

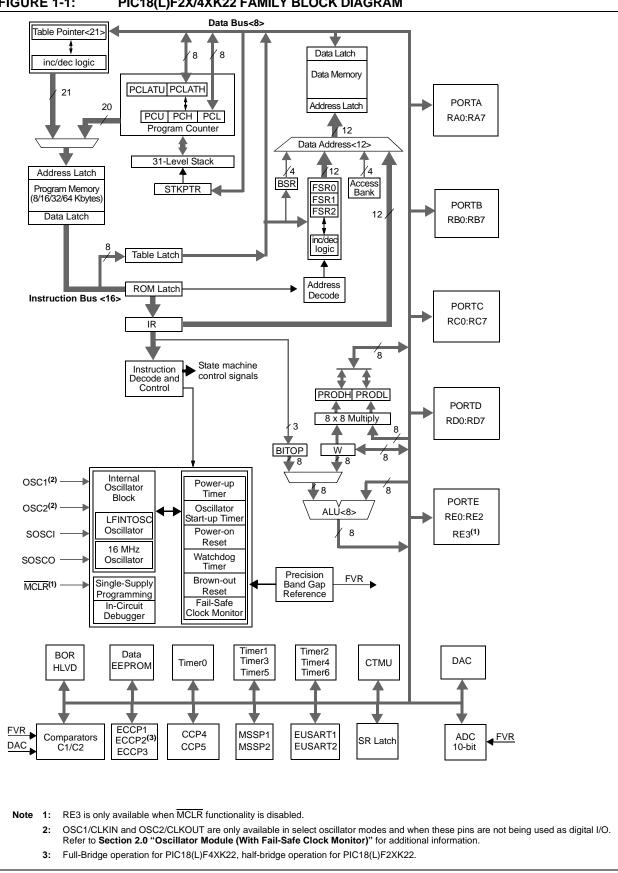
Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details


Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	64MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	24
Program Memory Size	32KB (16K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	1.5K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 19x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SSOP (0.209", 5.30mm Width)
Supplier Device Package	28-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18lf25k22t-i-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table of Contents

1.0	Device Overview	11
2.0	Oscillator Module (With Fail-Safe Clock Monitor))	. 25
3.0	Power-Managed Modes	. 44
4.0	Reset	. 55
5.0	Memory Organization	. 64
6.0	Flash Program Memory	. 90
7.0	Data EEPROM Memory	. 99
8.0	8 x 8 Hardware Multiplier	104
9.0	Interrupts	106
10.0	I/O Ports	127
11.0	Timer0 Module	154
12.0	Timer1/3/5 Module with Gate Control	157
13.0	Timer2/4/6 Module	169
14.0	Capture/Compare/PWM Modules	
15.0	Master Synchronous Serial Port (MSSP1 and MSSP2) Module	204
16.0	Enhanced Universal Synchronous Asynchronous Receiver Transmitter (EUSART)	
17.0	Analog-to-Digital Converter (ADC) Module	
18.0	Comparator Module	302
19.0	Charge Time Measurement Unit (CTMU)	311
20.0	SR LATCH	
21.0	Fixed Voltage Reference (FVR)	331
22.0	Digital-to-Analog Converter (DAC) Module	333
23.0	High/Low-Voltage Detect (HLVD)	337
24.0	Special Features of the CPU	343
25.0	Instruction Set Summary	360
26.0	Development Support	410
27.0	Electrical Specifications	414
28.0	DC and AC Characteristics Graphs and Tables	453
29.0	Packaging Information	509
Appe	ndix A: Revision History	534
Appe	ndix B: Device Differences	535
The M	Aicrochip Web Site	536
Custo	omer Change Notification Service	536
Custo	omer Support	536
Produ	uct Identification System	537

2.4 Clock Source Modes

Clock Source modes can be classified as external or internal.

- External Clock modes rely on external circuitry for the clock source. Examples are: Clock modules (EC mode), quartz crystal resonators or ceramic resonators (LP, XT and HS modes) and Resistor-Capacitor (RC mode) circuits.
- Internal clock sources are contained internally within the Oscillator block. The Oscillator block has three internal oscillators: the 16 MHz High-Frequency Internal Oscillator (HFINTOSC), 500 kHz Medium-Frequency Internal Oscillator (MFINTOSC) and the 31.25 kHz Low-Frequency Internal Oscillator (LFINTOSC).

The system clock can be selected between external or internal clock sources via the System Clock Select (SCS<1:0>) bits of the OSCCON register. See **Section 2.11 "Clock Switching"** for additional information.

