

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	48MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	24
Program Memory Size	32KB (16K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	1.5K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 19x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Through Hole
Package / Case	28-DIP (0.300", 7.62mm)
Supplier Device Package	28-SPDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18lf25k22-e-sp

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

4.2 Register Definitions: Reset Control

REGISTER 4-1: RCON: RESET CONTROL REGISTER

R/W-0/	0 R/W-q/u	U-0	R/W-1/a	R-1/q	R-1/q	R/W-q/u	R/W-0/a	
IPEN	SBOREN ⁽¹⁾	_	RI	то	PD	POR ⁽²⁾	BOR	
bit 7	I						bit 0	
							,	
Legend:								
R = Reada	able bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'		
'1' = Bit is set '0' = Bit is cleared -n/n = Value at POR and BOR/Value at all other Reset								
x = Bit is	unknown	u = unchang	ed	q = depends	on condition			
bit 7	IPEN: Interrup 1 = Enable pr 0 = Disable pr	ot Priority Enat iority levels on riority levels on	ble bit interrupts i interrupts (P	IC16CXXX Co	mpatibility mode	•)		
bit 6	SBOREN: BC <u>If BOREN<1:(</u> 1 = BOR is er 0 = BOR is di <u>If BOREN<1:(</u> Bit is disabled)	DR Software Er D = 01: habled sabled D = 00, 10 or I and read as '0	nable bit ⁽¹⁾			,		
bit 5	Unimplemen	ted: Read as '	0'					
bit 4	RI: RESET INS	struction Flag b	oit					
	1 = The RESE 0 = The RESE code-exe	ET instruction v ET instruction cuted Reset of	vas not execu was executec ccurs)	ited (set by firm d causing a de	ware or Power- vice Reset (mu	on Reset) st be set in fin	mware after a	
bit 3	TO: Watchdog	g Time-out Flag	g bit					
	1 = Set by po 0 = A WDT ti	wer-up, CLRW	DT instruction ed	or SLEEP instr	uction			
bit 2	PD: Power-do	own Detection	Flag bit					
	1 = Set by po	ower-up or by t	he CLRWDT in	struction				
L :L 4	0 = Set by ex	ecution of the	SLEEP INStruc	Ction				
DIT		on Reset Statu	S DIT-					
	1 = NO POWer 0 0 = A Power 0	on Reset occu	rred (must be	set in software	after a Power-o	on Reset occur	s)	
bit 0	BOR: Brown-	out Reset State	us bit ⁽³⁾				- /	
	1 = A Brown- 0 = A Brown-	out Reset has out Reset occi	not occurred urred (must be	(set by firmwai e set by firmwa	e only) re after a POR o	or Brown-out R	eset occurs)	
Note 1:	When CONFIG2L[2:1] = 01, then	the SBOREN	Reset state is	; '1'; otherwise.	it is '0'.		
2:	The actual Reset v	alue of POR is	determined b	by the type of c	levice Reset. Se	e the notes fol	lowing this	

register and Section 4.7 "Reset State of Registers" for additional information.

3: See Table 4-1.

Note 1: Brown-out Reset is indicated when BOR is '0' and POR is '1' (assuming that both POR and BOR were set to '1' by firmware immediately after POR).

2: It is recommended that the POR bit be set after a Power-on Reset has been detected so that subsequent Power-on Resets may be detected.

TABLE 5-2:	REGISTER FILE SUMMARY FOR PIC18(L)F2X/4XK22 DEVICES (CONTINUED)
------------	---

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	<u>Value on</u> POR, BOR
F3Ah	ANSELC	ANSC7	ANSC6	ANSC5	ANSC4	ANSC3	ANSC2	_	—	1111 11
F39h	ANSELB	_	_	ANSB5	ANSB4	ANSB3	ANSB2	ANSB1	ANSB0	11 1111
F38h	ANSELA	_	_	ANSA5	_	ANSA3	ANSA2	ANSA1	ANSA0	1- 1111

Legend: x = unknown, u = unchanged, — = unimplemented, q = value depends on condition

Note 1: PIC18(L)F4XK22 devices only.

