

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	48MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	24
Program Memory Size	64KB (32K x 16)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	3.8K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 19x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-VQFN Exposed Pad
Supplier Device Package	28-QFN (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18lf26k22-e-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 1-2: PIC18(L)F2XK22 PINOUT I/O DESCRIPTIONS (CONTINUED)

Pin Nu	mber		Dia	D	
PDIP, SOIC	QFN, UQFN	Pin Name	Туре	Туре	Description
13	10	RC2/CTPLS/P1A/CCP1/T5CKI/AN14			
		RC2	I/O	ST	Digital I/O.
		CTPLS	0	—	CTMU pulse generator output.
		P1A	0	CMOS	Enhanced CCP1 PWM output.
		CCP1	I/O	ST	Capture 1 input/Compare 1 output/PWM 1 output.
		T5CKI	I	ST	Timer5 clock input.
		AN14	Ι	Analog	Analog input 14.
14	11	RC3/SCK1/SCL1/AN15			
		RC3	I/O	ST	Digital I/O.
		SCK1	I/O	ST	Synchronous serial clock input/output for SPI mode (MSSP).
		SCL1	I/O	ST	Synchronous serial clock input/output for I ² C mode (MSSP).
		AN15	Ι	Analog	Analog input 15.
15	12	RC4/SDI1/SDA1/AN16			
		RC4	I/O	ST	Digital I/O.
		SDI1	I	ST	SPI data in (MSSP).
		SDA1	I/O	ST	I ² C data I/O (MSSP).
		AN16	Ι	Analog	Analog input 16.
16	13	RC5/SDO1/AN17			
		RC5	I/O	ST	Digital I/O.
		SDO1	0	—	SPI data out (MSSP).
		AN17	Ι	Analog	Analog input 17.
17	14	RC6/P3A/CCP3/TX1/CK1/AN18	•		
		RC6	I/O	ST	Digital I/O.
		P3A ⁽²⁾	0	CMOS	Enhanced CCP3 PWM output.
		CCP3 ⁽²⁾	I/O	ST	Capture 3 input/Compare 3 output/PWM 3 output.
		TX1	0	—	EUSART asynchronous transmit.
		CK1	I/O	ST	EUSART synchronous clock (see related RXx/DTx).
		AN18	Ι	Analog	Analog input 18.
18	15	RC7/P3B/RX1/DT1/AN19	•		
		RC7	I/O	ST	Digital I/O.
		P3B	0	CMOS	Enhanced CCP3 PWM output.
		RX1	I	ST	EUSART asynchronous receive.
		DT1	I/O	ST	EUSART synchronous data (see related TXx/CKx).
		AN19	I	Analog	Analog input 19.
1	26	RE3/VPP/MCLR	T		
		RE3	1	ST	Digital input.
		Vpp	Р		Programming voltage input.
		MCLR	Ι	ST	Active-Low Master Clear (device Reset) input.
Logondu	TT I	TTL compatible input CMOC CMOC		tible incu	t or output CT Cohmitt Trigger input with CMOC loveler

Legend: TTL = TTL compatible input CMOS = CMOS compatible input or output; ST = Schmitt Trigger input with CMOS levels; I = Input; O = Output; P = Power.

Note 1: Default pin assignment for P2B, T3CKI, CCP3 and CCP2 when Configuration bits PB2MX, T3CMX, CCP3MX and CCP2MX are set.

2: Alternate pin assignment for P2B, T3CKI, CCP3 and CCP2 when Configuration bits PB2MX, T3CMX, CCP3MX and CCP2MX are clear.

	Pin M	lumber		Din Nome	Pin Buffer		Description
PDIP	TQFP	QFN	UQFN	Pin Name	Туре	Туре	Description
10	27	27	25	RE2/CCP5/AN7			
				RE2	I/O	ST	Digital I/O.
				CCP5	I/O	ST	Capture 5 input/Compare 5 output/PWM 5 output
				AN7	Ι	Analog	Analog input 7.
1	18	18	16	RE3/VPP/MCLR			
				RE3	Ι	ST	Digital input.
				Vpp	Р		Programming voltage input.
				MCLR	I	ST	Active-low Master Clear (device Reset) input.
11,32	7, 28	7, 8, 28, 29	7, 26	Vdd	Р	—	Positive supply for logic and I/O pins.
12,31	6, 29	6,30, 31	6, 27	Vss	Р	_	Ground reference for logic and I/O pins.
	12,13, 33,34	13		NC			

TABLE 1-3: PIC18(L)F4XK22 PINOUT I/O DESCRIPTIONS (CONTINUED)

Legend: TTL = TTL compatible input CMOS = CMOS compatible input or output; ST = Schmitt Trigger input with CMOS levels; I = Input; O = Output; P = Power.

Note 1: Default pin assignment for P2B, T3CKI, CCP3/P3A and CCP2/P2A when Configuration bits PB2MX, T3CMX, CCP3MX and CCP2MX are set.

2: Alternate pin assignment for P2B, T3CKI, CCP3/P3A and CCP2/P2A when Configuration bits PB2MX, T3CMX, CCP3MX and CCP2MX are clear.

2.0 OSCILLATOR MODULE (WITH FAIL-SAFE CLOCK MONITOR)

2.1 Overview

The oscillator module has a wide variety of clock sources and selection features that allow it to be used in a wide range of applications while maximizing performance and minimizing power consumption. Figure 2-1 illustrates a block diagram of the oscillator module.

Clock sources can be configured from external oscillators, quartz crystal resonators, ceramic resonators and Resistor-Capacitor (RC) circuits. In addition, the system clock source can be configured from one of three internal oscillators, with a choice of speeds selectable via software. Additional clock features include:

- Selectable system clock source between external or internal sources via software.
- Two-Speed Start-up mode, which minimizes latency between external oscillator start-up and code execution.
- Fail-Safe Clock Monitor (FSCM) designed to detect a failure of the external clock source (LP, XT, HS, EC or RC modes) and switch automatically to the internal oscillator.
- Oscillator Start-up Timer (OST) ensures stability of crystal oscillator sources.

The primary clock module can be configured to provide one of six clock sources as the primary clock.

