.

24.2 Register Definitions: Configuration Word

REGISTER 24-1: CONFIG1H: CONFIGURATION REGISTER 1 HIGH

REGISTE	R 24-1: CONF R/P-0	R/P-1	R/P-0		1 HIGH R/P-1	R/P-0	
IESO	FCMEN	R/P-1 PRICLKEN	R/P-0 PLLCFG	R/P-0		R/P-0 <3:0>	R/P-1
bit 7	FOWEIN	FRICEREIN	FLLCFG		FUSC	<0.0>	bit C
Legend:							
R = Reada	able bit	P = Programr	nable bit	U = Unimple	mented bit, read	d as '0'	
-n = Value	when device is un	programmed		x = Bit is unk	nown		
bit 7	1 = Oscillator	rnal/External O Switchover mo	ode enabled	nover bit			
bit 6	FCMEN ⁽¹⁾ : F 1 = Fail-Safe	ail-Safe Clock I Clock Monitor Clock Monitor	Monitor Enable enabled	e bit			
bit 5	1 = Primary (Primary Clock I Clock is always Clock can be di	enabled	ware			
bit 4	1 = 4 x PLL a	PLL Enable bi Navays enabled s under softwar	, Oscillator mu		E<6>)		
bit 3-0	1111 = Exte 1110 = Exte 1101 = EC c 1100 = EC c 1011 = EC c 1010 = EC c 1010 = Inter 1000 = Inter 0111 = Exte 0110 = Exte 0101 = EC c 0100 = EC c 0100 = EC c	oscillator (medi oscillator, CLKC nal oscillator bl nal oscillator bl rnal RC oscillator rnal RC oscillator oscillator (high oscillator (medi oscillator (high	tor, CLKOUT f tor, CLKOUT f power, ≤500 k OUT function o um power, 50 OUT function o ock, CLKOUT ock tor tor, CLKOUT f power, >16 M OUT function o um power, 4	unction on RA Hz) n OSC2 (low j 0 kHz-16 MHz n OSC2 (med function on OS unction on OS Hz) n OSC2 (high MHz-16 MHz)	6 power, ≤500 kH :) ium power, 500 SC2) kHz-16 MHz)	
Note 1:	0000 = LP o					a aat than that	
Note 1:	When FOSC<3:0>				nd FCMEN bit i		

should also be set to prevent a false failed clock indication and to enable automatic clock switch over from the internal oscillator block to the external oscillator when the OST times out.

BNC	;	Branch if	Not Carry	/				
Synta	ax:	BNC n	BNC n					
Oper	ands:	-128 ≤ n ≤ ′	127					
Oper	ation:	if CARRY b (PC) + 2 + 2						
Statu	s Affected:	None						
Enco	ding:	1110	0011 :	nnnn	nnnn			
Desc	ription:	will branch. The 2's con added to the incremente instruction, PC + 2 + 2r	If the CARRY bit is '0', then the program will branch. The 2's complement number '2n' is added to the PC. Since the PC will have incremented to fetch the next instruction, the new address will be PC + 2 + 2n. This instruction is then a 2-cycle instruction.					
Word	ls:	1						
Cycle	es:	1(2)						
Q C If Ju	ycle Activity: mp:							
	Q1	Q2	Q3		Q4			
	Decode	Read literal 'n'	Process Data	s Wr	ite to PC			
	No operation	No operation	No operation	n op	No peration			
lf No	o Jump:							
	Q1	Q2	Q3		Q4			
	Decode	Read literal 'n'	Process Data		No peration			
Example: HERE BNC Jump								
Before Instruction PC = address (HERE) After Instruction If CARRY = 0;								
	PC = address (Jump) If CARRY = 1; PC = address (HERE + 2)							

BNN	Branch if	Not Nega	tive					
Syntax:	BNN n	BNN n						
Operands:	-128 ≤ n ≤ 1	$-128 \le n \le 127$						
Operation:		if NEGATIVE bit is '0' (PC) + 2 + 2n \rightarrow PC						
Status Affected:	None							
Encoding:	1110	0111 1	nnnn	nnnn				
Description:	program wi The 2's cor added to th incremente instruction, PC + 2 + 2	If the NEGATIVE bit is '0', then the program will branch. The 2's complement number '2n' is added to the PC. Since the PC will have incremented to fetch the next instruction, the new address will be PC + 2 + 2n. This instruction is then a 2-cycle instruction.						
Words:	1	1						
Cycles:	1(2)	1(2)						
Q Cycle Activity: If Jump:	00	00		04				
Q1	Q2	Q3	10/-	Q4				
Decode	Read literal 'n'	Process Data	VVF	ite to PC				
No	No	No		No				
operation	operation	operatior	n op	peration				
If No Jump:								
Q1	Q2	Q3		Q4				
Decode	Read literal 'n'	Process Data		No peration				
		Daia	U O					
Example:	HERE	BNN Ju	mp					
Before Instruction PC = address (HERE) After Instruction If NEGATIVE = 0; PC = address (Jump) If NEGATIVE = 1; PC = address (HERE + 2)								