2.5 External Clock Modes

2.5.1 OSCILLATOR START-UP TIMER (OST)

When the oscillator module is configured for LP, XT or HS modes, the Oscillator Start-up Timer (OST) counts 1024 oscillations from OSC1. This occurs following a Power-on Reset (POR) and when the Power-up Timer (PWRT) has expired (if configured), or a wake-up from Sleep. During this time, the program counter does not increment and program execution is suspended. The OST ensures that the oscillator circuit, using a quartz crystal resonator or ceramic resonator, has started and is providing a stable system clock to the oscillator module. When switching between clock sources, a delay is required to allow the new clock to stabilize. These oscillator delays are shown in Table 2-2.

In order to minimize latency between external oscillator start-up and code execution, the Two-Speed Clock Start-up mode can be selected (see **Section 2.12 "Two-Speed Clock Start-up Mode"**).

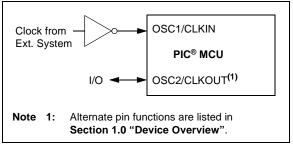
TABLE 2-2. OSCILLATOR DELAT EXAMPLES									
Switch From	Switch To	Frequency	Oscillator Delay						
Sleep/POR/BOR	LFINTOSC MFINTOSC HFINTOSC	31.25 kHz 31.25 kHz to 500 kHz 31.25 kHz to 16 MHz	Oscillator Start-up Delay (Tiosc_st)						
Sleep/POR/BOR	EC, RC	DC – 64 MHz	2 instruction cycles						
LFINTOSC (31.25 kHz)	EC, RC	DC – 64 MHz	1 cycle of each						
Sleep/POR/BOR	LP, XT, HS	32 kHz to 40 MHz	1024 Clock Cycles (OST)						
Sleep/POR/BOR	4xPLL	32 MHz to 64 MHz	1024 Clock Cycles (OST) + 2 ms						
LFINTOSC (31.25 kHz)	LFINTOSC HFINTOSC	31.25 kHz to 16 MHz	1 μs (approx.)						

TABLE 2-2: OSCILLATOR DELAY EXAMPLES

2.5.2 EC MODE

The External Clock (EC) mode allows an externally generated logic level as the system clock source. When operating in this mode, an external clock source is connected to the OSC1 input and the OSC2 is available for general purpose I/O. Figure 2-5 shows the pin connections for EC mode.

The External Clock (EC) offers different power modes, Low Power (ECLP), Medium Power (ECMP) and High Power (ECHP), selectable by the FOSC<3:0> bits. Each mode is best suited for a certain range of frequencies. The ranges are:


- ECLP below 500 kHz
- ECMP between 500 kHz and 16 MHz
- ECHP above 16 MHz

The Oscillator Start-up Timer (OST) is disabled when EC mode is selected. Therefore, there is no delay in operation after a Power-on Reset (POR) or wake-up from Sleep.

Because the PIC[®] MCU design is fully static, stopping the external clock input will have the effect of halting the device while leaving all data intact. Upon restarting the external clock, the device will resume operation as if no time had elapsed.

EXTERNAL CLOCK (EC) MODE OPERATION

	00111									
Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page	
CONFIG2L				BORV	<1:0>	BOREI	N<1:0>	PWRTEN	346	
CONFIG2H	_	_		WDPS	6<3:0>		WDTE	N<1:0>	347	
CONFIG3H	MCLRE	—	P2BMX	T3CMX	HFOFST	CCP3MX	PBADEN	CCP2MX	348	
CONFIG4L	DEBUG	XINST				LVP		STRVEN	349	

TABLE 4-5: CONFIGURATION REGISTERS ASSOCIATED WITH RESETS

Legend: — = unimplemented locations, read as '0'. Shaded bits are not used for Resets.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	109
EEADR	EEADR7	EEADR6	EEADR5	EEADR4	EEADR3	EEADR2	EEADR1	EEADR0	—
EEADRH ⁽¹⁾		—	—	_	—	—	EEADR9	EEADR8	—
EEDATA			EE	PROM Dat	a Register				—
EECON2		EEPR	OM Contro	I Register 2	2 (not a phy	sical registe	er)		—
EECON1	EEPGD	CFGS	—	FREE	WRERR	WREN	WR	RD	100
IPR2	OSCFIP	C1IP	C2IP	EEIP	BCL1IP	HLVDIP	TMR3IP	CCP2IP	122
PIR2	OSCFIF	C1IF	C2IF	EEIF	BCL1IF	HLVDIF	TMR3IF	CCP2IF	113
PIE2	OSCFIE	C1IE	C2IE	EEIE	BCL1IE	HLVDIE	TMR3IE	CCP2IE	118

TABLE 7-1: REGISTERS ASSOCIATED WITH DATA EEPROM MEMORY

Legend: — = unimplemented, read as '0'. Shaded bits are not used during EEPROM access.

Note 1: PIC18(L)F26K22 and PIC18(L)F46K22 only.