2: PIC18(L)F2XK22 devices only.

3: PIC18(L)F23/24K22 and PIC18(L)F43/44K22 devices only.

4: PIC18(L)F26K22 and PIC18(L)F46K22 devices only.

6.6 Writing to Flash Program Memory

The programming block size is 64 bytes. Word or byte programming is not supported.

Table writes are used internally to load the holding registers needed to program the Flash memory. There are only as many holding registers as there are bytes in a write block (64 bytes).

Since the Table Latch (TABLAT) is only a single byte, the TBLWT instruction needs to be executed 64 times for each programming operation. All of the table write operations will essentially be short writes because only the holding registers are written. After all the holding registers have been written, the programming operation of that block of memory is started by configuring the EECON1 register for a program memory write and performing the long write sequence. The long write is necessary for programming the internal Flash. Instruction execution is halted during a long write cycle. The long write will be terminated by the internal programming timer.

The EEPROM on-chip timer controls the write time. The write/erase voltages are generated by an on-chip charge pump, rated to operate over the voltage range of the device.

Note: The default value of the holding registers on device Resets and after write operations is FFh. A write of FFh to a holding register does not modify that byte. This means that individual bytes of program memory may be modified, provided that the change does not attempt to change any bit from a '0' to a '1'. When modifying individual bytes, it is not necessary to load all holding registers before executing a long write operation.

FIGURE 6-5: TABLE WRITES TO FLASH PROGRAM MEMORY

6.6.1 FLASH PROGRAM MEMORY WRITE SEQUENCE

The sequence of events for programming an internal program memory location should be:

- 1. Read 64 bytes into RAM.
- 2. Update data values in RAM as necessary.
- 3. Load Table Pointer register with address being erased.
- 4. Execute the block erase procedure.
- 5. Load Table Pointer register with address of first byte being written.
- 6. Write the 64-byte block into the holding registers with auto-increment.
- 7. Set the EECON1 register for the write operation:
 - set EEPGD bit to point to program memory;
 - · clear the CFGS bit to access program memory;
 - set WREN to enable byte writes.

- 8. Disable interrupts.
- 9. Write 55h to EECON2.
- 10. Write 0AAh to EECON2.
- 11. Set the WR bit. This will begin the write cycle.
- 12. The CPU will stall for duration of the write (about 2 ms using internal timer).
- 13. Re-enable interrupts.
- 14. Verify the memory (table read).

This procedure will require about 6 ms to update each write block of memory. An example of the required code is given in Example 6-3.

Note: Before setting the WR bit, the Table Pointer address needs to be within the intended address range of the bytes in the holding registers.

FIGURE 12-5: TIMER1/3/5 GATE TOGGLE MODE

TMRxGE	_	
TxGPOL		
TxGTM		
TxTxG_IN	- İ İ İ	
TxGVAL		
TIMER1/3/5 N $(N+1)(N+2)(N+3)(N+4)$	$\frac{1}{\sqrt{N+5}\sqrt{N+6}\sqrt{N+7}\sqrt{N+8}}$	

