

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	64MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	24
Program Memory Size	32KB (16K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	1.5K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 19x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18lf25k22-i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.2 Other Special Features

- Memory Endurance: The Flash cells for both program memory and data EEPROM are rated to last for many thousands of erase/write cycles up to 10K for program memory and 100K for EEPROM. Data retention without refresh is conservatively estimated to be greater than 40 years.
- Self-programmability: These devices can write to their own program memory spaces under internal software control. By using a bootloader routine located in the protected Boot Block at the top of program memory, it becomes possible to create an application that can update itself in the field.
- Extended Instruction Set: The PIC18(L)F2X/ 4XK22 family introduces an optional extension to the PIC18 instruction set, which adds eight new instructions and an Indexed Addressing mode. This extension, enabled as a device configuration option, has been specifically designed to optimize re-entrant application code originally developed in high-level languages, such as C.
- Enhanced CCP module: In PWM mode, this module provides one, two or four modulated outputs for controlling half-bridge and full-bridge drivers. Other features include:
 - Auto-Shutdown, for disabling PWM outputs on interrupt or other select conditions
 - Auto-Restart, to reactivate outputs once the condition has cleared
 - Output steering to selectively enable one or more of four outputs to provide the PWM signal.
- Enhanced Addressable EUSART: This serial communication module is capable of standard RS-232 operation and provides support for the LIN bus protocol. Other enhancements include automatic baud rate detection and a 16-bit Baud Rate Generator for improved resolution. When the microcontroller is using the internal oscillator block, the EUSART provides stable operation for applications that talk to the outside world without using an external crystal (or its accompanying power requirement).
- **10-bit A/D Converter:** This module incorporates programmable acquisition time, allowing for a channel to be selected and a conversion to be initiated without waiting for a sampling period and thus, reduce code overhead.
- Extended Watchdog Timer (WDT): This enhanced version incorporates a 16-bit postscaler, allowing an extended time-out range that is stable across operating voltage and temperature. See Section 27.0 "Electrical Specifications" for time-out periods.
- Charge Time Measurement Unit (CTMU)
- SR Latch Output:

1.3 Details on Individual Family Members

Devices in the PIC18(L)F2X/4XK22 family are available in 28-pin and 40/44-pin packages. The block diagram for the device family is shown in Figure 1-1.

The devices have the following differences:

- 1. Flash program memory
- 2. Data Memory SRAM
- 3. Data Memory EEPROM
- 4. A/D channels
- 5. I/O ports
- 6. ECCP modules (Full/Half Bridge)
- 7. Input Voltage Range/Power Consumption

All other features for devices in this family are identical. These are summarized in Table 1-1.

The pinouts for all devices are listed in the pin summary tables: Table 2 and Table 3, and I/O description tables: Table 1-2 and Table 1-3.

U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	
—	—	—	—	CTMUMD	CMP2MD	CMP1MD	ADCMD	
bit 7		•					bit 0	
Legend:								
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'		
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	iown	
bit 7-4	Unimplemen	ted: Read as '	כ'					
bit 3	CTMUMD: CT	TMU Periphera	l Module Disa	ble Control bit				
	1 = Module is	s disabled, Cloo	ck Source is d	lisconnected, n	nodule does not	t draw digital po	ower	
	0 = Module is	s enabled, Cloc	k Source is c	onnected, mod	lule draws digita	al power		
bit 2	CMP2MD: Co	mparator C2 F	eripheral Mod	dule Disable Co	ontrol bit			
	1 = Module is	s disabled, Cloo	ck Source is d	lisconnected, n	nodule does not	t draw digital po	ower	
	0 = Module is	s enabled, Cloc	k Source is co	onnected, mod	lule draws digita	al power		
bit 1	CMP1MD: Co	mparator C1 F	eripheral Moo	dule Disable Co	ontrol bit			
	1 = Module is	s disabled, Cloo	ck Source is d	lisconnected, n	nodule does not	t draw digital po	ower	
	0 = Module is enabled, Clock Source is connected, module draws digital power							
bit 0	ADCMD: ADC	C Peripheral Mo	odule Disable	Control bit				
	1 = Module is	s disabled, Cloo	ck Source is d	lisconnected, n	nodule does not	t draw digital po	ower	
	0 = Module is enabled, Clock Source is connected, module draws digital power							

REGISTER 3-3: PMD2: PERIPHERAL MODULE DISABLE REGISTER 2

5.3.3 INSTRUCTIONS IN PROGRAM MEMORY

The program memory is addressed in bytes. Instructions are stored as either two bytes or four bytes in program memory. The Least Significant Byte of an instruction word is always stored in a program memory location with an even address (LSb = 0). To maintain alignment with instruction boundaries, the PC increments in steps of two and the LSb will always read '0' (see Section 5.1.1 "Program Counter").