10.7 Port Analog Control

Most port pins are multiplexed with analog functions such as the Analog-to-Digital Converter and comparators. When these I/O pins are to be used as analog inputs it is necessary to disable the digital input buffer to avoid excessive current caused by improper biasing of the digital input. Individual control of the digital input buffers on pins which share analog functions is provided by the ANSELA, ANSELB, ANSELC, ANSELD and ANSELE registers. Setting an ANSx bit high will disable the associated digital input buffer and cause all reads of that pin to return '0' while allowing analog functions of that pin to operate correctly.

The state of the ANSx bits has no affect on digital output functions. A pin with the associated TRISx bit clear and ANSx bit set will still operate as a digital output but the input mode will be analog. This can cause unexpected behavior when performing readmodify-write operations on the affected port.

All ANSEL register bits default to '1' upon POR and BOR, disabling digital inputs for their associated port pins. All TRIS register bits default to '1' upon POR or BOR, disabling digital outputs for their associated port pins. As a result, all port pins that have an ANSEL register will default to analog inputs upon POR or BOR.

10.8 Port Slew Rate Control

The output slew rate of each port is programmable to select either the standard transition rate or a reduced transition rate of approximately 0.1 times the standard to minimize EMI. The reduced transition time is the default slew rate for all ports.

10.9	Register	Definitions –	Port Control
------	----------	----------------------	--------------

REGISTER 10-1: PORTX⁽¹⁾: PORTX REGISTER

| R/W-u/x |
|---------|---------|---------|---------|---------|---------|---------|---------|
| Rx7 | Rx6 | Rx5 | Rx4 | Rx3 | Rx2 | Rx1 | Rx0 |
| bit 7 | | | | | | | bit 0 |
| | | | | | | | |
| Legend: | | | | | | | |

Logona.		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown
-n/n = Value at POR and BO	R/Value at all other Resets	

bit 7-0 Rx<7:0>: PORTx I/O bit values⁽²⁾

Note 1: Register Description for PORTA, PORTB, PORTC and PORTD.

2: Writes to PORTx are written to corresponding LATx register. Reads from PORTx register is return of I/O pin values.

14.3.6 PWM RESOLUTION

The resolution determines the number of available duty cycles for a given period. For example, a 10-bit resolution will result in 1024 discrete duty cycles, whereas an 8-bit resolution will result in 256 discrete duty cycles.

The maximum PWM resolution is ten bits when PRx is 255. The resolution is a function of the PRx register value as shown by Equation 14-4.

EQUATION 14-4: PWM RESOLUTION

Resolution =
$$\frac{\log[4(PRx+1)]}{\log(2)}$$
 bits

Note: If the pulse width value is greater than the period the assigned PWM pin(s) will remain unchanged.

TABLE 14-7: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS (Fosc = 32 MHz)

PWM Frequency	1.95 kHz	7.81 kHz	31.25 kHz	125 kHz	250 kHz	333.3 kHz
Timer Prescale (1, 4, 16)	16	4	1	1	1	1
PRx Value	0xFF	0xFF	0xFF	0x3F	0x1F	0x17
Maximum Resolution (bits)	10	10	10	8	7	6.6

TABLE 14-8: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS (Fosc = 20 MHz)

PWM Frequency	1.22 kHz	4.88 kHz	19.53 kHz	78.12 kHz	156.3 kHz	208.3 kHz
Timer Prescale (1, 4, 16)	16	4	1	1	1	1
PRx Value	0xFF	0xFF	0xFF	0x3F	0x1F	0x17
Maximum Resolution (bits)	10	10	10	8	7	6.6

TABLE 14-9: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS (Fosc = 8 MHz)

PWM Frequency	1.22 kHz	4.90 kHz	19.61 kHz	76.92 kHz	153.85 kHz	200.0 kHz
Timer Prescale (1, 4, 16)	16	4	1	1	1	1
PRx Value	0x65	0x65	0x65	0x19	0x0C	0x09
Maximum Resolution (bits)	8	8	8	6	5	5

14.3.7 OPERATION IN SLEEP MODE

In Sleep mode, the TMRx register will not increment and the state of the module will not change. If the CCPx pin is driving a value, it will continue to drive that value. When the device wakes up, TMRx will continue from its previous state.

14.3.8 CHANGES IN SYSTEM CLOCK FREQUENCY

The PWM frequency is derived from the system clock frequency. Any changes in the system clock frequency will result in changes to the PWM frequency. See Section 2.0 "Oscillator Module (With Fail-Safe Clock Monitor)" for additional details.