FIGURE 12-6: TIMER1/3/5 GATE SINGLE-PULSE MODE

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
IPR2	OSCFIP	C1IP	C2IP	EEIP	BCL1IP	HLVDIP	TMR3IP	CCP2IP	122
IPR4	—	_		—	—	CCP5IP	CCP4IP	CCP3IP	124
PIE1	—	ADIE	RC1IE	TX1IE	SSP1IE	CCP1IE	TMR2IE	TMR1IE	117
PIE2	OSCFIE	C1IE	C2IE	EEIE	BCL1IE	HLVDIE	TMR3IE	CCP2IE	118
PIE4	—	—	_	—	—	CCP5IE	CCP4IE	CCP3IE	120
PIR1	—	ADIF	RC1IF	TX1IF	SSP1IF	CCP1IF	TMR2IF	TMR1IF	112
PIR2	OSCFIF	C1IF	C2IF	EEIF	BCL1IF	HLVDIF	TMR3IF	CCP2IF	113
PIR4	—	_		—	—	CCP5IF	CCP4IF	CCP3IF	115
PMD0	UART2MD	UART1MD	TMR6MD	TMR5MD	TMR4MD	TMR3MD	TMR2MD	TMR1MD	52
PMD1	MSSP2MD	MSSP1MD	_	CCP5MD	CCP4MD	CCP3MD	CCP2MD	CCP1MD	53
T1CON	TMR1C	CS<1:0>	T1CKP	S<1:0>	T1SOSCEN	T1SYNC	T1RD16	TMR10N	166
T1GCON	TMR1GE	T1GPOL	T1GTM	T1GSPM	T1GGO/DONE	T1GVAL	T1GSS	6<1:0>	167
T3CON	TMR3C	CS<1:0>	T3CKP	S<1:0>	T3SOSCEN	T3SYNC	T3RD16	TMR3ON	166
T3GCON	TMR3GE	T3GPOL	T3GTM	T3GSPM	T3GGO/DONE	T3GVAL	T3GSS	S<1:0>	167
T5CON	TMR50	S<1:0>	T5CKP	S<1:0>	T5SOSCEN	T5SYNC	T5RD16	TMR5ON	166
T5GCON	TMR5GE	T5GPOL	T5GTM	T5GSPM	T5GGO/DONE	T5GVAL	T5GSS	5<1:0>	167
TMR1H		Holding	Register for th	e Most Signifi	cant Byte of the 1	6-bit TMR1 R	egister		_
TMR1L			Least Sign	ificant Byte of	the 16-bit TMR1	Register			—
TMR3H		Holding	Register for th	e Most Signifi	cant Byte of the 1	6-bit TMR3 R	egister		_
TMR3L			Least Sign	ificant Byte of	the 16-bit TMR3	Register			
TMR5H		Holding	Register for th	e Most Signifi	cant Byte of the 1	6-bit TMR5 R	egister		
TMR5L			Least Sign	ificant Byte of	the 16-bit TMR5	Register			
TRISA	TRISA7	TRISA6	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	151
TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	151
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	151
TRISD ⁽¹⁾	TRISD7	TRISD6	TRISD5	TRISD4	TRISD3	TRISD2	TRISD1	TRISD0	151
TRISE	WPUE3	_	_	—	_	TRISE2(1)	TRISE1 ⁽¹⁾	TRISE0(1)	151

TABLE 14-5:	REGISTERS ASSOCIATED WITH COMPARE (CONTINUED))

Legend: — = Unimplemented location, read as '0'. Shaded bits are not used by Compare mode.

Note 1: These registers/bits are available on PIC18(L)F4XK22 devices.

TABLE 14-6: CONFIGURATION REGISTERS ASSOCIATED WITH COMPARE

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
CONFIG3H	MCLRE	—	P2BMX	T3CMX	HFOFST	ССРЗМХ	PBADEN	CCP2MX	348

Legend: — = Unimplemented location, read as '0'. Shaded bits are not used by Compare mode.

15.5.8 GENERAL CALL ADDRESS SUPPORT

The addressing procedure for the I^2C bus is such that the first byte after the Start condition usually determines which device will be the slave addressed by the master device. The exception is the general call address which can address all devices. When this address is used, all devices should, in theory, respond with an acknowledge.

The general call address is a reserved address in the I^2C protocol, defined as address 0x00. When the GCEN bit of the SSPxCON2 register is set, the slave module will automatically \overline{ACK} the reception of this address regardless of the value stored in SSPxADD. After the slave clocks in an address of all zeros with the R/W bit clear, an interrupt is generated and slave software can read SSPxBUF and respond. Figure 15-24 shows a general call reception sequence.

In 10-bit Address mode, the UA bit will not be set on the reception of the general call address. The slave will prepare to receive the second byte as data, just as it would in 7-bit mode.

If the AHEN bit of the SSPxCON3 register is set, just as with any other address reception, the slave hardware will stretch the clock after the 8th falling edge of SCLx. The slave must then set its ACKDT value and release the clock with communication progressing as it would normally.