Figure 5-4 shows an example of how instruction words are stored in the program memory.

The CALL and GOTO instructions have the absolute program memory address embedded into the instruction. Since instructions are always stored on word boundaries, the data contained in the instruction is a word address. The word address is written to PC<20:1>, which accesses the desired byte address in program memory. Instruction #2 in Figure 5-4 shows how the instruction GOTO 0006h is encoded in the program memory. Program branch instructions, which encode a relative address offset, operate in the same manner. The offset value stored in a branch instruction represents the number of single-word instructions that the PC will be offset by. Section 25.0 "Instruction Set Summary" provides further details of the instruction set.

				-	
			LSB = 1	LSB = 0	Word Address \downarrow
	Program N			000000h	
	Byte Locat	tions \rightarrow			000002h
					000004h
					000006h
Instruction 1:	MOVLW	055h	0Fh	55h	000008h
Instruction 2:	GOTO	0006h	EFh	03h	00000Ah
			F0h	00h	00000Ch
Instruction 3:	MOVFF	123h, 456h	C1h	23h	00000Eh
			F4h	56h	000010h
					000012h
					000014h

FIGURE 5-4: INSTRUCTIONS IN PROGRAM MEMORY

5.3.4 TWO-WORD INSTRUCTIONS

The standard PIC18 instruction set has four two-word instructions: CALL, MOVFF, GOTO and LSFR. In all cases, the second word of the instruction always has '1111' as its four Most Significant bits; the other 12 bits are literal data, usually a data memory address.

The use of '1111' in the 4 MSbs of an instruction specifies a special form of NOP. If the instruction is executed in proper sequence – immediately after the first word – the data in the second word is accessed and used by the instruction sequence.

If the first word is skipped for some reason and the second word is executed by itself, a NOP is executed instead. This is necessary for cases when the two-word instruction is preceded by a conditional instruction that changes the PC. Example 5-4 shows how this works.

Note:	See Section 5.8 "PIC18 Instruction Execution and the Extended
	Instruction Set" for information on
	two-word instructions in the extended instruction set.

CASE 1:						
Object Code	Source Code					
0110 0110 0000 0000	TSTFSZ REG1	; is RAM location 0?				
1100 0001 0010 0011	MOVFF REG1, RE	G2 ; No, skip this word				
1111 0100 0101 0110		; Execute this word as a NOP				
0010 0100 0000 0000	ADDWF REG3	; continue code				
CASE 2:						
Object Code	Source Code					
0110 0110 0000 0000	TSTFSZ REG1	; is RAM location 0?				
1100 0001 0010 0011	MOVFF REG1, RE	G2 ; Yes, execute this word				
1111 0100 0101 0110		; 2nd word of instruction				
0010 0100 0000 0000	ADDWF REG3	; continue code				