14.3.9 EFFECTS OF RESET

Any Reset will force all ports to Input mode and the CCP registers to their Reset states.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
PxRSEN				PxDC<6:0>						
bit 7							bit 0			
Legend:										
R = Readable bit W = Writable bit			bit	U = Unimpler	nented bit, read	d as '0'				
u = Bit is unchanged x = Bit is unknown			nown	-n/n = Value at POR and BOR/Value at all other Resets						
'1' = Bit is set	t	'0' = Bit is clea	ared							
bit 7	PxRSEN: P	WM Restart Ena	able bit							
	•	uto-shutdown, th 'M restarts auton		bit clears automa	atically once the	e shutdown eve	ent goes away;			
	0 = Upon a	uto-shutdown, C	CPxASE mus	st be cleared in s	software to rest	tart the PWM				
bit 6-0	PxDC<6:0>	: PWM Delay Co	ount bits							
	PxDCx = N	umber of Fosc/	4 (4 * Tosc)	cycles between	the scheduled	d time when a	a PWM signal			

REGISTER 14-6: PWMxCON: ENHANCED PWM CONTROL REGISTER

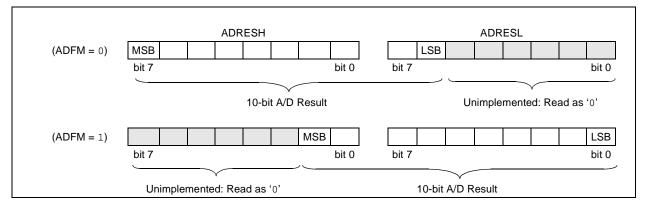
REGISTER 14-7: PSTRxCON: PWM STEERING CONTROL REGISTER⁽¹⁾

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-1
—	—	—	STRxSYNC	STRxD	STRxC	STRxB	STRxA
bit 7							bit 0

should transition active and the actual time it transitions active

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-5	Unimplemented: Read as '0'
bit 4	STRxSYNC: Steering Sync bit 1 = Output steering update occurs on next PWM period 0 = Output steering update occurs at the beginning of the instruction cycle boundary
bit 3	STRxD: Steering Enable bit D 1 = PxD pin has the PWM waveform with polarity control from CCPxM<1:0> 0 = PxD pin is assigned to port pin
bit 2	STRxC: Steering Enable bit C 1 = PxC pin has the PWM waveform with polarity control from CCPxM<1:0> 0 = PxC pin is assigned to port pin
bit 1	STRxB: Steering Enable bit B 1 = PxB pin has the PWM waveform with polarity control from CCPxM<1:0> 0 = PxB pin is assigned to port pin
bit 0	STRxA: Steering Enable bit A 1 = PxA pin has the PWM waveform with polarity control from CCPxM<1:0> 0 = PxA pin is assigned to port pin
Note 1.	The DWM Steering mode is evoluble only when the CCDyCON register hits CCDyM (20) 11.0


Note 1: The PWM Steering mode is available only when the CCPxCON register bits CCPxM<3:2> = 11 and PxM<1:0> = 00.

17.1.7 RESULT FORMATTING

The 10-bit A/D conversion result can be supplied in two formats, left justified or right justified. The ADFM bit of the ADCON2 register controls the output format.

Figure 17-2 shows the two output formats.

FIGURE 17-2: 10-BIT A/D CONVERSION RESULT FORMAT

EXAMPLE 19-3: CAPACITANCE CALIBRATION ROUTINE

```
#include "p18cxxx.h"
#define COUNT 25
                                            //@ 8MHz INTFRC = 62.5 us.
#define ETIME COUNT*2.5
                                            //time in uS
#define DELAY for(i=0;i<COUNT;i++)</pre>
#define ADSCALE 1023
                                            //for unsigned conversion 10 sig
bits
#define ADREF 3.3
                                            //Vdd connected to A/D Vr+
#define RCAL .027
                                            //R value is 4200000 (4.2M)
                                            //scaled so that result is in
                                            //1/100th of uA
int main(void)
{
   int i;
   int j = 0;
                                            //index for loop
   unsigned int Vread = 0;
   float CTMUISrc, CTMUCap, Vavg, VTot, Vcal;
//assume CTMU and A/D have been set up correctly
//see Example 25-1 for CTMU & A/D setup
setup();
CTMUCONHbits.CTMUEN = 1;
                                            //Enable the CTMU
CTMUCONLbits.EDG1STAT = 0;
                                            // Set Edge status bits to zero
CTMUCONLbits.EDG2STAT = 0;
   for(j=0;j<10;j++)</pre>
    {
       CTMUCONHbits.IDISSEN = 1;
                                           //drain charge on the circuit
                                            //wait 125us
       DELAY;
       CTMUCONHbits.IDISSEN = 0;
                                            //end drain of circuit
       CTMUCONLbits.EDG1STAT = 1;
                                            //Begin charging the circuit
                                            //using CTMU current source
                                            //wait for 125us
       DELAY;
       CTMUCONLbits.EDG1STAT = 0;
                                           //Stop charging circuit
       PIR1bits.ADIF = 0;
                                           //make sure A/D Int not set
       ADCON0bits.GO=1;
                                            //and begin A/D conv.
       while(!PIR1bits.ADIF);
                                            //Wait for A/D convert complete
       Vread = ADRES;
                                            //Get the value from the A/D
       PIR1bits.ADIF = 0;
                                            //Clear A/D Interrupt Flag
       VTot += Vread;
                                            //Add the reading to the total
   }
   Vavg = (float)(VTot/10.000);
                                            //Average of 10 readings
   Vcal = (float)(Vavg/ADSCALE*ADREF);
                                            //CTMUISrc is in 1/100ths of uA
   CTMUISrc = Vcal/RCAL;
   CTMUCap = (CTMUISrc*ETIME/Vcal)/100;
```