- 1. RC External Resistor/Capacitor
- 2. LP Low-Power Crystal
- 3. XT Crystal/Resonator
- 4. INTOSC Internal Oscillator
- 5. HS High-Speed Crystal/Resonator
- 6. EC External Clock

The HS and EC oscillator circuits can be optimized for power consumption and oscillator speed using settings in FOSC<3:0>. Additional FOSC<3:0> selections enable RA6 to be used as I/O or CLKO (FOSC/4) for RC, EC and INTOSC Oscillator modes.

Primary Clock modes are selectable by the FOSC<3:0> bits of the CONFIG1H Configuration register. The primary clock operation is further defined by these Configuration and register bits:

- 1. PRICLKEN (CONFIG1H<5>)
- 2. PRISD (OSCCON2<2>)
- 3. PLLCFG (CONFIG1H<4>)
- 4. PLLEN (OSCTUNE<6>)
- 5. HFOFST (CONFIG3H<3>)
- 6. IRCF<2:0> (OSCCON<6:4>)
- 7. MFIOSEL (OSCCON2<4>)
- 8. INTSRC (OSCTUNE<7>)

The HFINTOSC, MFINTOSC and LFINTOSC are factory calibrated high, medium and low-frequency oscillators, respectively, which are used as the internal clock sources.

2.3 Register Definitions: Oscillator Control

REGISTER 2-1: OSCCON: OSCILLATOR CONTROL REGISTER

R/W-0	F	R/W-0	R/W-1	R/W-1	R-q	R-0	R/W-0	R/W-	-0
IDLEN			IRCF<2:0>		OSTS ⁽¹⁾	HFIOFS	SCS<	:1:0>	
bit 7									bit 0
Legend:									
R = Reada	able bit	W = V	Writable bit	U = Unimpl	emented bit, re	ad as '0'	q = depends on	conditio	on
-n = Value	at POR	'1' =	Bit is set	'0' = Bit is c	leared		x = Bit is unkno	wn	
bit 7	IDLE	EN: Idle E	nable bit						
	1 = 0 =	Device el Device el	nters Idle mode nters Sleep mo	e on SLEEP ins Ide on SLEEP i	struction Instruction				
bit 6-4	IRCI	F <2:0>: Iı	nternal RC Osc	illator Frequer	ncy Select bits ⁽	2)			
	111	= HFINT	- OSC – (16 M⊢	lz)	-				
	110	= HFINT	OSC/2 – (8 MI	Hz)					
	101		0SC/4 – (4 MI OSC/8 – (2 MI	⊐z) ⊣z)					
	011	= HFINT	OSC/16 – (1 N	12) 1Hz) ⁽³⁾					
	IF INT	TODC -							
	010	= HFINT	0 and MF103E OSC/32 – (500	:∟ = 0.) kHz)					
	001	= HFINT	OSC/64 - (250) kHz)					
	000	= LFINT	OSC – (31.25	kHz)					
	If IN	TSRC = 1	L and MFIOSE	L = 0:					
	010	= HFINT	OSC/32 - (500) kHz)					
	001	= HFINT	OSC/64 – (250) kHz) 1 25 kHz)					
	000		000/012 - (0	1.20 KHZ)					
	If IN	TSRC = 0	and MFIOSE	L = 1:					
	010	= MFINT	FOSC – (500 kl	Hz) vuz)					
	000	= LFINT	OSC – (31.25	kHz)					
			, , , , , , , , , , , , , , , , , , , ,	,					
	If IN	TSRC = 1	L and MFIOSE	L = 1:					
	010	= MFINT	10SC – (500 ki 10SC/2 – (250	⊓∠) kHz)					
	000	= MFINT	TOSC/16 – (31	.25 kHz)					
bit 3	OST	'S: Oscilla	ator Start-up Ti	me-out Status	bit				
	1 =	Device is	running from t	he clock define	ed by FOSC<3	:0> of the CO	NFIG1H register	•	
1.11.0	0 =	Device is	running from t	he internal osc	cillator (HFINTC	DSC, MFINTO	SC or LFINTOS	C)	
bit 2	HFIC			ency Stable bit					
	1 = 0 =	HFINTOS	SC frequency is	s stable s not stable					
bit 1-0	SCS	<1:0>: S	ystem Clock Se	elect bit					
	1x =	Internal	oscillator block						
	01 =	Seconda	ary (SOSC) osc	cillator					
	00 =	Primary	CIOCK (determin	ned by FOSC<	3:0> in CONFI	IG1H).			
Note 1:	Reset sta	ate depen	ds on state of t	he IESO Conf	iguration bit.				

- 2: INTOSC source may be determined by the INTSRC bit in OSCTUNE and the MFIOSEL bit in OSCCON2.
- **3:** Default output frequency of HFINTOSC on Reset.

14.3.6 PWM RESOLUTION

The resolution determines the number of available duty cycles for a given period. For example, a 10-bit resolution will result in 1024 discrete duty cycles, whereas an 8-bit resolution will result in 256 discrete duty cycles.

The maximum PWM resolution is ten bits when PRx is 255. The resolution is a function of the PRx register value as shown by Equation 14-4.

EQUATION 14-4: PWM RESOLUTION

Resolution =
$$\frac{\log[4(PRx+1)]}{\log(2)}$$
 bits

Note: If the pulse width value is greater than the period the assigned PWM pin(s) will remain unchanged.

TABLE 14-7: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS (Fosc = 32 MHz)

PWM Frequency	1.95 kHz	7.81 kHz	31.25 kHz	125 kHz	250 kHz	333.3 kHz
Timer Prescale (1, 4, 16)	16	4	1	1	1	1
PRx Value	0xFF	0xFF	0xFF	0x3F	0x1F	0x17
Maximum Resolution (bits)	10	10	10	8	7	6.6

TABLE 14-8: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS (Fosc = 20 MHz)

PWM Frequency	1.22 kHz	4.88 kHz	19.53 kHz	78.12 kHz	156.3 kHz	208.3 kHz
Timer Prescale (1, 4, 16)	16	4	1	1	1	1
PRx Value	0xFF	0xFF	0xFF	0x3F	0x1F	0x17
Maximum Resolution (bits)	10	10	10	8	7	6.6

TABLE 14-9: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS (Fosc = 8 MHz)

PWM Frequency	1.22 kHz	4.90 kHz	19.61 kHz	76.92 kHz	153.85 kHz	200.0 kHz
Timer Prescale (1, 4, 16)	16	4	1	1	1	1
PRx Value	0x65	0x65	0x65	0x19	0x0C	0x09
Maximum Resolution (bits)	8	8	8	6	5	5

14.3.7 OPERATION IN SLEEP MODE

In Sleep mode, the TMRx register will not increment and the state of the module will not change. If the CCPx pin is driving a value, it will continue to drive that value. When the device wakes up, TMRx will continue from its previous state.