MUL	_LW	Multiply	Multiply literal with W						
Synta	ax:	MULLW	MULLW k						
Oper	ands:	$0 \le k \le 25$	$0 \le k \le 255$						
Oper	ation:	(W) x k →	(W) x k \rightarrow PRODH:PRODL						
Statu	is Affected:	None							
Enco	oding:	0000	1101	kkkk	kkkk				
Desc	ription:	out betwee 8-bit litera placed in pair. PRO W is unch None of th Note that possible i	An unsigned multiplication is carried out between the contents of W and the 8-bit literal 'k'. The 16-bit result is placed in the PRODH:PRODL register pair. PRODH contains the high byte. W is unchanged. None of the Status flags are affected. Note that neither overflow nor carry is possible in this operation. A zero result is possible but not detected.						
Word	ds:	1							
Cycle	es:	1							
QC	ycle Activity:								
	Q1	Q2	Q3		Q4				
	Decode	Read literal 'k'	Proce Dat	a r F	Write egisters PRODH: PRODL				
Example: Before Instruction		MULLW	0C4h						
	W		2h						
	PRODH PRODL After Instructio	= ?							
	W PRODH PRODL	= A	2h \Dh \8h						

MULWF	Multiply	W with f					
Syntax:	MULWF	f {,a}					
Operands:	0 ≤ f ≤ 255 a ∈ [0,1]	0 ≤ f ≤ 255 a ∈ [0,1]					
Operation:	(W) x (f) –	→ PRODH:PR	ODL				
Status Affected:	None	None					
Encoding:	0000	001a ff	ff ffff				
Description:	out betwee register fil result is st register pa high byte. unchange None of th Note that possible in result is p If 'a' is '0', selected. If 'a' is '0', set is enal operates i Addressin $f \le 95$ (5FI	An unsigned multiplication is carried out between the contents of W and the register file location 'f'. The 16-bit result is stored in the PRODH.PRODL register pair. PRODH contains the high byte. Both W and 'f' are unchanged. None of the Status flags are affected. Note that neither overflow nor carry is possible in this operation. A zero result is possible but not detected. If 'a' is '0', the Access Bank is selected. If 'a' is '1', the BSR is used to select the GPR bank. If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever $f \le 95$ (5Fh). See Section 25.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed Literal Offset					
Words:	1						
Cycles:	1						
Q Cycle Activity:							
Q1	Q2	Q3	Q4				
Decode Read Process Write register 'f' Data registe PROD PROD							
Example: MULWF REG, 1							
Before Instruction							
W = C4h REG = B5h PRODH = ? PRODL = ? After Instruction							

C4h

B5h 8Ah 94h

=

= = =

W

REG PRODH PRODL

XORWF Exclusive OR W with f					
Syntax:	XORWF	f {,d {,a}}			
Operands:	0 ≤ f ≤ 255 d ∈ [0,1] a ∈ [0,1]				
Operation:	(W) .XOR. ((f) \rightarrow dest			
Status Affected:	N, Z				
Encoding:	0001	10da fff	f ffff		
Description:	Exclusive OR the contents of W with register 'f'. If 'd' is '0', the result is stored in W. If 'd' is '1', the result is stored back in the register 'f' (default). If 'a' is '0', the Access Bank is selected. If 'a' is '1', the BSR is used to select the GPR bank. If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever $f \le 95$ (5Fh). See Section 25.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed Literal Offset Mode" for details.				
Words:	1				
Cycles:	1				
Q Cycle Activity:					
Q1	Q2	Q3	Q4		
Decode	Read register 'f'	Process Data	Write to destination		
Example: XORWF REG, 1, 0					
Before Instruct					
REG W	= AFh = B5h				
VV After Instruction					
REG	= 1Ah				

B5h

=

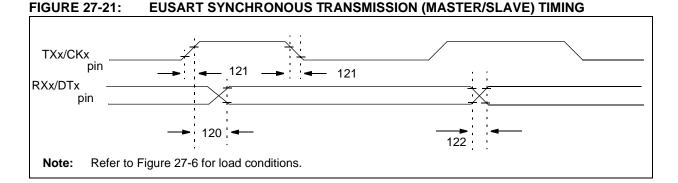
 $\ensuremath{\textcircled{}^{\odot}}$ 2010-2016 Microchip Technology Inc.