25.1.1 STANDARD INSTRUCTION SET

ADDLW	ADD liter	al to W		ADDWF	ADD W to	o f	
Syntax:	ADDLW	k		Syntax:	ADDWF	f {,d {,a}}	
Operands:	$0 \le k \le 255$			Operands:	$0 \leq f \leq 255$	$0 \le f \le 255$	
Operation:	$(W) + k \rightarrow V$	W			d ∈ [0,1]		
Status Affected:	N, OV, C, E	DC, Z		Oneration	$a \in [0,1]$	deet	
Encoding:	0000	1111 kk	kk kkkk	Operation: Status Affected:	$(W) + (f) \rightarrow$		
Description:	The conten	ts of W are ac	lded to the		N, OV, C, E		
		'k' and the res	ult is placed in	Encoding:	0010		ff ffff
	W.			Description:		egister 'f'. If 'd pred in W. If 'd	
Words:	1				result is sto	ored back in re	
Cycles:	1				(default).		
Q Cycle Activity:	00	00	0.4		,		nk is selected. ed to select the
Q1	Q2	Q3	Q4		GPR bank.		
Decode	Read literal 'k'	Process Data	Write to W				ed instruction ction operates
Example:	ADDLW 1	15h			in Indexed mode wher	Literal Offset never f ≤ 95 (5 .2.3 "Byte-Or	Addressing Fh). See
Before Instru	ction					•	is in Indexed
W =	10h				Literal Offe	set Mode" for	details.
After Instructi	on			Words:	1		
W =	25h			Cycles:	1		
				Q Cycle Activity:			
				Q1	Q2	Q3	Q4
				Decode	Read	Process	Write to
					register 'f'	Data	destination
				Example:	ADDWF	REG, 0, 0)
				Before Instruc	ction		
				W	= 17h		
				REG After Instruction	= 0C2h on		

Note: All PIC18 instructions may take an optional label argument preceding the instruction mnemonic for use in symbolic addressing. If a label is used, the instruction format then becomes: {label} instruction argument(s).

W

REG

0D9h

0C2h

=

=

Branch if Not Zero

0001

incremented to fetch the next instruction, the new address will be PC + 2 + 2n. This instruction is then a

2-cycle instruction.

If the ZERO bit is '0', then the program

The 2's complement number '2n' is added to the PC. Since the PC will have

Q3

Process

Data

No

operation

Q3

Process

Data

BNZ Jump

address (HERE)

address (Jump)

1; address (HERE + 2)

nnnn

nnnn

Q4

Write to PC

No

operation

Q4

No

operation

BNZ n $\textbf{-128} \leq n \leq 127$ if ZERO bit is '0' $(PC) + 2 + 2n \rightarrow PC$

BNC	DV	Branch if	Not Overflo	w	BNZ	2	Brand	ch if
Synta	ax:	BNOV n			Synt	ax:	BNZ	n
Oper	ands:	-128 ≤ n ≤ 1	127		Ope	rands:	- 128 ≤	n ≤ 1
Oper	ation:	if OVERFL0 (PC) + 2 + 2			Ope	ration:	if ZER (PC) +	
Statu	is Affected:	None			Statu	is Affected:	None	
Enco	oding:	1110	0101 nn	nn nnnn	Enco	oding:	111	0
Desc	ription:	program wil The 2's con added to the incrementer instruction,	nplement num e PC. Since th d to fetch the the new addro n. This instruc	iber '2n' is he PC will have next ess will be		sription:	If the 2 will bra The 2' added increm instruc PC + 2 2-cycle	anch. s com to the nentee tion, 2 + 2r
Word	ds:	1			Word	ds:	1	
Cycle	es:	1(2)			Cycl	es:	1(2)	
	ycle Activity: Imp:					ycle Activity: Imp:		
	Q1	Q2	Q3	Q4	_	Q1	Q2	
	Decode	Read literal 'n'	Process Data	Write to PC		Decode	Read lit 'n'	eral
	No operation	No operation	No operation	No operation		No operation	No operati	ion
If No	o Jump:			•	If N	o Jump:		
	Q1	Q2	Q3	Q4	_	Q1	Q2	
	Decode	Read literal 'n'	Process Data	No operation		Decode	Read lit 'n'	eral
<u>Exar</u>	nple:	HERE	BNOV Jump)	Exar	nple:	HERE	
	Before Instruc PC	= ad	dress (HERE)		Before Instruc PC	=	ade
	After Instruction If OVERI PC If OVERI PC	FLOW = 0; = ad FLOW = 1;	dress (Jump dress (HERE			After Instruction If ZERO PC If ZERO PC	on = = = =	0; ado 1; ado