14.3.8 CHANGES IN SYSTEM CLOCK FREQUENCY

The PWM frequency is derived from the system clock frequency. Any changes in the system clock frequency will result in changes to the PWM frequency. See Section 2.0 "Oscillator Module (With Fail-Safe Clock Monitor)" for additional details.

14.3.9 EFFECTS OF RESET

Any Reset will force all ports to Input mode and the CCP registers to their Reset states.

Register Definitions: ECCP Control 14.5

REGISTER 14-1: CCPxCON: STANDARD CCPx CONTROL REGISTER

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	DCxE	8<1:0>		CCPx	M<3:0>	
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimplen	nented bit, read	d as '0'	
u = Bit is unch	anged	x = Bit is unkr	nown	-n/n = Value a	at POR and BC	R/Value at all	other Reset
'1' = Bit is set		'0' = Bit is clea	ared				
bit 7-6	Unused						
bit 5-4	DCxB<1:0>:	: PWM Duty Cyo	cle Least Sign	ificant bits			
	Capture moc Unused	<u>le:</u>					
	Compare mo	ode:					
	Unused						
	PWM mode:						
	These bits a	re the two LSbs	of the PWM of	duty cycle. The	eight MSbs are	e found in CCP	RxL.
bit 3-0	CCPxM<3:0	>: ECCPx Mode	e Select bits				
	0000 = Capt	ture/Compare/P	WM off (reset	s the module)			
	0001 = Rest 0010 = Com	npare mode: tog	ale output on	match			
	0011 = Rese	erved	9.0 0 atp at on				
	0100 = Capi	ture mode: ever	y falling edge				
	0101 = Capi	ture mode: ever	y rising edge				
	0110 = Capt	ture mode: ever	y 4th rising ec	dge			
	0111 = Capi	ture mode: ever	y 16th rising e	edge			
	1000 = Com	pare mode: set	output on cor	mpare match (C	CPx pin is set,	CCPxIF is set)
	1001 = Com	npare mode: cle	ar output on c	ompare match ((CCPx pin is cl	eared, CCPxIF	is set)
	1010 = Com CCP	npare mode: ge PxIF is set)	enerate softwa	are interrupt on	compare mat	ch (CCPx pin	is unaffected,
	1011 = Com	npare mode: Spe	ecial Event Tr	igger (CCPx pin	is unaffected,	CCPxIF is set))
		Time	rX (selected b	y CxTSEL bits)	is reset	ila ia anahia il	1)
	11xx = PW/I	ADO M mode	in is set, starti	ng A/D convers	ION IT A/D MOD	ule is enabled.	,
Note 1. Thi			- only				

Note 1: This feature is available on CCP5 only.

15.5.2 SLAVE RECEPTION

When the R/\overline{W} bit of a matching received address byte is clear, the R/\overline{W} bit of the SSPxSTAT register is cleared. The received address is loaded into the SSPxBUF register and acknowledged.

When the overflow condition exists for a received address, then not Acknowledge is given. An overflow condition is defined as either bit BF of the SSPxSTAT register is set, or bit SSPxOV of the SSPxCON1 register is set. The BOEN bit of the SSPxCON3 register modifies this operation. For more information see Register 15-5.

An MSSPx interrupt is generated for each transferred data byte. Flag bit, SSPxIF, must be cleared by software.

When the SEN bit of the SSPxCON2 register is set, SCLx will be held low (clock stretch) following each received byte. The clock must be released by setting the CKP bit of the SSPxCON1 register, except sometimes in 10-bit mode. See **Section 15.2.3 "SPI Master Mode"** for more detail.

15.5.2.1 7-bit Addressing Reception

This section describes a standard sequence of events for the MSSPx module configured as an I^2C slave in 7-bit Addressing mode. All decisions made by hardware or software and their effect on reception. Figure 15-14 and Figure 15-5 are used as a visual reference for this description.

This is a step by step process of what typically must be done to accomplish $\mathsf{I}^2\mathsf{C}$ communication.

- 1. Start bit detected.
- S bit of SSPxSTAT is set; SSPxIF is set if interrupt on Start detect is enabled.
- 3. Matching address with R/\overline{W} bit clear is received.
- 4. The slave pulls SDAx low sending an ACK to the master, and sets SSPxIF bit.
- 5. Software clears the SSPxIF bit.
- 6. Software reads received address from SSPxBUF clearing the BF flag.
- 7. If SEN = 1; Slave software sets CKP bit to release the SCLx line.
- 8. The master clocks out a data byte.
- 9. Slave drives SDAx low sending an ACK to the master, and sets SSPxIF bit.
- 10. Software clears SSPxIF.
- 11. Software reads the received byte from SSPxBUF clearing BF.
- 12. Steps 8-12 are repeated for all received bytes from the master.
- 13. Master sends Stop condition, setting P bit of SSPxSTAT, and the bus goes Idle.

15.5.2.2 7-bit Reception with AHEN and DHEN

Slave device reception with AHEN and DHEN set operate the same as without these options with extra interrupts and clock stretching added after the 8th falling edge of SCLx. These additional interrupts allow the slave software to decide whether it wants to ACK the receive address or data byte, rather than the hardware. This functionality adds support for PMBus[™] that was not present on previous versions of this module.

This list describes the steps that need to be taken by slave software to use these options for I^2C communication. Figure 15-16 displays a module using both address and data holding. Figure 15-17 includes the operation with the SEN bit of the SSPxCON2 register set.