FIGURE 15-24: SLAVE MODE GENERAL CALL ADDRESS SEQUENCE

15.5.9 SSPx MASK REGISTER

An SSPx Mask (SSPxMSK) register (Register 15-6) is available in I²C Slave mode as a mask for the value held in the SSPxSR register during an address comparison operation. A zero ('0') bit in the SSPxMSK register has the effect of making the corresponding bit of the received address a "don't care".

This register is reset to all '1's upon any Reset condition and, therefore, has no effect on standard SSPx operation until written with a mask value.

The SSPx Mask register is active during:

- 7-bit Address mode: address compare of A<7:1>.
- 10-bit Address mode: address compare of A<7:0> only. The SSPx mask has no effect during the reception of the first (high) byte of the address.

REGISTE	K 15-5. 001 XC	0143. 331 /			5		
R-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
ACKTIN	A PCIE	SCIE	BOEN	SDAHT	SBCDE	AHEN	DHEN
bit 7							bit 0
·							
Legend:							
R = Reada	able bit	W = Writab	le bit	U = Unimplem	ented bit, read	as '0'	
u = Bit is u	inchanged	x = Bit is ur	nknown	-n/n = Value at	t POR and BOR	/Value at all ot	her Resets
'1' = Bit is	set	'0' = Bit is c	cleared				
bit 7	ACKTIM: Ack	nowledge Tin	ne Status bit	(I ² C mode only) ⁽³⁾		
	1 = Indicates t	he I ² C bus is	in an Ackno	wledge sequen	ce, set on 8 th fa	lling edge of S	CLx clock
1.11.0	0 = Not an Acl	knowledge se	equence, cle	ared on 9"' risin	g edge of SCLx	CIOCK	
DIT 6	PCIE: Stop Co	ndition Interr	upt Enable t	bit (IFC mode on	iy)		
	1 = Enable Internet 0 = Stop detection	tion interrupt	s are disable	p condition ed(2)			
bit 5	SCIE: Start Co	ndition Interr	upt Enable b	oit (I ² C mode on	lv)		
	1 = Enable inte	errupt on det	ection of Sta	rt or Restart cor	ditions		
	0 = Start detec	tion interrupt	ts are disable	ed ⁽²⁾			
bit 4	BOEN: Buffer	Overwrite Er	nable bit				
	In SPI Slave m	<u>node:</u> (1)					
	1 = SSPx	BUF updates	s every time t	that a new data	byte is shifted in	n ignoring the I	BF bit
	SSPx	CON1 reaiste	er is set. and	the buffer is no	t updated	alleauy sei, se	
	In I ² C Master	mode:	,				
	This bit is	ignored.					
	<u>In I=C Slave m</u> 1 – SSPx	<u>i00e:</u> BLIE is unda	ted and \overline{ACI}	k is generated f	or a received a	ddress/data by	te ignoring the
	state of	of the SSPxC	V bit only if	the BF bit = 0 .			re, ignoring the
	0 = SSPx	BUF is only ι	updated whe	n SSPxOV is cl	ear		
bit 3	SDAHT: SDAX	Hold Time S	Selection bit	(I ² C mode only)			
	1 = Minimum o	of 300 ns hold	d time on SD	Ax after the fall	ing edge of SCL	X	
	0 = Minimum c	of 100 ns hold	d time on SD	Ax after the fall	ing edge of SCL	_X	
bit 2	SBCDE: Slave	e Mode Bus (Collision Det	ect Enable bit (I	² C Slave mode	only)	
	If on the rising BCLxIF bit of t	edge of SC he PIR2 regi	Lx, SDAx is ster is set, a	sampled low wind bus goes idle	hen the module e	is outputting a	a high state, the
	1 = Enable sla 0 = Slave bus	ve bus collisi collisi	ion interrupts rrupts are dis	s sabled			
bit 1	AHEN: Addres	ss Hold Enab	le bit (I ² C SI	ave mode only)			
	1 = Following t	he 8th falling	edge of SC	Lx for a matchin	g received addr	ess byte; CKP	bit of the SSPx-
	CON1 reg	ister will be o	cleared and t	the SCLx will be	held low.		
Note 4	U = Address h	Diding is disa		upor to image -	II but the left	animad huta O	
note 1:	set when a new by	te is received	I and $BF = 1$. but hardware o	continues to writ	e the most rec	ent byte to
	SSPxBUF.			,			
2:	This bit has no effe enabled.	ct in Slave m	odes for whi	ich Start and Sto	p condition det	ection is explic	itly listed as

REGISTER 15-5: SSPxCON3: SSPx CONTROL REGISTER 3

3: The ACKTIM Status bit is active only when the AHEN bit or DHEN bit is set.