TSTFS	z	Test f, ski	p if 0		
Syntax:		TSTFSZ f {	a}		
Operand	ls:	0 ≤ f ≤ 255 a ∈ [0,1]			
Operatio	on:	skip if f = 0			
Status A	ffected:	None			
Encodin	g:	0110	011a fff	f ffff	
Descript	ion:	If 'f' = 0, the next instruction fetched during the current instruction execution is discarded and a NOP is executed, making this a 2-cycle instruction. If 'a' is '0', the Access Bank is selected. If 'a' is '1', the BSR is used to select the GPR bank. If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever $f \le 95$ (5Fh). See Section 25.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed Literal Offset Mode" for details.			
Words:		1			
Cycles: 1(2) Note: 3 cycles if skip and followed by a 2-word instruction.					
Q Cycle	e Activity:	,			
	Q1	Q2	Q3	Q4	
	Decode	Read register 'f'	Process Data	No operation	
If skip:					
	Q1	Q2	Q3	Q4	
	No	No	No	No	
	peration	operation	operation	operation	
п экір а	Q1	d by 2-word in: Q2	Q3	Q4	
	No	No	No	No	
c	peration	operation	operation	operation	
	No	No	No	No	
	peration	operation	operation	operation	
<u>Example</u>	<u>2</u> :	HERE T NZERO S ZERO S		, 1	
	ore Instruc PC er Instructic If CNT PC	= Ad on = 00 = Ad	dress (ZERO)		
	If CNT PC	≠ 00 = Ad	h, dress (NZERO)	

XORLW	Exclusiv	Exclusive OR literal with W				
Syntax:	XORLW	k				
Operands:	perands: $0 \le k \le 255$					
Operation:	(W) .XOR	$. k \rightarrow W$				
Status Affected:	N, Z					
Encoding:	0000	1010	kkk	k k	kkk	
Description: The contents of W are XO the 8-bit literal 'k'. The resu in W.						
Words:	1					
Cycles:	1					
Q Cycle Activity:						
Q1	Q2	Q3		Q	4	
Decode	Read literal 'k'	Proce Data		Write	to W	
Example:	XORLW	0AFh				
Before Instruc	tion					
W	= B5h					
After Instruction	on					

W	=	1Ah

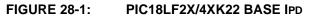
26.11 Demonstration/Development Boards, Evaluation Kits, and Starter Kits

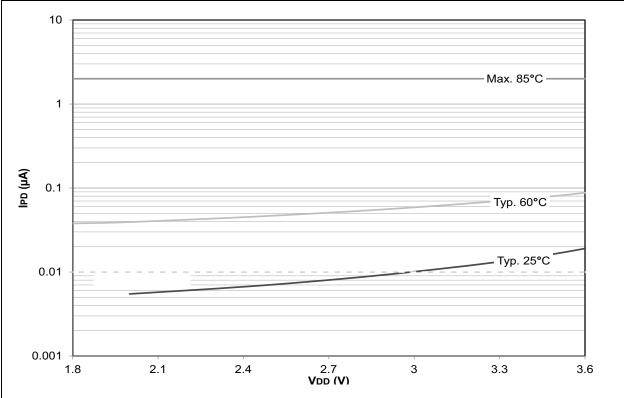
A wide variety of demonstration, development and evaluation boards for various PIC MCUs and dsPIC DSCs allows quick application development on fully functional systems. Most boards include prototyping areas for adding custom circuitry and provide application firmware and source code for examination and modification.

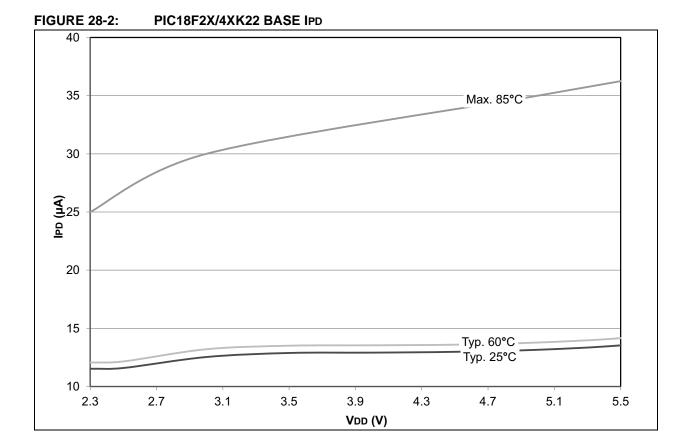
The boards support a variety of features, including LEDs, temperature sensors, switches, speakers, RS-232 interfaces, LCD displays, potentiometers and additional EEPROM memory.