- 1. S bit of SSPxSTAT is set; SSPxIF is set if interrupt on Start detect is enabled.
- Matching address with R/W bit clear is clocked in. SSPxIF is set and CKP cleared after the 8th falling edge of SCLx.
- 3. Slave clears the SSPxIF.
- Slave can look at the ACKTIM bit of the SSPx-CON3 register to <u>determine</u> if the SSPxIF was after or before the ACK.
- 5. Slave reads the address value from SSPxBUF, clearing the BF flag.
- Slave sets ACK value clocked out to the master by setting ACKDT.
- 7. Slave releases the clock by setting CKP.
- 8. SSPxIF is set after an ACK, not after a NACK.
- 9. If SEN = 1 the slave hardware will stretch the clock after the ACK.
- 10. Slave clears SSPxIF

Note: SSPxIF is still set after the 9th falling edge of SCLx even if there is no clock stretching and BF has been cleared. Only if NACK is sent to master is SSPxIF not set.

- 11. SSPxIF set and CKP cleared after 8th falling edge of SCLx for a received data byte.
- 12. Slave looks at ACKTIM bit of SSPxCON3 to determine the source of the interrupt.
- 13. Slave reads the received data from SSPxBUF clearing BF.
- 14. Steps 7-14 are the same for each received data byte.
- 15. Communication is ended by either the slave sending an ACK = 1, or the master sending a Stop condition. If a Stop is sent and Interrupt on Stop detect is disabled, the slave will only know by polling the P bit of the SSTSTAT register.

FIGURE 15-31: STOP CONDITION RECEIVE OR TRANSMIT MODE

15.6.10 SLEEP OPERATION

While in Sleep mode, the I²C slave module can receive addresses or data and when an address match or complete byte transfer occurs, wake the processor from Sleep (if the MSSPx interrupt is enabled).

15.6.11 EFFECTS OF A RESET

A Reset disables the MSSPx module and terminates the current transfer.

15.6.12 MULTI-MASTER MODE

In Multi-Master mode, the interrupt generation on the detection of the Start and Stop conditions allows the determination of when the bus is free. The Stop (P) and Start (S) bits are cleared from a Reset or when the MSSPx module is disabled. Control of the I²C bus may be taken when the P bit of the SSPxSTAT register is set, or the bus is Idle, with both the S and P bits clear. When the bus is busy, enabling the SSPx interrupt will generate the interrupt when the Stop condition occurs.

In multi-master operation, the SDAx line must be monitored for arbitration to see if the signal level is the expected output level. This check is performed by hardware with the result placed in the BCLxIF bit.

The states where arbitration can be lost are:

- Address Transfer
- Data Transfer
- A Start Condition
- A Repeated Start Condition
- An Acknowledge Condition

15.8 Register Definitions: MSSP Control

REGISTER 15-2: SSPxSTAT: SSPx STATUS REGISTER

R/W-0	R/W-0	R-0	R-0	R-0	R-0	R-0	R-0
SMP	CKE	D/A	Р	S	R/W	UA	BF
bit 7	•	-					bit 0
<u>.</u>							
Legend:							
R = Readable b	it	W = Writable bit	t	U = Unimplem	ented bit, read as	'0'	
u = Bit is unchar	nged	x = Bit is unknor	wn	-n/n = Value at	POR and BOR/Va	alue at all other	Resets
'1' = Bit is set		'0' = Bit is cleare	ed				
<u> </u>							,
bit 7	SMP: SPI Data	Input Sample bit	t				
	SPI Master mod 1 = Input data s 0 = Input data s SPI Slave mode SMP must be c In I ² C Master o	<u>de:</u> sampled at end o sampled at middle <u>e:</u> leared when SPI r Slave mode:	f data output tir e of data outpu is used in Slav	ne t time re mode			
	1 = Slew rate o 0 = Slew rate o	control disabled for control enabled for	or standard spe or high speed m	eed mode (100 k node (400 kHz)	Hz and 1 MHz)		
bit 6	CKE: SPI Clock	k Edge Select bit	(SPI mode onl	y)			
	In SPI Master of 1 = Transmit of 0 = Transmit of In I ² C mode on 1 = Enable inpu 0 = Disable SM	or <u>Slave mode:</u> cours on transition cours on transition <u>ly:</u> ut logic so that the bus specific input	n from active to n from Idle to a resholds are co	Idle clock state ctive clock state mpliant with SM	bus specification		
bit 5	D/A: Data/Addr	$\frac{1}{1000}$ bit (l^2 C mode	a only)				
bit 5	1 = Indicates th 0 = Indicates th	at the last byte re at the last byte re	eceived or trans	smitted was data smitted was add	a ress		
bit 4	P: Stop bit						
	(I ² C mode only. 1 = Indicates th 0 = Stop bit was	. This bit is cleare hat a Stop bit has s not detected las	ed when the MS been detected st	SSPx module is a last (this bit is 'a	disabled, SSPxEN)' on Reset)	is cleared.)	
bit 3	S: Start bit						
	(I ² C mode only.	. This bit is cleare	ed when the MS	SPx module is a	disabled, SSPxEN	is cleared.)	
	 1 = Indicates th 0 = Start bit was 	at a Start bit has s not detected las	been detected st	last (this bit is '0)' on Reset)		
bit 2	R/W: Read/Writh This bit holds the to the next Star In I^2C Slave model 1 = Read 0 = Write	te bit information le R/W bit informa t bit, Stop bit, or r ode:	(I ² C mode only atio <u>n foll</u> owing t not ACK bit.	/) he last address r	natch. This bit is or	nly valid from th	ne address match
	<u>In I²C Master m</u> 1 = Transmit is	<u>node:</u> s in progress					
	0 = Transmit is OR-ing th	s not in progress is bit with SEN, F	RSEN, PEN, RO	CEN or ACKEN	will indicate if the N	/ISSPx is in Idle	e mode.
bit 1	UA: Update Ad 1 = Indicates th 0 = Address do	dress bit (10-bit I hat the user needs hes not need to be	² C mode only) s to update the e updated	address in the S	SSPxADD register		
bit 0	BF: Buffer Full	Status bit					
	$\text{Receive (SPI and the second sec$	nd I ² C modes): mplete, SSPxBU t complete, SSP> node only): nit in progress (d)	F is full BUF is empty	the $\overline{\Delta C K}$ and S^{2}	on hite) SSDVPII	- is full	
	1 = Data transn0 = Data transn	nit complete (doe	es not include the	ne ACK and Stop	bits), SSPxBUF i	s empty	