16.4.4 BREAK CHARACTER SEQUENCE

The EUSART module has the capability of sending the special Break character sequences that are required by the LIN bus standard. A Break character consists of a Start bit, followed by 12 '0' bits and a Stop bit.

To send a Break character, set the SENDB and TXEN bits of the TXSTAx register. The Break character transmission is then initiated by a write to the TXREGx. The value of data written to TXREGx will be ignored and all '0's will be transmitted.

The SENDB bit is automatically reset by hardware after the corresponding Stop bit is sent. This allows the user to preload the transmit FIFO with the next transmit byte following the Break character (typically, the Sync character in the LIN specification).

The TRMT bit of the TXSTAx register indicates when the transmit operation is active or Idle, just as it does during normal transmission. See Figure 16-9 for the timing of the Break character sequence.

16.4.4.1 Break and Sync Transmit Sequence

The following sequence will start a message frame header made up of a Break, followed by an auto-baud Sync byte. This sequence is typical of a LIN bus master.

- 1. Configure the EUSART for the desired mode.
- 2. Set the TXEN and SENDB bits to enable the Break sequence.
- 3. Load the TXREGx with a dummy character to initiate transmission (the value is ignored).
- 4. Write '55h' to TXREGx to load the Sync character into the transmit FIFO buffer.
- 5. After the Break has been sent, the SENDB bit is reset by hardware and the Sync character is then transmitted.

When the TXREGx becomes empty, as indicated by the TXxIF, the next data byte can be written to TXREGx.

16.4.5 RECEIVING A BREAK CHARACTER

The Enhanced EUSART module can receive a Break character in two ways.

The first method to detect a Break character uses the FERR bit of the RCSTAx register and the Received data as indicated by RCREGx. The Baud Rate Generator is assumed to have been initialized to the expected baud rate.

A Break character has been received when;

- RCxIF bit is set
- FERR bit is set
- RCREGx = 00h

The second method uses the Auto-Wake-up feature described in **Section 16.4.3** "**Auto-Wake-up on Break**". By enabling this feature, the EUSART will sample the next two transitions on RXx/DTx, cause an RCxIF interrupt, and receive the next data byte followed by another interrupt.

Note that following a Break character, the user will typically want to enable the Auto-Baud Detect feature. For both methods, the user can set the ABDEN bit of the BAUDCONx register before placing the EUSART in Sleep mode.

Write to TXREGx Dummy Write **BRG** Output (Shift Clock) TXx/CKx (pin) Start bit bit 0 bit 1 bit 1' Stop bit Break TXxIF bit (Transmit interrupt Flag) TRMT bit (Transmit Shift Reg. Empty Flag) SENDB Sampled Here Auto Cleared SENDB (send Break control bit)

FIGURE 16-9: SEND BREAK CHARACTER SEQUENCE

17.1.7 RESULT FORMATTING

The 10-bit A/D conversion result can be supplied in two formats, left justified or right justified. The ADFM bit of the ADCON2 register controls the output format.

Figure 17-2 shows the two output formats.