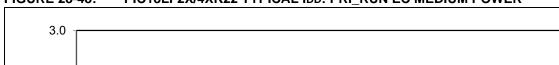
The demonstration and development boards can be used in teaching environments, for prototyping custom circuits and for learning about various microcontroller applications.

In addition to the PICDEM[™] and dsPICDEM[™] demonstration/development board series of circuits, Microchip has a line of evaluation kits and demonstration software for analog filter design, KEELOQ[®] security ICs, CAN, IrDA[®], PowerSmart battery management, SEEVAL[®] evaluation system, Sigma-Delta ADC, flow rate sensing, plus many more.


Also available are starter kits that contain everything needed to experience the specified device. This usually includes a single application and debug capability, all on one board.


Check the Microchip web page (www.microchip.com) for the complete list of demonstration, development and evaluation kits.


26.12 Third-Party Development Tools


Microchip also offers a great collection of tools from third-party vendors. These tools are carefully selected to offer good value and unique functionality.

- Device Programmers and Gang Programmers from companies, such as SoftLog and CCS
- Software Tools from companies, such as Gimpel and Trace Systems
- Protocol Analyzers from companies, such as Saleae and Total Phase
- Demonstration Boards from companies, such as MikroElektronika, Digilent[®] and Olimex
- Embedded Ethernet Solutions from companies, such as EZ Web Lynx, WIZnet and IPLogika[®]

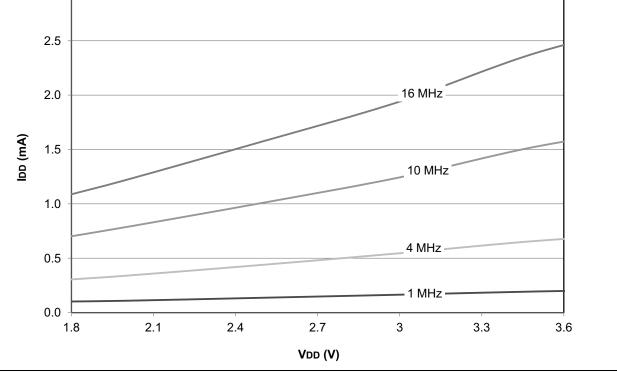
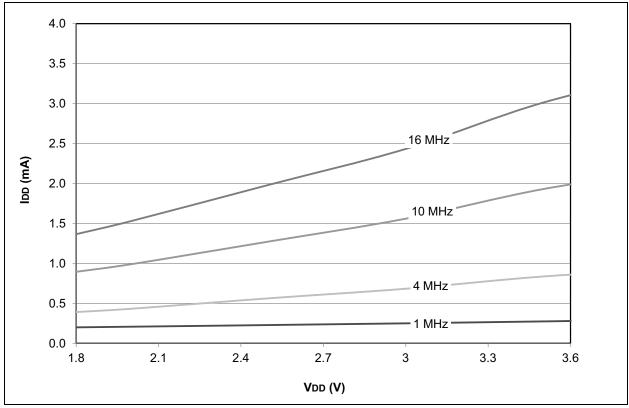



FIGURE 28-49: PIC18LF2X/4XK22 MAXIMUM IDD: PRI_RUN EC MEDIUM POWER

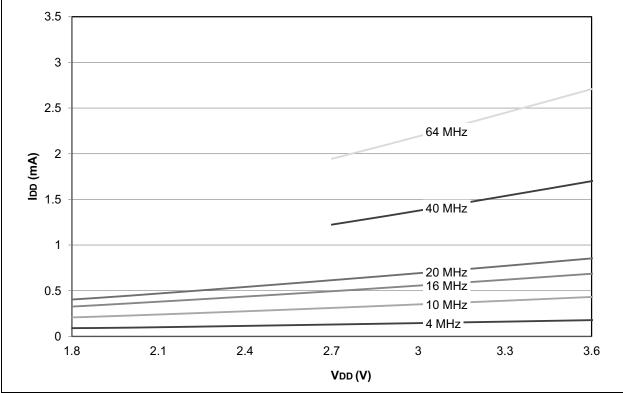
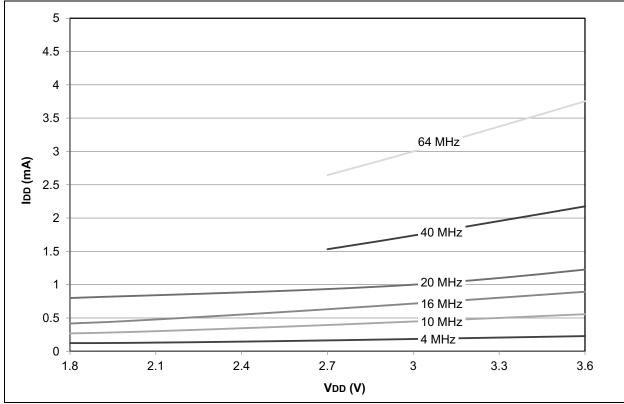
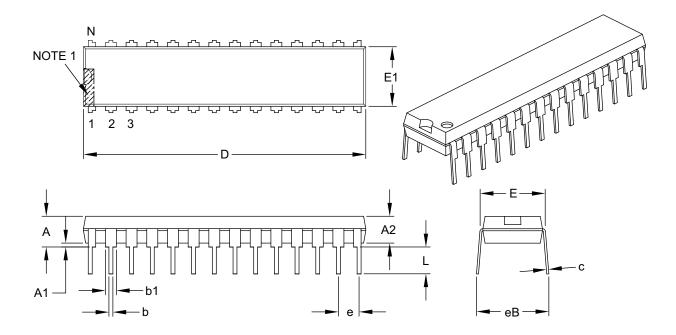