EXAMPLE 5-4: TWO-WORD INSTRUCTIONS

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
SSP2IP	BCL2IP	RC2IP	TX2IP	CTMUIP	TMR5GIP	TMR3GIP	TMR1GIP	
bit 7							bit 0	
Legend:	1.12							
R = Readable	e bit	W = Writable	bit	U = Unimplei	nented bit, read	d as '0'		
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown	
bit 7	SSP2IP: Svn	chronous Seria	l Port 2 Interr	upt Priority bit				
	1 = High price	pritv		apt :				
	0 = Low prio	rity						
bit 6	BCL2IP: Bus	Collision 2 Inte	errupt Priority	bit				
	1 = High pric	ority						
	0 = Low prio	ority						
bit 5	RC2IP: EUS	ART2 Receive	Interrupt Prior	ity bit				
	1 = High price	ority						
	0 = Low prio	ority						
bit 4	TX2IP: EUSA	ART2 Transmit	Interrupt Prio	rity bit				
	1 = High pric	ority						
h it 0		ority						
DIT 3		NU Interrupt P	lority dit					
	$\perp = Hign pric$	ority						
hit 2		MR5 Gate Inter	runt Priority h	.it				
5112	1 = High price	ority	rupt i nonty c					
	0 = Low priority							
bit 1	TMR3GIP: T	MR3 Gate Inter	rupt Priority b	oit				
	1 = High priority							
	0 = Low priority							
bit 0	TMR1GIP: T	MR1 Gate Inter	rupt Priority b	oit				
	1 = High pric	ority						
	0 = Low prio	rity						

REGISTER 9-16: IPR3: PERIPHERAL INTERRUPT PRIORITY REGISTER 3

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
ANSELC	ANSC7	ANSC6	ANSC5	ANSC4	ANSC3	ANSC2		—	150
ECCP1AS	CCP1ASE		CCP1AS<2:0>		PSS1A0	C<1:0>	PSS1B	D<1:0>	202
CCP1CON	P1M<	1:0>	DC1B<	1:0>		CCP1M<3:0)>		198
ECCP2AS	CCP2ASE		CCP2AS<2:0>		PSS2A0	C<1:0>	PSS2B	SD<1:0>	202
CCP2CON	P2M<	1:0>	DC2B<	1:0>		CCP2M<3:0)>		198
CTMUCONH	CTMUEN	_	CTMUSIDL	TGEN	EDGEN	EDGSEQEN	IDISSEN	CTTRIG	323
LATC	LATC7	LATC6	LATC5	LATC4	LATC3	LATC2	LATC1	LATC0	152
PORTC	RC7	RC6	RC5	RC4	RC3	RC2	RC1	RC0	148
RCSTA1	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	270
SLRCON	_	_	—	SLRE ⁽¹⁾	SLRD ⁽¹⁾	SLRC	SLRB	SLRA	153
SSP1CON1	WCOL	SSPOV	SSPEN	CKP		SSPM<3:0>			253
T1CON	TMR1CS	S<1:0>	T1CKPS-	<1:0>	T1SOSCEN	T1SYNC	T1RD16	TMR10N	166
T3CON	TMR3CS	S<1:0>	T3CKPS-	<1:0>	T3SOSCEN	T3SYNC	T3RD16	TMR3ON	166
T3GCON	TMR3GE	T3GPOL	T3GTM	T3GSPM	T3GGO/DONE	T3GVAL	T3GS	S<1:0>	167
T5CON	TMR5CS	S<1:0>	T5CKPS-	T5CKPS<1:0>		T5SYNC	T5RD16	TMR5ON	166
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	151
TXSTA1	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	269

TABLE 10-9: REGISTERS ASSOCIATED WITH PORTC

Legend: — = unimplemented locations, read as '0'. Shaded bits are not used for PORTC.

Note 1: Available on PIC18(L)F4XK22 devices.

TABLE 10-10: CONFIGURATION REGISTERS ASSOCIATED WITH PORTC

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
CONFIG3H	MCLRE	_	P2BMX	T3CMX	HFOFST	CCP3MX	PBADEN	CCP2MX	348

Legend: — = unimplemented locations, read as '0'. Shaded bits are not used for PORTC.