- 16.1.2.9 Asynchronous Reception Setup:
- Initialize the SPBRGHx:SPBRGx register pair and the BRGH and BRG16 bits to achieve the desired baud rate (see Section 16.4 "EUSART Baud Rate Generator (BRG)").
- 2. Set the RXx/DTx and TXx/CKx TRIS controls to '1'.
- 3. Enable the serial port by setting the SPEN bit and the RXx/DTx pin TRIS bit. The SYNC bit must be clear for asynchronous operation.
- 4. If interrupts are desired, set the RCxIE interrupt enable bit and set the GIE/GIEH and PEIE/GIEL bits of the INTCON register.
- 5. If 9-bit reception is desired, set the RX9 bit.
- 6. Set the DTRXP if inverted receive polarity is desired.
- 7. Enable reception by setting the CREN bit.
- 8. The RCxIF interrupt flag bit will be set when a character is transferred from the RSR to the receive buffer. An interrupt will be generated if the RCxIE interrupt enable bit was also set.
- 9. Read the RCSTAx register to get the error flags and, if 9-bit data reception is enabled, the ninth data bit.
- 10. Get the received eight Least Significant data bits from the receive buffer by reading the RCREGx register.
- 11. If an overrun occurred, clear the OERR flag by clearing the CREN receiver enable bit.

16.1.2.10 9-bit Address Detection Mode Setup

This mode would typically be used in RS-485 systems. To set up an Asynchronous Reception with Address Detect Enable:

- 1. Initialize the SPBRGHx, SPBRGx register pair and the BRGH and BRG16 bits to achieve the desired baud rate (see Section 16.4 "EUSART Baud Rate Generator (BRG)").
- 2. Set the RXx/DTx and TXx/CKx TRIS controls to '1'.
- Enable the serial port by setting the SPEN bit. The SYNC bit must be clear for asynchronous operation.
- 4. If interrupts are desired, set the RCxIE interrupt enable bit and set the GIE/GIEH and PEIE/GIEL bits of the INTCON register.
- 5. Enable 9-bit reception by setting the RX9 bit.
- 6. Enable address detection by setting the ADDEN bit.
- 7. Set the DTRXP if inverted receive polarity is desired.
- 8. Enable reception by setting the CREN bit.
- The RCxIF interrupt flag bit will be set when a character with the ninth bit set is transferred from the RSR to the receive buffer. An interrupt will be generated if the RCxIE interrupt enable bit was also set.
- 10. Read the RCSTAx register to get the error flags. The ninth data bit will always be set.
- 11. Get the received eight Least Significant data bits from the receive buffer by reading the RCREGx register. Software determines if this is the device's address.
- 12. If an overrun occurred, clear the OERR flag by clearing the CREN receiver enable bit.
- 13. If the device has been addressed, clear the ADDEN bit to allow all received data into the receive buffer and generate interrupts.

BAUD	Fos	c = 64.00	0 MHz	Fosc = 18.432 MHz			Fos	c = 16.00	0 MHz	Fos	Fosc = 11.0592 MHz		
RATE	Actual Rate	% Error	SPBRGx value (decimal)	Actual Rate	% Error	SPBRGx value (decimal)	Actual Rate	% Error	SPBRGx value (decimal)	Actual Rate	% Error	SPBRGx value (decimal)	
300	-		_	—	_	_	_	_	_	—	_	_	
1200	—	_	—	—	—	—	—	—	—	—	—	—	
2400	—	—	_	—	—	—	_	_	_	_	_	_	
9600	—	_	_	9600	0.00	119	9615	0.16	103	9600	0.00	71	
10417	—	_	—	10378	-0.37	110	10417	0.00	95	10473	0.53	65	
19.2k	19.23k	0.16	207	19.20k	0.00	59	19.23k	0.16	51	19.20k	0.00	35	
57.6k	57.97k	0.64	68	57.60k	0.00	19	58.82k	2.12	16	57.60k	0.00	11	
115.2k	114.29k	-0.79	34	115.2k	0.00	9	111.1k	-3.55	8	115.2k	0.00	5	

TABLE 16-5: BAUD RATES FOR ASYNCHRONOUS MODES (CONTINUED)

					S	YNC = 0, BRC	GH = 1, BRO	G16 = 0				
BAUD	Fo	sc = 8.00	0 MHz	Fo	sc = 4.00	0 MHz	Fos	c = 3.686	4 MHz	Fo	sc = 1.000) MHz
RATE	Actual Rate	% Error	SPBRGx value (decimal)	Actual Rate	% Error	SPBRGx value (decimal)	Actual Rate	% Error	SxBRGx value (decimal)	Actual Rate	% Error	SPBRGx value (decimal)
300	—	_	_	_	_	_	_		_	300	0.16	207
1200	—	_	_	1202	0.16	207	1200	0.00	191	1202	0.16	51
2400	2404	0.16	207	2404	0.16	103	2400	0.00	95	2404	0.16	25
9600	9615	0.16	51	9615	0.16	25	9600	0.00	23	—	—	—
10417	10417	0.00	47	10417	0.00	23	10473	0.53	21	10417	0.00	5
19.2k	19231	0.16	25	19.23k	0.16	12	19.2k	0.00	11	—	_	_
57.6k	55556	-3.55	8	—	_	_	57.60k	0.00	3	—	_	_
115.2k	_	_	_	_	_	_	115.2k	0.00	1	_	_	_

		SYNC = 0, BRGH = 0, BRG16 = 1												
BAUD	Fos	c = 64.00	00 MHz	Fos	sc = 18.43	32 MHz	Fos	c = 16.00	0 MHz	Fos	Fosc = 11.0592 MHz			
RATE	Actual Rate	% Error	SPBRGHx: SPBRGx (decimal)	Actual Rate	% Error	SPBRGHx: SPBRGx (decimal)	Actual Rate	% Error	SPBRGHx :SPBRGx (decimal)	Actual Rate	% Error	SPBRGHx: SPBRGx (decimal)		
300	300.0	0.00	13332	300.0	0.00	3839	300.03	0.01	3332	300.0	0.00	2303		
1200	1200.1	0.01	3332	1200	0.00	959	1200.5	0.04	832	1200	0.00	575		
2400	2399	-0.02	1666	2400	0.00	479	2398	-0.08	416	2400	0.00	287		
9600	9592	-0.08	416	9600	0.00	119	9615	0.16	103	9600	0.00	71		
10417	10417	0.00	383	10378	-0.37	110	10417	0.00	95	10473	0.53	65		
19.2k	19.23k	0.16	207	19.20k	0.00	59	19.23k	0.16	51	19.20k	0.00	35		
57.6k	57.97k	0.64	68	57.60k	0.00	19	58.82k	2.12	16	57.60k	0.00	11		
115.2k	114.29k	-0.79	34	115.2k	0.00	9	111.11k	-3.55	8	115.2k	0.00	5		