FIGURE 17-2: 10-BIT A/D CONVERSION RESULT FORMAT

17.3 Register Definitions: ADC Control

Note: Analog pin control is determined by the ANSELx registers (see Register 10-2)

REGISTER 17-1: ADCON0: A/D CONTROL REGISTER 0

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—			CHS<4:0>			GO/DONE	ADON
bit 7							bit 0

Logond				
Legena:				
R = Reada	ible bit	VV = VVritable bit	U = Unimplemented bit, re	ead as '0'
-n = Value	at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown
bit 7	Unimple	mented: Read as '0'		
bit 6-2	CHS<4:0	>: Analog Channel Select bits	6	
	00000 =	ANO		
	00001 =	AN1		
	00010 =	AN2		
	00011 =	AN3		
	00100 =	AN4		
	00101 =	AN5(1)		
	00110 =	AN6(1)		
	00111 =	AN7(')		
	01000 =	AN8		
	01001 =	AN9		
	01010 =	AN10		
	01011 =	AN11		
	01100 =	AN12		
	01101 =	AN13		
	01110 =	AN14 AN15		
	10000 -	AN16		
	10000 =	AN17		
	10010 =	AN18		
	10011 =	AN19		
	10100 =	AN20 ⁽¹⁾		
	10101 =	AN21 ⁽¹⁾		
	10110 =	AN22 ⁽¹⁾		
	10111 =	AN23 ⁽¹⁾		
	11000 =	AN24 ⁽¹⁾		
	11001 =	AN25 ⁽¹⁾		
	11010 =	AN26 ⁽¹⁾		
	11011 =	AN27 ⁽¹⁾		
	11100 =	Reserved		
	11101 =	CTMU		
	11110 =	DAC		(2)
	111111 =	FVR BUF2 (1.024V/2.048V/2.0	96V Volt Fixed Voltage Reference)(2)
bit 1	GO/DON	E: A/D Conversion Status bit		
	1 = A/D 0	conversion cycle in progress. Se	etting this bit starts an A/D convers	ion cycle.
	This	bit is automatically cleared by ha	ardware when the A/D conversion	has completed.
	0 = A/D c	conversion completed/not in prog	gress	
bit 0	ADON: A	DC Enable bit		
	1 = ADC	is enabled		
	0 = ADC	is disabled and consumes no o	perating current	
Note 1:	Available on P	IC18(L)F4XK22 devices only.		

2: Allow greater than 15 μs acquisition time when measuring the Fixed Voltage Reference.

17.4 A/D Acquisition Requirements

For the ADC to meet its specified accuracy, the charge holding capacitor (CHOLD) must be allowed to fully charge to the input channel voltage level. The Analog Input model is shown in Figure 17-5. The source impedance (Rs) and the internal sampling switch (Rss) impedance directly affect the time required to charge the capacitor CHOLD. The sampling switch (Rss) impedance varies over the device voltage (VDD), see Figure 17-5. The maximum recommended impedance for analog sources is $3 \ k\Omega$. As the source impedance is decreased, the acquisition time may be decreased. After the analog input channel is selected (or changed), an A/D

acquisition must be done before the conversion can be started. To calculate the minimum acquisition time, Equation 17-1 may be used. This equation assumes that 1/2 LSb error is used (1024 steps for the ADC). The 1/2 LSb error is the maximum error allowed for the ADC to meet its specified resolution.

EQUATION 17-1: ACQUISITION TIME EXAMPLE

Assumptions: Temperature = 50°C and external impedance of 10k
$$\Omega$$
 3.0V VDD

$$TACQ = Amplifier Settling Time + Hold Capacitor Charging Time + Temperature Coefficient
= TAMP + TC + TCOFF
= 5µs + TC + [(Temperature - 25°C)(0.05µs/°C)]
The value for TC can be approximated with the following equations:
$$V_{APPLIED}\left(1 - \frac{1}{2047}\right) = V_{CHOLD} \qquad :[1] V_{CHOLD} charged to within 1/2 lsb$$

$$V_{APPLIED}\left(1 - e^{-\frac{TC}{RC}}\right) = V_{CHOLD} \qquad :[2] V_{CHOLD} charge response to V_{APPLIED}$$

$$V_{APPLIED}\left(1 - e^{-\frac{TC}{RC}}\right) = V_{APPLIED}\left(1 - \frac{1}{2047}\right) \qquad :combining [1] and [2]$$
Solving for Tc:

$$T_{C} = -C_{HOLD}(RIC + RSS + RS) \ln(1/2047)$$

$$= -13.5pF(1k\Omega + 700\Omega + 10k\Omega) \ln(0.0004885)$$

$$= 1.20\mu s$$$$

$$TACQ = 5\mu s + 1.20\mu s + [(50^{\circ}C - 25^{\circ}C)(0.05\mu s/^{\circ}C)]$$

= 7.45\mu s

Note 1: The reference voltage (VREF) has no effect on the equation, since it cancels itself out.

