

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	48MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	24
Program Memory Size	64KB (32K x 16)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	3.8K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 19x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18lf26k22-e-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.0 DEVICE OVERVIEW

This document contains device specific information for the following devices:

- PIC18F23K22 PIC18LF23K22
- PIC18F24K22 PIC18LF24K22
- PIC18F25K22
 PIC18LF25K22
- PIC18F26K22 PIC18LF26K22
- PIC18F43K22 PIC18LF43K22
- PIC18F44K22 PIC18LF44K22
- PIC18F45K22 PIC18LF45K22
- PIC18F46K22 PIC18LF46K22

This family offers the advantages of all PIC18 microcontrollers – namely, high computational performance at an economical price – with the addition of high-endurance, Flash program memory. On top of these features, the PIC18(L)F2X/4XK22 family introduces design enhancements that make these microcontrollers a logical choice for many high-performance, power sensitive applications.

1.1 New Core Features

1.1.1 XLP TECHNOLOGY

All of the devices in the PIC18(L)F2X/4XK22 family incorporate a range of features that can significantly reduce power consumption during operation. Key items include:

- Alternate Run Modes: By clocking the controller from the Timer1 source or the internal oscillator block, power consumption during code execution can be reduced by as much as 90%.
- Multiple Idle Modes: The controller can also run with its CPU core disabled but the peripherals still active. In these states, power consumption can be reduced even further, to as little as 4% of normal operation requirements.
- **On-the-fly Mode Switching:** The powermanaged modes are invoked by user code during operation, allowing the user to incorporate powersaving ideas into their application's software design.
- Low Consumption in Key Modules: The power requirements for both Timer1 and the Watchdog Timer are minimized. See Section 27.0 "Electrical Specifications" for values.

1.1.2 MULTIPLE OSCILLATOR OPTIONS AND FEATURES

All of the devices in the PIC18(L)F2X/4XK22 family offer ten different oscillator options, allowing users a wide range of choices in developing application hardware. These include:

- Four Crystal modes, using crystals or ceramic resonators
- Two External Clock modes, offering the option of using two pins (oscillator input and a divide-by-4 clock output) or one pin (oscillator input, with the second pin reassigned as general I/O)
- Two External RC Oscillator modes with the same pin options as the External Clock modes
- An internal oscillator block which contains a 16 MHz HFINTOSC oscillator and a 31 kHz LFINTOSC oscillator, which together provide eight user selectable clock frequencies, from 31 kHz to 16 MHz. This option frees the two oscillator pins for use as additional general purpose I/O.
- A Phase Lock Loop (PLL) frequency multiplier, available to both external and internal oscillator modes, which allows clock speeds of up to 64 MHz. Used with the internal oscillator, the PLL gives users a complete selection of clock speeds, from 31 kHz to 64 MHz – all without using an external crystal or clock circuit.

Besides its availability as a clock source, the internal oscillator block provides a stable reference source that gives the family additional features for robust operation:

- Fail-Safe Clock Monitor: This option constantly monitors the main clock source against a reference signal provided by the LFINTOSC. If a clock failure occurs, the controller is switched to the internal oscillator block, allowing for continued operation or a safe application shutdown.
- **Two-Speed Start-up:** This option allows the internal oscillator to serve as the clock source from Power-on Reset, or Wake-up from Sleep mode, until the primary clock source is available.

	00111													
Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page					
CONFIG2L				BORV	<1:0>	BOREI	N<1:0>	PWRTEN	346					
CONFIG2H	_	-		WDPS	6<3:0>		WDTE	347						
CONFIG3H	MCLRE	—	P2BMX	P2BMX T3CMX		CCP3MX	PBADEN	CCP2MX	348					
CONFIG4L	DEBUG	XINST				LVP		STRVEN	349					

TABLE 4-5: CONFIGURATION REGISTERS ASSOCIATED WITH RESETS

Legend: — = unimplemented locations, read as '0'. Shaded bits are not used for Resets.

PIC18(L)F2X/4XK22

6.3 Register Definitions: Memory Control

REGISTER 6-1: EECON1: DATA EEPROM CONTROL 1 REGISTER

R/W-x	R/W-x	U-0	R/W-0	R/W-x	R/W-0	R/S-0	R/S-0
EEPGD	CFGS	—	FREE	WRERR	WREN	WR	RD
bit 7							bit
Legend:							
R = Readable	e bit	W = Writable	bit				
S = Bit can b	e set by softwar	e. but not clea	red	U = Unimpler	nented bit, read	d as '0'	
-n = Value at	POR	'1' = Bit is se	t	'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 7	EEPGD: Flas	h Program or	Data EEPRON	A Memory Selec	ct bit		
		- lash program		-			
		lata EEPROM	,				
bit 6	CFGS: Flash	Program/Data	EEPROM or	Configuration S	elect bit		
		Configuration r	0				
6.4 C			or data EEPR	Ow memory			
bit 5	•	ted: Read as		•.			
bit 4		()	rase Enable b		DTD on the ne		ad
			of erase opera	dressed by TBL ation)	PIR on the ne	Xt WR commar	10
	0 = Perform						
bit 3	WRERR: Fla	sh Program/Da	ata EEPROM I	Error Flag bit ⁽¹⁾			
	1 = A write o	peration is pre	maturely termi	nated (any Res	et during self-t	imed programn	ning in norma
	•		per write attem	pt)			
	0 = 1 he write	e operation cor	npleted				
bit 2	WREN: Flash	n Program/Dat	a EEPROM W	rite Enable bit			
		•					
L:1 4		•	-lash program	/data EEPROM			
bit 1	WR: Write Co		Maraaa/writa				
				cycle or a progra it is cleared by			
	· ·			ed) by software			
	0 = Write cyc	cle to the EEPI	ROM is comple	ete			
bit 0	RD: Read Co						
				s one cycle. RD			
		ot cleared) by : t initiate an EE		it cannot be set	wnen EEPGD	= 1 or CFGS =	1.)
	0 = D0es 10		r itow leau				

Note 1: When a WRERR occurs, the EEPGD and CFGS bits are not cleared. This allows tracing of the error condition.