W

PIC18LF2X/4XK22		Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +125^{\circ}C$					
PIC18F2	Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +125^{\circ}C$						
Param No.	Device Characteristics	Тур	Max	Units	Conditions		
D100	Supply Current (IDD) ^{(1),(2)}	0.030	0.050	mA	-40°C to +125°C	Vdd = 1.8V	Fosc = 1 MHz
D101		0.045	0.065	mA	-40°C to +125°C	VDD = 3.0V	(PRI_IDLE mode, ECM source)
D102		0.06	0.12	mA	-40°C to +125°C	VDD = 2.3V	Fosc = 1 MHz
D103		0.08	0.15	mA	-40°C to +125°C	VDD = 3.0V	(PRI_IDLE mode, ECM source)
D104		0.13	0.20	mA	-40°C to +125°C	VDD = 5.0V	
D105		0.45	0.8	mA	-40°C to +125°C	VDD = 1.8V	Fosc = 20 MHz
D106		0.70	1.0	mA	-40°C to +125°C	VDD = 3.0V	(PRI_IDLE mode, ECH source)
D107		0.55	0.8	mA	-40°C to +125°C	VDD = 2.3V	Fosc = 20 MHz
D108		0.75	1.0	mA	-40°C to +125°C	VDD = 3.0V	(PRI_IDLE mode, ECH source)
D109		0.90	1.2	mA	-40°C to +125°C	VDD = 5.0V	L'OIT Source)
D110		2.25	3.0	mA	-40°C to +125°C	Vdd = 3.0V	Fosc = 64 MHz (PRI_IDLE mode, ECH source)
D111		2.25	3.0	mA	-40°C to +125°C	VDD = 3.0V	Fosc = 64 MHz
D112		2.60	3.5	mA	-40°C to +125°C	VDD = 5.0V	(PRI_IDLE mode, ECH source)
D113		0.35	0.6	mA	-40°C to +125°C	Vdd = 1.8V	Fosc = 4 MHz
D114		0.55	0.8	mA	-40°C to +125°C	VDD = 3.0V	16 MHz Internal (PRI_IDLE mode, ECM + PLL source)
D115		0.45	0.6	mA	-40°C to +125°C	VDD = 2.3V	Fosc = 4 MHz
D116		0.60	0.9	mA	-40°C to +125°C	VDD = 3.0V	16 MHz Internal (PRI_IDLE mode,
D117		0.70	1.0	mA	-40°C to +125°C	VDD = 5.0V	ECM + PLL source)
D118		2.2	3.0	mA	-40°C to +125°C	VDD = 3.0V	Fosc = 16 MHz 64 MHz Internal (PRI_IDLE mode, ECH + PLL source)
D119		2.2	3.0	mA	-40°C to +125°C	VDD = 3.0V	Fosc = 16 MHz
D120		2.5	3.5	mA	-40°C to +125°C	VDD = 5.0V	64 MHz Internal (PRI_IDLE mode, ECH + PLL source)

27.6 DC Characteristics: Primary Idle Supply Current, PIC18(L)F2X/4XK22

Note 1: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on the current consumption.


Test condition: All Peripheral Module Control bits in PMD0, PMD1 and PMD2 set to '1'.

2: The test conditions for all IDD measurements in active operation mode are:

All I/O pins set as outputs driven to Vss;

MCLR = VDD;

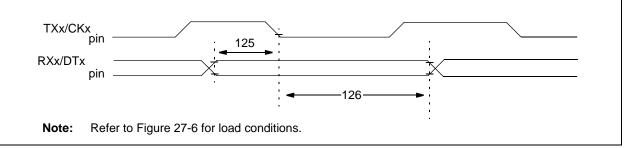
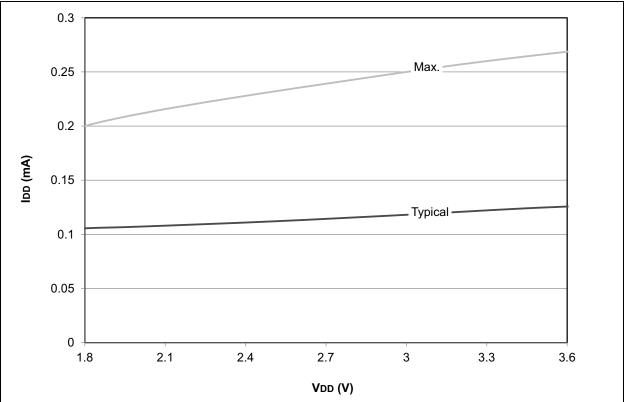
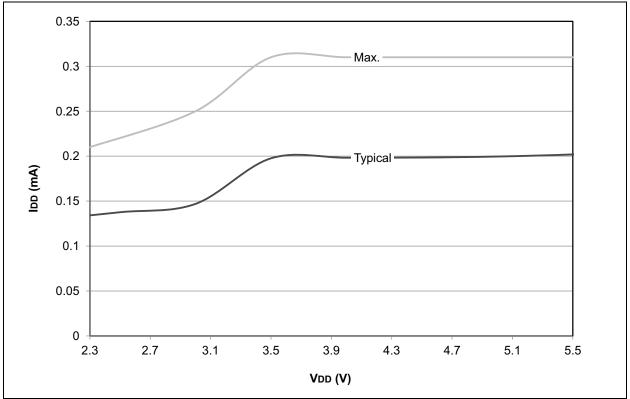