TABLE 10-14: PORTE I/O SUMMARY

Pin	Function	TRIS Setting	ANSEL Setting	Pin Type	Buffer Type	Description
RE0/P3A/CCP3/AN5	RE0	0	0	0	DIG	LATE<0> data output; not affected by analog input.
		1	0	I	ST	PORTE<0> data input; disabled when analog input enabled.
	P3A ⁽¹⁾	0	0	0	DIG	Enhanced CCP3 PWM output.
	CCP3 ⁽¹⁾	0	0	0	DIG	Compare 3 output/PWM 3 output.
		1	0	Ι	ST	Capture 3 input.
	AN5	1	1	I	AN	Analog input 5.
RE1/P3B/AN6	RE1	0	0	0	DIG	LATE<1> data output; not affected by analog input.
		1	0	Ι	ST	PORTE<1> data input; disabled when analog input enabled.
	P3B	0	0	0	DIG	Enhanced CCP3 PWM output.
	AN6	1	1	-	AN	Analog input 6.
RE2/CCP5/AN7	RE2	0	0	0	DIG	LATE<2> data output; not affected by analog input.
		1	0	Ι	ST	PORTE<2> data input; disabled when analog input enabled.
	CCP5	0	0	0	DIG	Compare 5 output/PWM 5 output.
		1	0	-	ST	Capture 5 input.
	AN7	1	1	-	AN	Analog input 7.
RE3/VPP/MCLR	RE3	—	—	I	ST	PORTE<3> data input; enabled when Configuration bit MCLRE = 0.
	Vpp	_	—	Р	AN	Programming voltage input; always available
	MCLR			Ι	ST	Active-low Master Clear (device Reset) input; enabled when configuration bit MCLRE = 1.

Legend:AN = Analog input or output; TTL = TTL compatible input; HV = High Voltage; OD = Open Drain; XTAL = Crystal; CMOS =
CMOS compatible input or output; ST = Schmitt Trigger input with CMOS levels; I^2C = Schmitt Trigger input with I^2C .

Note 1: Alternate pin assignment for P3A/CCP3 when Configuration bit CCP3MX is clear.

12.1 Timer1/3/5 Operation

The Timer1/3/5 module is a 16-bit incrementing counter which is accessed through the TMRxH:TMRxL register pair. Writes to TMRxH or TMRxL directly update the counter.

When used with an internal clock source, the module is a timer and increments on every instruction cycle. When used with an external clock source, the module can be used as either a timer or counter and increments on every selected edge of the external source.

Timer1/3/5 is enabled by configuring the TMRxON and TMRxGE bits in the TxCON and TxGCON registers, respectively. Table 12-1 displays the Timer1/3/5 enable selections.

TABLE 12-1:TIMER1/3/5 ENABLESELECTIONS

TMRXON	TMRxGE	Timer1/3/5 Operation
0	0	Off
0	1	Off
1	0	Always On
1	1	Count Enabled

12.2 Clock Source Selection

The TMRxCS<1:0> and TxSOSCEN bits of the TxCON register are used to select the clock source for Timer1/3/5. The dedicated Secondary Oscillator circuit can be used as the clock source for Timer1, Timer3 and Timer5, simultaneously. Any of the TxSOSCEN bits will enable the Secondary Oscillator circuit and select it as the clock source for that particular timer. Table 12-2 displays the clock source selections.

12.2.1 INTERNAL CLOCK SOURCE

When the internal clock source is selected the TMRxH:TMRxL register pair will increment on multiples of Fosc as determined by the Timer1/3/5 prescaler.

When the Fosc internal clock source is selected, the Timer1/3/5 register value will increment by four counts every instruction clock cycle. Due to this condition, a 2 LSB error in resolution will occur when reading the Timer1/3/5 value. To utilize the full resolution of Timer1/3/5, an asynchronous input signal must be used to gate the Timer1/3/5 clock input.

The following asynchronous sources may be used:

- Asynchronous event on the TxG pin to Timer1/3/5 Gate
- C1 or C2 comparator input to Timer1/3/5 Gate

12.2.2 EXTERNAL CLOCK SOURCE

When the external clock source is selected, the Timer1/3/5 module may work as a timer or a counter.

When enabled to count, Timer1/3/5 is incremented on the rising edge of the external clock input of the TxCKI pin. This external clock source can be synchronized to the microcontroller system clock or it can run asynchronously.

When used as a timer with a clock oscillator, an external 32.768 kHz crystal can be used in conjunction with the dedicated secondary internal oscillator circuit.

Note:	In Counter mode, a falling edge must be
	registered by the counter prior to the first
	incrementing rising edge after any one or
	more of the following conditions:

- Timer1/3/5 enabled after POR
- Write to TMRxH or TMRxL
- Timer1/3/5 is disabled
- Timer1/3/5 is disabled (TMRxON = 0) when TxCKI is high then Timer1/3/5 is enabled (TMRxON=1) when TxCKI is low.