- 2: The charge holding capacitor (CHOLD) is discharged after each conversion.
- **3:** The maximum recommended impedance for analog sources is $10 \text{ k}\Omega$. This is required to meet the pin leakage specification.

© 2010-2016 Microchip Technology Inc.

18.5 Operation During Sleep

The comparator, if enabled before entering Sleep mode, remains active during Sleep. The additional current consumed by the comparator is shown separately in **Section 27.0** "**Electrical Specifications**". If the comparator is not used to wake the device, power consumption can be minimized while in Sleep mode by turning off the comparator. Each comparator is turned off by clearing the CxON bit of the CMxCON0 register.

A change to the comparator output can wake-up the device from Sleep. To enable the comparator to wake the device from Sleep, the CxIE bit of the PIE2 register and the PEIE/GIEL bit of the INTCON register must be set. The instruction following the SLEEP instruction always executes following a wake from Sleep. If the GIE/GIEH bit of the INTCON register is also set, the device will then execute the Interrupt Service Routine.

18.6 Effects of a Reset

A device Reset forces the CMxCON0 and CM2CON1 registers to their Reset states. This forces both comparators and the voltage references to their Off states.Comparator Control Registers.

18.7 Analog Input Connection Considerations

A simplified circuit for an analog input is shown in Figure 18-5. Since the analog input pins share their connection with a digital input, they have reverse biased ESD protection diodes to VDD and VSS. The analog input, therefore, must be between VSS and VDD. If the input voltage deviates from this range by more than 0.6V in either direction, one of the diodes is forward biased and a latch-up may occur.

A maximum source impedance of $10 \text{ k}\Omega$ is recommended for the analog sources. Also, any external component connected to an analog input pin, such as a capacitor or a Zener diode, should have very little leakage current to minimize inaccuracies introduced.

Note 1: When reading a PORT register, all pins configured as analog inputs will read as a '0'. Pins configured as digital inputs will convert as an analog input, according to the input specification.

2: Analog levels on any pin defined as a digital input, may cause the input buffer to consume more current than is specified.

SRCLK<2:0>	Divider	Fosc = 20 MHz	Fosc = 16 MHz	Fosc = 8 MHz	Fosc = 4 MHz	Fosc = 1 MHz
111	512	25.6 μs	32 μs	64 μs	128 μs	512 μs
110	256	12.8 μs	16 μs	32 μs	64 μs	256 μs
101	128	6.4 μs	8 μs	16 μs	32 μs	128 μs
100	64	3.2 μs	4 μs	8 μs	16 μs	64 μs
011	32	1.6 μs	2 μs	4 μs	8 μs	32 μs
010	16	0.8 μs	1 μs	2 μs	4 μs	16 μs
001	8	0.4 μs	0.5 μs	1 μs	2 μs	8 μs
000	4	0.2 μs	0.25 μs	0.5 μs	1 μs	4 μs