18.2 Comparator Control

Each comparator has a separate control and Configuration register: CM1CON0 for Comparator C1 and CM2CON0 for Comparator C2. In addition, Comparator C2 has a second control register, CM2CON1, for controlling the interaction with Timer1 and simultaneous reading of both comparator outputs.

The CM1CON0 and CM2CON0 registers (see Register 18-1) contain the control and status bits for the following:

- Enable
- Input selection
- Reference selection
- Output selection
- Output polarity
- Speed selection

18.2.1 COMPARATOR ENABLE

Setting the CxON bit of the CMxCON0 register enables the comparator for operation. Clearing the CxON bit disables the comparator resulting in minimum current consumption.

18.2.2 COMPARATOR INPUT SELECTION

The CxCH<1:0> bits of the CMxCON0 register direct one of four analog input pins to the comparator inverting input.

Note:	To use CxIN+ and C12INx- pins as analog inputs, the appropriate bits must be set in					
	the	ANSEL	register	and	the	
	corresponding TRIS bits must also be set					
	to dis	able the ou	tput drivers.			

18.2.3 COMPARATOR REFERENCE SELECTION

Setting the CxR bit of the CMxCON0 register directs an internal voltage reference or an analog input pin to the non-inverting input of the comparator. See **Section 21.0 "Fixed Voltage Reference (FVR)"** for more information on the Internal Voltage Reference module.

18.2.4 COMPARATOR OUTPUT SELECTION

The output of the comparator can be monitored by reading either the CxOUT bit of the CMxCON0 register or the MCxOUT bit of the CM2CON1 register. In order to make the output available for an external connection, the following conditions must be true:

- CxOE bit of the CMxCON0 register must be set
- · Corresponding TRIS bit must be cleared
- CxON bit of the CMxCON0 register must be set

- Note 1: The CxOE bit overrides the PORT data latch. Setting the CxON has no impact on the port override.
 - 2: The internal output of the comparator is latched with each instruction cycle. Unless otherwise specified, external outputs are not latched.

18.2.5 COMPARATOR OUTPUT POLARITY

Inverting the output of the comparator is functionally equivalent to swapping the comparator inputs. The polarity of the comparator output can be inverted by setting the CxPOL bit of the CMxCON0 register. Clearing the CxPOL bit results in a non-inverted output.

Table 18-1 shows the output state versus input conditions, including polarity control.

TABLE 18-1: COMPARATOR OUTPUT STATE VS. INPUT CONDITIONS

Input Condition	CxPOL	CxOUT
CxVIN - > CxVIN +	0	0
CxVIN- < CxVIN+	0	1
CxVIN - > CxVIN +	1	1
CxVIN- < CxVIN+	1	0

18.2.6 COMPARATOR SPEED SELECTION

The trade-off between speed or power can be optimized during program execution with the CxSP control bit. The default state for this bit is '1' which selects the normal speed mode. Device power consumption can be optimized at the cost of slower comparator propagation delay by clearing the CxSP bit to '0'.

18.3 Comparator Response Time

The comparator output is indeterminate for a period of time after the change of an input source or the selection of a new reference voltage. This period is referred to as the response time. The response time of the comparator differs from the settling time of the voltage reference. Therefore, both of these times must be considered when determining the total response time to a comparator input change. See the Comparator and Voltage Reference Specifications in **Section 27.0 "Electrical Specifications"** for more details.

R/P-1	R/P-0	U-0	U-0	U-0	R/P-1	U-0	R/P-1
DEBUG	2) XINST	_	_	_	LVP ⁽¹⁾	_	STVREN
bit 7							bit 0
Legend:							
R = Readab	ole bit	P = Programma	able bit	U = Unimplem	ented bit, read as	s 'O'	
-n = Value v	vhen device is unprog	grammed		x = Bit is unkno	own		
bit 7	DEBUG: Back	ground Debugge	r Enable bit ⁽²⁾				
	1 = Background	d debugger disa	oled, RB6 and R	B7 configured as	s general purpose	e I/O pins	
	0 = Background	d debugger enar		B7 are dedicated	to in-Circuit Der	bug	
bit 6	XINST: Extende	ed Instruction Se	et Enable bit				
	1 = Instruction	set extension an	d Indexed Addre	essing mode ena	ibled	do)	
				essing mode disa	abled (Legacy mo	Jue)	
bit 5-3	Unimplemente	ed: Read as '0'					
bit 2	LVP: Single-Su	pply ICSP Enab	le bit				
	1 = Single-Sup	ply ICSP enable	d				
	0 = Single-Sup	ply ICSP disable	d				
bit 1	Unimplemente	ed: Read as '0'					
bit 0	STVREN: Stac	k Full/Underflow	Reset Enable bi	it			
	1 = Stack full/u	nderflow will cau	se Reset				
	0 = Stack full/u	nderflow will not	cause Reset				
Note 1:	Can only be change	d by a programm	ner in high-voltag	e programming	mode.		
2:	The DEBUG bit is m	anaged automat	ically by device	development too	ls including debu	iggers and progr	ammers. For
	normal device opera	itions, this bit she	ould be maintain	ed as a '1'.			