TMRxCS1	TMRxCS0	TxSOSCEN	Clock Source
0	1	x	System Clock (Fosc)
0	0	х	Instruction Clock (Fosc/4)
1	0	0	External Clocking on TxCKI Pin
1	0	1	Osc.Circuit On SOSCI/SOSCO Pins

TABLE 12-2: CLOCK SOURCE SELECTIONS

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
CCP1CON	P1M-	<1:0>	DC1B<1:0> CCP1M<3:0>				198		
CCP2CON	P2M-	<1:0>	DC2B	<1:0>	CCP2M<3:0>				198
CCP3CON	P3M-	<1:0>	DC3B	DC3B<1:0> CCP3M<3:0>				198	
CCP4CON	_		DC4B	<1:0>		CCP4M<	3:0>		198
CCP5CON	_		DC5B	<1:0> CCP5M<3:0>					198
CCPTMRS0	C3TSE	L<1:0>	—	C2TS	SEL<1:0>	— C1TSEL<1:0>		_<1:0>	201
CCPTMRS1	—	_	_	—	C5TSEL	<1:0>	C4TSEL<1:0>		201
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INTOIE	RBIE	TMR0IF	INTOIF	RBIF	109
IPR1	_	ADIP	RC1IP	TX1IP	SSP1IP	CCP1IP	TMR2IP	TMR1IP	121
IPR2	OSCFIP	C1IP	C2IP	EEIP	BCL1IP	HLVDIP	TMR3IP	CCP2IP	122
IPR4	_	-	-	—	_	CCP5IP	CCP4IP	CCP3IP	124
PIE1	—	ADIE	RC1IE	TX1IE	SSP1IE	CCP1IE	TMR2IE	TMR1IE	117
PIE2	OSCFIE	C1IE	C2IE	EEIE	BCL1IE	HLVDIE	TMR3IE	CCP2IE	118
PIE4	—	—	—	—	—	CCP5IE	CCP4IE	CCP3IE	120
PIR1	—	ADIF	RC1IF	TX1IF	SSP1IF	CCP1IF	TMR2IF	TMR1IF	112
PIR2	OSCFIF	C1IF	C2IF	EEIF	BCL1IF	HLVDIF	TMR3IF	CCP2IF	113
PIR4	_			—	_	CCP5IF	CCP4IF	CCP3IF	115
PMD0	UART2MD	UART1MD	TMR6MD	TMR5MD	TMR4MD	TMR3MD	TMR2MD	TMR1MD	52
PMD1	MSSP2MD	MSSP1MD		CCP5MD	CCP4MD	CCP3MD	CCP2MD	CCP1MD	53
PR2				Timer2 Pe	riod Register				—
PR4				Timer4 Pe	riod Register				_
PR6				Timer6 Pe	riod Register				—
T2CON	_		T2OU ⁻	TPS<3:0>		TMR2ON	T2CKP	S<1:0>	166
T4CON	_		T4OU	TPS<3:0>		TMR4ON	T4CKP	S<1:0>	166
T6CON	_		T6OU	TPS<3:0>		TMR6ON T6CKPS<1:0>			
TMR2				Timer2	Register				—
TMR4				Timer4	Register				_
TMR6				Timer6	Register				_
TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	151
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	151
TRISD ⁽¹⁾	TRISD7	TRISD6	TRISD5	TRISD4	TRISD3	TRISD2	TRISD1	TRISD0	151
TRISE	WPUE3	—	_	—	—	TRISE2 ⁽¹⁾	TRISE1 ⁽¹⁾	TRISE0 ⁽¹⁾	151

TABLE 14-10: REGISTERS ASSOCIATED WITH STANDARD PWM

Legend: — = Unimplemented location, read as '0'. Shaded bits are not used by Standard PWM mode.

TABLE 14-11: CONFIGURATION REGISTERS ASSOCIATED WITH STANDARD PWM

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
CONFIG3H	MCLRE	_	P2BMX	T3CMX	HFOFST	CCP3MX	PBADEN	CCP2MX	348

Legend: — = Unimplemented location, read as '0'. Shaded bits are not used by Standard PWM mode.

15.2.6 SPI OPERATION IN SLEEP MODE

In SPI Master mode, module clocks may be operating at a different speed than when in Full-Power mode; in the case of the Sleep mode, all clocks are halted.