FIGURE 28-65: PIC18LF2X/4XK22 MAXIMUM IDD: PRI_IDLE EC HIGH POWER


DS40001412G-page 486

29.2 Package Details

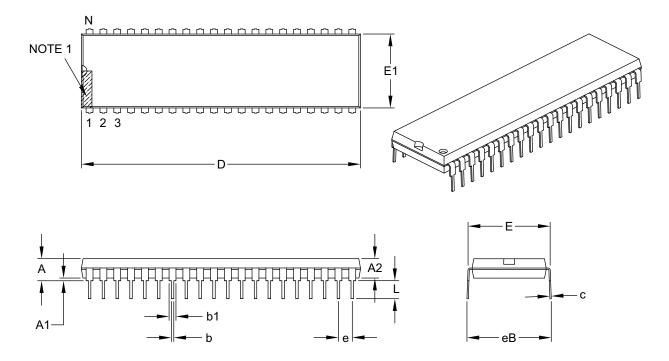
The following sections give the technical details of the packages.

28-Lead Skinny Plastic Dual In-Line (SP) – 300 mil Body [SPDIP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units		INCHES		
	Dimension Limits	MIN	NOM	MAX	
Number of Pins	N		28		
Pitch	e		.100 BSC		
Top to Seating Plane	A	_	-	.200	
Molded Package Thickness	A2	.120	.135	.150	
Base to Seating Plane	A1	.015	-	_	
Shoulder to Shoulder Width	E	.290	.310	.335	
Molded Package Width	E1	.240	.285	.295	
Overall Length	D	1.345	1.365	1.400	
Tip to Seating Plane	L	.110	.130	.150	
Lead Thickness	С	.008	.010	.015	
Upper Lead Width	b1	.040	.050	.070	
Lower Lead Width	b	.014	.018	.022	
Overall Row Spacing §	eB	_	-	.430	

Notes:


- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. § Significant Characteristic.
- 3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" per side.
- 4. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-070B

40-Lead Plastic Dual In-Line (P) – 600 mil Body [PDIP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

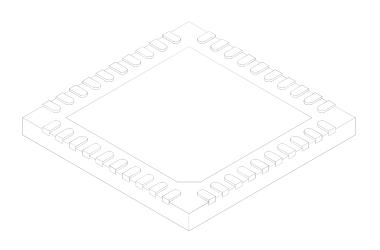
	Units		INCHES	
	Dimension Limits	MIN	NOM	MAX
Number of Pins	N		40	
Pitch	e		.100 BSC	
Top to Seating Plane	A	-	-	.250
Molded Package Thickness	A2	.125	-	.195
Base to Seating Plane	A1	.015	-	_
Shoulder to Shoulder Width	E	.590	-	.625
Molded Package Width	E1	.485	-	.580
Overall Length	D	1.980	-	2.095
Tip to Seating Plane	L	.115	-	.200
Lead Thickness	С	.008	-	.015
Upper Lead Width	b1	.030	-	.070
Lower Lead Width	b	.014	-	.023
Overall Row Spacing §	eB	_	-	.700

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. § Significant Characteristic.

3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" per side.


4. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-016B

40-Lead Ultra Thin Plastic Quad Flat, No Lead Package (MV) – 5x5x0.5 mm Body [UQFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units			S
Dimensi	Dimension Limits			MAX
Number of Pins	Ν		40	
Pitch	е		0.40 BSC	
Overall Height	Α	0.45	0.50	0.55
Standoff	A1	0.00	0.02	0.05
Contact Thickness	A3		0.127 REF	
Overall Width	E	5.00 BSC		
Exposed Pad Width	E2	3.60	3.70	3.80
Overall Length	D		5.00 BSC	
Exposed Pad Length	D2	3.60	3.70	3.80
Contact Width	b	0.15	0.20	0.25
Contact Length	L	0.30	0.40	0.50
Contact-to-Exposed Pad	К	0.20	-	-

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. Package is saw singulated.
- 3. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.
 - REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-156A Sheet 2 of 2