REGISTER 24-5: CONFIG4L: CONFIGURATION REGISTER 4 LOW

REGISTER 24-6: CONFIG5L: CONFIGURATION REGISTER 5 LOW

U-0	U-0	U-0	U-0	R/C-1	R/C-1	R/C-1	R/C-1
—	—	—	—	CP3 ⁽¹⁾	CP2 ⁽¹⁾	CP1	CP0
bit 7							bit 0

Legend:	
R = Readable bit	U = Unimplemented bit, read as '0'
-n = Value when device is unprogrammed	C = Clearable only bit

bit 7-4	Unimplemented: Read as '0'
bit 3	CP3: Code Protection bit ⁽¹⁾
	1 = Block 3 not code-protected 0 = Block 3 code-protected
bit 2	CP2: Code Protection bit ⁽¹⁾
	1 = Block 2 not code-protected
	0 = Block 2 code-protected
bit 1	CP1: Code Protection bit
	1 = Block 1 not code-protected
	0 = Block 1 code-protected
bit 0	CP0: Code Protection bit
	1 = Block 0 not code-protected
	0 = BIOCK U code-protected

Note 1: Available on PIC18(L)FX5K22 and PIC18(L)FX6K22 devices.

.

24.5.1 PROGRAM MEMORY CODE PROTECTION

The program memory may be read to or written from any location using the table read and table write instructions. The device ID may be read with table reads. The Configuration registers may be read and written with the table read and table write instructions.

In Normal execution mode, the CPn bits have no direct effect. CPn bits inhibit external reads and writes. A block of user memory may be protected from table writes if the WRTn Configuration bit is '0'. The EBTRn bits control table reads. For a block of user memory with the EBTRn bit cleared to '0', a table READ instruction that executes from within that block is allowed to read. A table read instruction that executes from a location outside of that block is not allowed to read and will result in reading '0's. Figures 24-3 through 24-5 illustrate table write and table read protection.

Note:	Code protection bits may only be written					
	to a '0' from a '1' state. It is not possible to					
	write a '1' to a bit in the '0' state. Code pro-					
	tection bits are only set to '1' by a full chip					
	erase or block erase function. The full chip					
	erase and block erase functions can only					
	be initiated via ICSP™ or an external					
	programmer.					

FIGURE 24-3: TABLE WRITE (WRTn) DISALLOWED

Register Values	Program Memory	ry Configuration Bit Settings	
		000000h WRTB, EBTRB = 11 0007FFh 000800h	
TBLPTR = 0008FFh	▶┌►	WRT0, EBTR0 = 01	
PC = 001FFEh	TBLWT*	001FFFh 002000h	
		WRT1, EBTR1 = 11 003FFFh 004000h	
PC = 005FFEh	TBLWT*	WRT2, EBTR2 = 11 005FFFh	
		WRT3, EBTR3 = 11	
Results: All table writes d	sabled to Blockn whenever WRT	Tn = 0.	

24.5.2 DATA EEPROM CODE PROTECTION

The entire data EEPROM is protected from external reads and writes by two bits: CPD and WRTD. CPD inhibits external reads and writes of data EEPROM. WRTD inhibits internal and external writes to data EEPROM. The CPU can always read data EEPROM under normal operation, regardless of the protection bit settings.

24.5.3 CONFIGURATION REGISTER PROTECTION

The Configuration registers can be write-protected. The WRTC bit controls protection of the Configuration registers. In Normal execution mode, the WRTC bit is readable only. WRTC can only be written via ICSP or an external programmer.

24.6 ID Locations

Eight memory locations (20000h-200007h) are designated as ID locations, where the user can store checksum or other code identification numbers. These locations are both readable and writable during normal execution through the TBLRD and TBLWT instructions or during program/verify. The ID locations can be read when the device is code-protected.

24.7 In-Circuit Serial Programming

PIC18(L)F2X/4XK22 devices can be serially programmed while in the end application circuit. This is simply done with two lines for clock and data and three other lines for power, ground and the programming voltage. This allows customers to manufacture boards with unprogrammed devices and then program the microcontroller just before shipping the product. This also allows the most recent firmware or a custom firmware to be programmed.

24.8 In-Circuit Debugger

When the DEBUG Configuration bit is programmed to a '0', the In-Circuit Debugger functionality is enabled. This function allows simple debugging functions when used with MPLAB[®] IDE. When the microcontroller has this feature enabled, some resources are not available for general use. Table 24-6 shows which resources are required by the background debugger.

TABLE 24-6: DE	BUGGER	RESOU	RCES
----------------	--------	-------	------

I/O pins:

To use the In-Circuit Debugger function of the microcontroller, the design must implement In-Circuit Serial Programming connections to the following pins:

- MCLR/VPP/RE3
- Vdd
- Vss
- RB7
- RB6

This will interface to the In-Circuit Debugger module available from Microchip or one of the third party development tool companies.

24.9 Single-Supply ICSP Programming

The LVP Configuration bit enables Single-Supply ICSP Programming (formerly known as Low-Voltage ICSP Programming or LVP). When Single-Supply Programming is enabled, the microcontroller can be programmed without requiring high voltage being applied to the MCLR/VPP/RE3 pin. See "*PIC18(L)F2XK22/4XK22 Flash Memory Programming*" (DS41398) for more details about low voltage programming.

- Note 1: High-voltage programming is always available, regardless of the state of the LVP bit, by applying VIHH to the MCLR pin.
 - 2: By default, Single-Supply ICSP is enabled in unprogrammed devices (as supplied from Microchip) and erased devices.
 - 3: While in Low-Voltage ICSP mode, MCLR is always enabled, regardless of the MCLRE bit, and the RE3 pin can no longer be used as a general purpose input.

The LVP bit may be set or cleared only when using standard high-voltage programming (VIHH applied to the MCLR/VPP/RE3 pin). Once LVP has been disabled, only the standard high-voltage programming is available and must be used to program the device.

Memory that is not code-protected can be erased using either a block erase, or erased row by row, then written at any specified VDD. If code-protected memory is to be erased, a block erase is required.