Special care must be taken by the user when the MSSPx clock is much faster than the system clock.

In Slave mode, when MSSPx interrupts are enabled, after the master completes sending data, an MSSPx interrupt will wake the controller from Sleep.

If an exit from Sleep mode is not desired, MSSPx interrupts should be disabled.

In SPI Master mode, when the Sleep mode is selected, all module clocks are halted and the transmission/ reception will remain in that state until the device wakes. After the device returns to Run mode, the module will resume transmitting and receiving data.

In SPI Slave mode, the SPI Transmit/Receive Shift register operates asynchronously to the device. This allows the device to be placed in Sleep mode and data to be shifted into the SPI Transmit/Receive Shift register. When all eight bits have been received, the MSSPx interrupt flag bit will be set and if enabled, will wake the device.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
ANSELA	_	—	ANSA5	_	ANSA3	ANSA2	ANSA1	ANSA0	149
ANSELB	—	_	ANSB5	ANSB4	ANSB3 ⁽¹⁾	ANSB2 ⁽¹⁾	ANSB1 ⁽¹⁾	ANSB0 ⁽¹⁾	150
ANSELC	ANSC7	ANSC6	ANSC5	ANSC4	ANSC3	ANSC2	—	—	150
ANSELD	ANSD7	ANSD6	ANSD5	ANSD4 ⁽²⁾	ANSD3 ⁽²⁾	ANSD2	ANSD1 ⁽²⁾	ANSD0 ⁽²⁾	150
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INTOIF	RBIF	109
IPR1	—	ADIP	RC1IP	TX1IP	SSP1IP	CCP1IP	TMR2IP	TMR1IP	121
IPR3	SSP2IP	BCL2IP	RC2IP	TX2IP	CTMUIP	TMR5GIP	TMR3GIP	TMR1GIP	123
PIE1	—	ADIE	RC1IE	TX1IE	SSP1IE	CCP1IE	TMR2IE	TMR1IE	117
PIE3	SSP2IE	BCL2IE	RC2IE	TX2IE	CTMUIE	TMR5GIE	TMR3GIE	TMR1GIE	119
PIR1	_	ADIF	RC1IF	TX1IF	SSP1IF	CCP1IF	TMR2IF	TMR1IF	112
PIR3	SSP2IF	BCL2IF	RC2IF	TX2IF	CTMUIF	TMR5GIF	TMR3GIF	TMR1GIF	114
PMD1	MSSP2MD	MSSP1MD	_	CCP5MD	CCP4MD	CCP3MD	CCP2MD	CCP1MD	53
SSP1BUF			SSP1 F	Receive Buff	er/Transmit F	Register			—
SSP1CON1	WCOL	SSPOV	SSPEN	CKP		SSPN	l<3:0>		253
SSP1CON3	ACKTIM	PCIE	SCIE	BOEN	SDAHT	SBCDE	AHEN	DHEN	256
SSP1STAT	SMP	CKE	D/A	Р	S	R/W	UA	BF	252
SSP2BUF			SSP2 F	Receive Buff	er/Transmit F	Register			—
SSP2CON1	WCOL	SSPOV	SSPEN	CKP		SSPM<3:0>			
SSP2CON3	ACKTIM	PCIE	SCIE	BOEN	SDAHT	SBCDE	AHEN	DHEN	256
SSP2STAT	SMP	CKE	D/A	Р	S	R/W	UA	BF	252
TRISA	TRISA7	TRISA6	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	151
TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3 ⁽¹⁾	TRISB2 ⁽¹⁾	TRISB1 ⁽¹⁾	TRISB0 ⁽¹⁾	151
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	151
TRISD	TRISD7	TRISD6	TRISD5	TRISD4(2)	TRISD3(2)	TRISD2	TRISD1(2)	TRISD0(2)	151

TABLE 15-1:	REGISTERS ASSOCIATED WITH SPI OPERATION

Legend: Shaded bits are not used by the MSSPx in SPI mode.

Note 1: PIC18(L)F2XK22 devices.

2: PIC18(L)F4XK22 devices.