TABLE 20-1: DIVSRCLK FREQUENCY TABLE

27.3 DC Characteristics: RC Run Supply Current, PIC18(L)F2X/4XK22

PIC18LF2X/4XK22 PIC18F2X/4XK22		Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +125^{\circ}C$							
		Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +125^{\circ}C$							
Param No.	Device Characteristics	Тур	Max	Units		Conditions			
D020	Supply Current (IDD)(1),(2)	3.6	23	μA	-40°C	VDD = 1.8V	Fosc = 31 kHz (RC_RUN mode, LFINTOSC source)		
		3.9	25	μA	+25°C				
		3.9	_	μA	+60°C				
		3.9	28	μA	+85°C				
		4.0	30	μA	125°C				
D021		8.1	26	μA	-40°C	VDD = 3.0V			
		8.4	30	μA	+25°C				
		8.6	_	μΑ	+60°C				
		8.7	35	μΑ	+85°C				
		10.7	40	μΑ	+125°C				
D022		16	35	μA	-40°C	VDD = 2.3V	Fosc = 31 kHz (RC_RUN mode, LFINTOSC source)		
		17	35	μA	+25°C				
		18	35	μA	+85°C				
		19	50	μA	+125°C				
D023		18	50	μA	-40°C	VDD = 3.0V			
		20	50	μA	+25°C				
		21	50	μA	+85°C				
		22	60	μΑ	+125°C				
D024		19	55	μA	-40°C	VDD = 5.0V			
		21	55	μA	+25°C				
		22	55	μA	+85°C				
		23	70	μA	+125°C				
D025		0.14	0.25	mA	-40°C to +125°C	VDD = 1.8V	Fosc = 500 kHz		
D026		0.17	0.30	mA	-40°C to +125°C	VDD = 3.0V (RC_RUN mo MFINTOSC source)			
D027		0.18	0.25	mA	-40°C to +125°C	VDD = 2.3V	Fosc = 500 kHz		
D028		0.20	0.30	mA	-40°C to +125°C	VDD = 3.0V (RC_RUN mod VDD = 5.0V MFINTOSC source)			
D029		0.25	0.35	mA	-40°C to +125°C				

Note 1: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on the current consumption.

Test condition: All Peripheral Module Control bits in PMD0, PMD1 and PMD2 set to '1'.

2: The test conditions for all IDD measurements in active operation mode are:

All I/O pins set as outputs driven to Vss;

 $\overline{MCLR} = VDD;$

OSC1 = external square wave, from rail-to-rail (PRI_RUN and PRI_IDLE only).

TABLE 27-3: FIXED VOLTAGE REFERENCE (FVR) SPECIFICATIONS

Operating Conditions: -40°C < TA < +125°C (unless otherwise stated)							
Param No.	Sym	Characteristics	Min	Тур	Max	Units	Comments
VR01	VROUT	VR voltage output to ADC	0.973	1.024	1.085	V	$1x$ output, VDD $\ge 2.5V$
			1.946	2.048	2.171	V	$2\mathbf{x}$ output, VDD $\geq 2.5V$
			3.891	4.096	4.342	V	$4x$ output, VDD \ge 4.75V (PIC18F2X/4XK22)
VR02	VROUT	VR voltage output all other modules	0.942	1.024	1.096	V	\texttt{lx} output, $V\text{DD} \geq 2.5V$
			1.884	2.048	2.191	V	$2x$ output, VDD $\ge 2.5V$
			3.768	4.096	4.383	V	$4x$ output, VDD \ge 4.75V (PIC18F2X/4XK22)
VR04*	TSTABLE	Settling Time	_	25	100	μS	0 to 125°C

* These parameters are characterized but not tested.

TABLE 27-4: CHARGE TIME MEASUREMENT UNIT (CTMU) SPECIFICATIONS

Operating Conditions: 1.8V < VDD < 5.5V, -40°C < TA < +125°C (unless otherwise stated)							
Param No.	Sym	Characteristics	Min	Typ ⁽¹⁾	Max	Units	Comments
CT01	Ιουτ1	CTMU Current Source, Base Range		0.55	_	μA	IRNG<1:0>=01
CT02	Ιουτ2	CTMU Current Source, 10X Range	—	5.5	—	μA	IRNG<1:0>=10
CT03	Ιουτ3	CTMU Current Source, 100X Range	—	55	—	μΑ	IRNG<1:0>=11 VDD ≥ 3.0V

Note 1: Nominal value at center point of current trim range (CTMUICON<7:2>=000000).

FIGURE 28-73: PIC18LF2X/4XK22 MAXIMUM IDD: SEC_RUN 32.768 kHz

© 2010-2016 Microchip Technology Inc.

40-Lead Ultra Thin Plastic Quad Flat, No Lead Package (MV) – 5x5x0.5 mm Body [UQFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-156A Sheet 1 of 2