тѕт	FSZ	Test f, ski	Test f, skip if 0				
Synta	ax:	TSTFSZ f {	TSTFSZ f {,a}				
Operands:		0 ≤ f ≤ 255 a ∈ [0,1]	$\begin{array}{l} 0 \leq f \leq 255 \\ a \in [0,1] \end{array}$				
Oper	ation:	skip if f = 0					
Statu	is Affected:	None					
Enco	oding:	0110	011a fff	f ffff			
Desc	ription:	If 'f' = 0, the during the c is discarded making this If 'a' is '0', tl If 'a' is '1', tl GPR bank. If 'a' is '0' a set is enabl in Indexed I mode when Section 25 Bit-Oriente Literal Offs	If 'f' = 0, the next instruction fetched during the current instruction execution is discarded and a NOP is executed, making this a 2-cycle instruction. If 'a' is '0', the Access Bank is selected. If 'a' is '1', the BSR is used to select the GPR bank. If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever $f \le 95$ (5Fh). See Section 25.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed				
Word	ls:	1	1				
Cycles: 1(2) Note: 3 cycles if skip and followed by a 2-word instruction							
QC	ycle Activity:						
	Q1	Q2	Q3	Q4			
	Decode	Read	Process	No			
lf ck	in:	register 'f'	Data	operation			
11 51	.ιρ. Ω1	02	03	04			
	No	No	No	No			
	operation	operation	operation	operation			
lf sk	ip and followe	d by 2-word in	struction:				
	Q1	Q2	Q3	Q4			
	No	No	No	No			
	operation	operation	operation	operation			
	N0 operation	N0 operation	N0 operation	N0 operation			
	operation	operation	operation	operation			
<u>Exan</u>	nple:	HERE T NZERO : ZERO :	ISTFSZ CNT : :	, 1			
	Before Instruc	tion <u>–</u> Ad	dress (ਮੁਸ਼ੁਸ਼)			
	After Instructio	on = 00	h,	,			
	PC If CNT	= Ad ≠ 00	= Address (ZERO) \neq 00b				
	PC	= Ad	= Address (NZERO)				

XORLW	Exclusiv	Exclusive OR literal with W					
Syntax:	XORLW	k					
Operands:	$0 \le k \le 25$	5					
Operation:	(W) .XOR	$k \rightarrow W$					
Status Affected:	N, Z						
Encoding:	0000	1010	kkkk	kkkk			
Description:	The conte the 8-bit li in W.	ents of W iteral 'k'. T	are XOR he resul	ed with t is placed			
Words:	1						
Cycles:	1						
Q Cycle Activity:							
Q1	Q2	Q3		Q4			
Decode	Read literal 'k'	Proce Data	ess V a	Vrite to W			
Example:	XORLW	0AFh					
Before Instruc	tion						
W	= B5h						
After Instruction	on						

W	=	1Ah

PIC18(L)F2X/4XK22		Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +125^{\circ}C$						
Param No.	Symbol	Characteristic		Min	Тур	Мах	Units	Conditions
D001	Vdd	Supply Voltage	PIC18LF2X/4XK22	1.8	—	3.6	V	
			PIC18F2X/4XK22	2.3		5.5	V	
D002	Vdr	RAM Data Retention Voltage ⁽¹⁾		1.5		—	V	
D003	Vpor	VDD Start Voltage to ensure internal Power-on Reset signal		-	-	0.7	V	See section on Power-on Reset for details
D004	SVDD	VDD Rise Rate to ensure internal Power-on Reset signal		0.05	—	—	V/ms	See section on Power-on Reset for details
D005 VBOR Brown-out Reset Voltage								
BORV<1:0> = 11(2) $BORV<1:0> = 10$ $BORV<1:0> = 01$ $BORV<1:0> = 00(3)$		BORV<1:0> = 11 ⁽²⁾		1.75	1.9	2.05	V	
		2.05	2.2	2.35	V			
		2.35	2.5	2.65	V			
		2.65	2.85	3.05	V			

27.1 DC Characteristics: Supply Voltage, PIC18(L)F2X/4XK22

Note 1: This is the limit to which VDD can be lowered in Sleep mode, or during a device Reset, without losing RAM data.

2: On PIC18(L)F2X/4XK22 devices with BOR enabled, operation is supported until a BOR occurs. This is valid although VDD may be below the minimum rated supply voltage.

3: With BOR enabled, full-speed operation (Fosc = 64 MHz or 48 MHz) is supported until a BOR occurs. This is valid although VDD may be below the minimum voltage for this frequency.

FIGURE 28-55: PIC18F2X/4XK22 MAXIMUM IDD: PRI_RUN EC HIGH POWER

© 2010-2016 Microchip Technology Inc.

28-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	MILLIMETERS		
Dimension Limits		MIN	NOM	MAX
Number of Pins	N	28		
Pitch	е	1.27 BSC		
Overall Height	A	2.65		
Molded Package Thickness	A2	2.05	-	-
Standoff §	A1	0.10	-	0.30
Overall Width	E	10.30 BSC		
Molded Package Width	E1	7.50 BSC		
Overall Length	D	17.90 BSC		
Chamfer (Optional)	h	0.25 - 0.75		
Foot Length	L	0.40	-	1.27
Footprint	L1	1.40 REF		
Lead Angle	Θ	0°	-	-
Foot Angle	φ	0°	-	8°
Lead Thickness	С	0.18	-	0.33
Lead Width	b	0.31	_	0.51
Mold Draft Angle Top	α	5°	-	15°
Mold Draft Angle Bottom	β	5°	-	15°

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. § Significant Characteristic
- 3. Dimension D does not include mold flash, protrusions or gate burrs, which shall not exceed 0.15 mm per end. Dimension E1 does not include interlead flash or protrusion, which shall not exceed 0.25 mm per side.
- Dimensioning and tolerancing per ASME Y14.5M BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only.
- 5. Datums A & B to be determined at Datum H.

Microchip Technology Drawing C04-052C Sheet 2 of 2

44-Lead Plastic Thin Quad Flatpack (PT) - 10x10x1.0 mm Body [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS			
Dimension Limits		MIN	NOM	MAX
Number of Leads	N	44		
Lead Pitch	е	0.80 BSC		
Overall Height	A	1.2		
Standoff	A1	0.05	-	0.15
Molded Package Thickness	A2	0.95	1.00	1.05
Overall Width	E	12.00 BSC		
Molded Package Width	E1	10.00 BSC		
Overall Length	D	12.00 BSC		
Molded Package Length	D1	10.00 BSC		
Lead Width	b	0.30	0.37	0.45
Lead Thickness	С	0.09	-	0.20
Lead Length	L	0.45	0.60	0.75
Footprint	L1	1.00 REF		
Foot Angle	θ	0° 3.5° 7°		

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Exact shape of each corner is optional.

3. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-076C Sheet 2 of 2