15.5.4 SLAVE MODE 10-BIT ADDRESS RECEPTION

This section describes a standard sequence of events for the MSSPx module configured as an I^2C slave in 10-bit Addressing mode (Figure 15-20) and is used as a visual reference for this description.

This is a step by step process of what must be done by slave software to accomplish I^2C communication.

- 1. Bus starts Idle.
- Master sends Start condition; S bit of SSPxSTAT is set; SSPxIF is set if interrupt on Start detect is enabled.
- 3. Master sends matching high address with R/\overline{W} bit clear; UA bit of the SSPxSTAT register is set.
- 4. Slave sends ACK and SSPxIF is set.
- 5. Software clears the SSPxIF bit.
- 6. Software reads received address from SSPxBUF clearing the BF flag.
- 7. Slave loads low address into SSPxADD, releasing SCLx.
- 8. Master sends matching low address byte to the slave; UA bit is set.

Note: Updates to the SSPxADD register are not allowed until after the ACK sequence.

9. Slave sends ACK and SSPxIF is set.

Note: If the low address does not match, SSPxIF and UA are still set so that the slave software can set SSPxADD back to the high address. BF is not set because there is no match. CKP is unaffected.

- 10. Slave clears SSPxIF.
- 11. Slave reads the received matching address from SSPxBUF clearing BF.
- 12. Slave loads high address into SSPxADD.
- 13. Master clocks a <u>data</u> byte to the slave and clocks out the slaves <u>ACK</u> on the 9th SCLx pulse; SSPxIF is set.
- 14. If SEN bit of SSPxCON2 is set, CKP is cleared by hardware and the clock is stretched.
- 15. Slave clears SSPxIF.
- 16. Slave reads the received byte from SSPxBUF clearing BF.
- 17. If SEN is set the slave sets CKP to release the SCLx.
- 18. Steps 13-17 repeat for each received byte.
- 19. Master sends Stop to end the transmission.

15.5.5 10-BIT ADDRESSING WITH ADDRESS OR DATA HOLD

Reception using 10-bit addressing with AHEN or DHEN set is the same as with 7-bit modes. The only difference is the need to update the SSPxADD register using the UA bit. All functionality, specifically when the CKP bit is cleared and SCLx line is held low are the same. Figure 15-21 can be used as a reference of a slave in 10-bit addressing with AHEN set.

Figure 15-22 shows a standard waveform for a slave transmitter in 10-bit Addressing mode.

15.6 I²C Master Mode

Master mode is enabled by setting and clearing the appropriate SSPxM bits in the SSPxCON1 register and by setting the SSPxEN bit. In Master mode, the SCLx and SDAx lines are set as inputs and are manipulated by the MSSPx hardware.

Master mode of operation is supported by interrupt generation on the detection of the Start and Stop conditions. The Stop (P) and Start (S) bits are cleared from a Reset or when the MSSPx module is disabled. Control of the I²C bus may be taken when the P bit is set, or the bus is Idle.

In Firmware Controlled Master mode, user code conducts all I²C bus operations based on Start and Stop bit condition detection. Start and Stop condition detection is the only active circuitry in this mode. All other communication is done by the user software directly manipulating the SDAx and SCLx lines.

The following events will cause the SSPx Interrupt Flag bit, SSPxIF, to be set (SSPx interrupt, if enabled):

- Start condition detected
- Stop condition detected
- Data transfer byte transmitted/received
- Acknowledge transmitted/received
- Repeated Start generated
 - Note 1: The MSSPx module, when configured in I²C Master mode, does not allow queueing of events. For instance, the user is not allowed to initiate a Start condition and immediately write the SSPxBUF register to initiate transmission before the Start condition is complete. In this case, the SSPxBUF will not be written to and the WCOL bit will be set, indicating that a write to the SSPxBUF did not occur
 - 2: When in Master mode, Start/Stop detection is masked and an interrupt is generated when the SEN/PEN bit is cleared and the generation is complete.

15.6.1 I²C MASTER MODE OPERATION

The master device generates all of the serial clock pulses and the Start and Stop conditions. A transfer is ended with a Stop condition or with a Repeated Start condition. Since the Repeated Start condition is also the beginning of the next serial transfer, the I²C bus will not be released.