OSC1 = external square wave, from rail-to-rail (PRI_RUN and PRI_IDLE only).

TABLE 27-19: EUSART SYNCHRONOUS TRANSMISSION REQUIREMENTS

Param. No.	Symbol	Characteristic	Min	Max	Units	Conditions
120	TckH2dtV	<u>SYNC XMIT (MASTER & SLAVE)</u> Clock High to Data Out Valid	_	40	ns	
121	Tckrf	Clock Out Rise Time and Fall Time (Master mode)	_	20	ns	
122	Tdtrf	Data Out Rise Time and Fall Time	_	20	ns	


FIGURE 27-22: EUSART SYNCHRONOUS RECEIVE (MASTER/SLAVE) TIMING


TABLE 27-20: EUSART SYNCHRONOUS RECEIVE REQUIREMENTS

Param. No.	Symbol	Characteristic	Min	Max	Units	Conditions
125	TdtV2ckl	SYNC RCV (MASTER & SLAVE) Data Setup before CK \downarrow (DT setup time)	10		ns	
126	TckL2dtl	Data Hold after CK \downarrow (DT hold time)	15	_	ns	

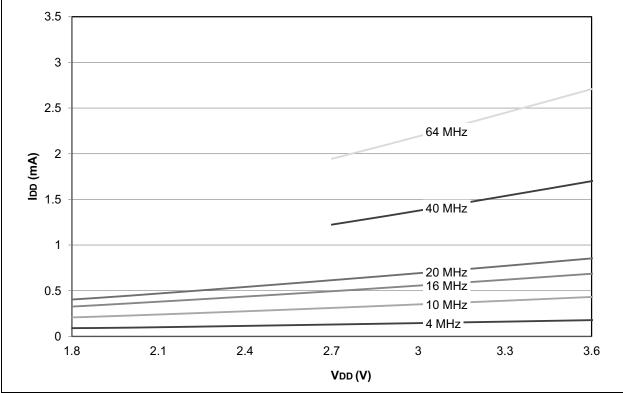
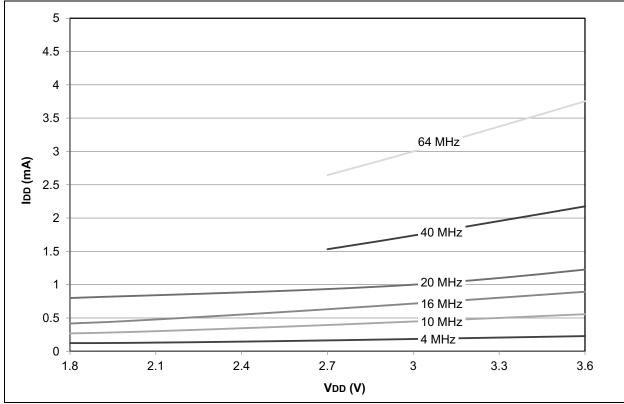
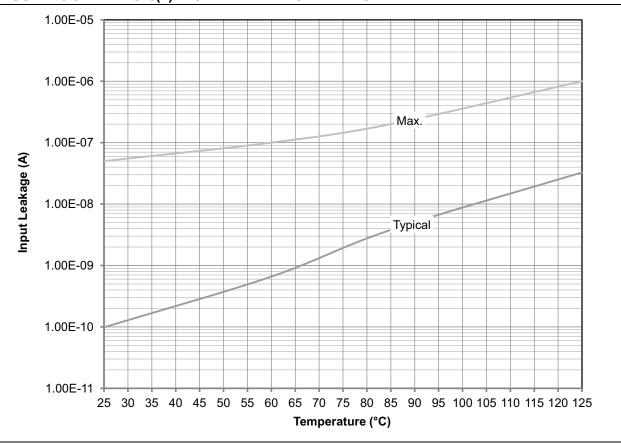




FIGURE 28-65: PIC18LF2X/4XK22 MAXIMUM IDD: PRI_IDLE EC HIGH POWER

DS40001412G-page 486

FIGURE 28-84: PIC18(L)F2X/4XK22 PIN INPUT LEAKAGE