In Master Transmitter mode, serial data is output through SDAx, while SCLx outputs the serial clock. The first byte transmitted contains the slave address of the receiving device (7 bits) and the Read/Write (R/W) bit. In this case, the R/W bit will be logic '0'. Serial data is transmitted eight bits at a time. After each byte is transmitted, an Acknowledge bit is received. Start and Stop conditions are output to indicate the beginning and the end of a serial transfer.

In Master Receive mode, the first byte transmitted contains the slave address of the transmitting device (7 bits) and the R/W bit. In this case, the R/W bit will be logic '1'. Thus, the first byte transmitted is a 7-bit slave address followed by a '1' to indicate the receive bit. Serial data is received via SDAx, while SCLx outputs the serial clock. Serial data is received eight bits at a time. After each byte is received, an Acknowledge bit is transmitted. Start and Stop conditions indicate the beginning and end of transmission.

A Baud Rate Generator is used to set the clock frequency output on SCLx. See **Section 15.7** "**Baud Rate Generator**" for more detail.

17.1.7 RESULT FORMATTING

The 10-bit A/D conversion result can be supplied in two formats, left justified or right justified. The ADFM bit of the ADCON2 register controls the output format.

Figure 17-2 shows the two output formats.

FIGURE 17-2: 10-BIT A/D CONVERSION RESULT FORMAT

R/P-1	U-0	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1				
MCLR	E —	P2BMX	T3CMX	HFOFST	CCP3MX	PBADEN	CCP2MX				
bit 7							bit (
Legend:											
R = Read	able bit	P = Programr	nable bit	U = Unimpler	mented bit. read	d as '0'					
-n = Value	e when device is (unprogrammed		x = Bit is unk	nown						
bit 7	MCLRE: M	CLR Pin Enable	bit								
	$1 = \overline{MCLR}$	pin enabled; RE3	input pin disa	bled							
1.11.0	0 = RE3 inj	put pin enabled; I	VICLR disable	d							
bit 6	Unimplem	ented: Read as '	0'								
bit 5	P2BMX: P2	2B Input MUX bit									
	$\perp = P2B$ is	on RD2 ⁽²⁾									
	0 = P2B is	on RC0									
bit 4	T3CMX: Ti	T3CMX: Timer3 Clock Input MUX bit									
	1 = T3CKI	is on RC0									
	0 = 13CKI	IS ON RB5									
bit 3		IFINTOSC Fast S	Start-up bit	· · · · · · · · · · · · · · · · · · ·		4 4 - h : l'					
	1 = HFINIC 0 - The sys	JSC starts clocki stem clock is belo	ng the CPU w 1 off until the H	ITENTOSC is st	or the oscillator	to stabilize					
hit 2	CCP3MX·	CCP3 MUX hit									
511 2	1 = CCP3 i	nput/output is mu	ultiplexed with	RB5							
	0 = CCP3 i	nput/output is mu	ltiplexed with	RC6 ⁽¹⁾							
	CCP3 i	nput/output is mu	Itiplexed with	RE0 ⁽²⁾							
bit 1	PBADEN:	PORTB A/D Ena	ble bit								
	1 = ANSEL 0 = ANSEL	.B<5:0> resets to .B<5:0> resets to	1, PORTB<5: 0, PORTB<4:	0> pins are co 0> pins are co	nfigured as ana nfigured as digi	log inputs on F tal I/O on Rese	Reset et				
bit 0	CCP2MX:	CCP2 MUX bit									
	1 = CCP2 i	nput/output is mu	Itiplexed with	RC1							
	0 = CCP2 i	nput/output is mu	Itiplexed with	RB3							
Note 1:	PIC18(L)F2XK2	2 devices only.									
2:	PIC18(L)F4XK2	2 devices only.									

REGISTER 24-4: CONFIG3H: CONFIGURATION REGISTER 3 HIGH

FIGURE 28-31: PIC18LF2X/4XK22 MAXIMUM IDD: RC_RUN HF-INTOSC with PLL

© 2010-2016 Microchip Technology Inc.

FIGURE 28-37: PIC18F2X/4XK22 MAXIMUM IDD: RC_IDLE LF-INTOSC 31 kHz

© 2010-2016 Microchip Technology Inc.