TABLE 10-1: PORTA I/O SUMMARY

Pin Name	Function	TRIS Setting	ANSEL Setting	Pin Type	Buffer Type	Description
RA0/C12IN0-/AN0	RA0	0	0	0	DIG	LATA<0> data output; not affected by analog input.
		1	0	Ι	TTL	PORTA<0> data input; disabled when analog input enabled.
	C12IN0-	1	1	Ι	AN	Comparators C1 and C2 inverting input.
	AN0	1	1	I	AN	Analog input 0.
RA1/C12IN1-/AN1	RA1	0	0	0	DIG	LATA<1> data output; not affected by analog input.
		1	0	I	TTL	PORTA<1> data input; disabled when analog input enabled.
	C12IN1-	1	1	I	AN	Comparators C1 and C2 inverting input.
	AN1	1	1	I	AN	Analog input 1.
RA2/C2IN+/AN2/ DACOUT/VREF-	RA2	0	0	0	DIG	LATA<2> data output; not affected by analog input; disabled when DACOUT enabled.
		1	0	Ι	TTL	PORTA<2> data input; disabled when analog input enabled; disabled when DACOUT enabled.
	C2IN+	1	1	Ι	AN	Comparator C2 non-inverting input.
	AN2	1	1	Ι	AN	Analog output 2.
	DACOUT	x	1	0	AN	DAC Reference output.
	VREF-	1	1	Ι	AN	A/D reference voltage (low) input.
RA3/C1IN+/AN3/	RA3	0		0	DIG	LATA<3> data output; not affected by analog input.
VREF+		1	0	I	TTL	PORTA<3> data input; disabled when analog input enabled.
	C1IN+	1	1	I	AN	Comparator C1 non-inverting input.
	AN3	1	1	I	AN	Analog input 3.
	VREF+	1	1	I	AN	A/D reference voltage (high) input.
RA4/CCP5/C1OUT/	RA4	0	—	0	DIG	LATA<4> data output.
SRQ/T0CKI		1	_	I	ST	PORTA<4> data input; default configuration on POR.
	CCP5	0	_	0	DIG	CCP5 Compare output/PWM output, takes priority over RA4 output
		1	—	Ι	ST	Capture 5 input/Compare 5 output/ PWM 5 output.
	C1OUT	0	_	0	DIG	Comparator C1 output.
	SRQ	0	_	0	DIG	SR latch Q output; take priority over CCP 5 output.
	TOCKI	1	_	I	ST	Timer0 external clock input.
RA5/C2OUT/SRNQ/	RA5	0	0	0	DIG	LATA<5> data output; not affected by analog input.
SS1/ HLVDIN/AN4		1	0	I	TTL	PORTA<5> data input; disabled when analog input enabled.
HLVDIN/AN4	C2OUT	0	0	0	DIG	Comparator C2 output.
	SRNQ	0	0	0	DIG	SR latch \overline{Q} output.
	SS1	1	0	I	TTL	SPI slave select input (MSSP1).
	HLVDIN	1	1	I	AN	High/Low-Voltage Detect input.
	AN4	1	1	1	AN	A/D input 4.
RA6/CLKO/OSC2	RA6	0	_	0	DIG	LATA<6> data output; enabled in INTOSC modes when CLKO is no enabled.
		1	—	Ι	TTL	PORTA<6> data input; enabled in INTOSC modes when CLKO is not enabled.
	CLKO	x	—	0	DIG	In RC mode, OSC2 pin outputs CLKOUT which has 1/4 the fre- quency of OSC1 and denotes the instruction cycle rate.
	OSC2	x	_	0	XTAL	Oscillator crystal output; connects to crystal or resonator in Crystal Oscillator mode.
RA7/CLKI/OSC1	RA7	0	_	0	DIG	LATA<7> data output; disabled in external oscillator modes.
		1	—	Ι	TTL	PORTA<7> data input; disabled in external oscillator modes.
	CLKI	x	—	I	AN	External clock source input; always associated with pin function OSC1.
	OSC1	x		Ι	XTAL	Oscillator crystal input or external clock source input ST buffer wher configured in RC mode; CMOS otherwise.

Legend: AN = Analog input or output; TTL = TTL compatible input; HV = High Voltage; OD = Open Drain; XTAL = Crystal; CMOS = CMOS compatible input or output; ST = Schmitt Trigger input with CMOS levels; I²C = Schmitt Trigger input with I²C.

10.5 PORTD Registers

Note:	PORTD is only available on 40-pin and
	44-pin devices.

PORTD is an 8-bit wide, bidirectional port. The corresponding data direction register is TRISD. Setting a TRISD bit (= 1) will make the corresponding PORTD pin an input (i.e., disable the output driver). Clearing a TRISD bit (= 0) will make the corresponding PORTD pin an output (i.e., enable the output driver and put the contents of the output latch on the selected pin).

The Data Latch register (LATD) is also memory mapped. Read-modify-write operations on the LATD register read and write the latched output value for PORTD.

All pins on PORTD are implemented with Schmitt Trigger input buffers. Each pin is individually configurable as an input or output.

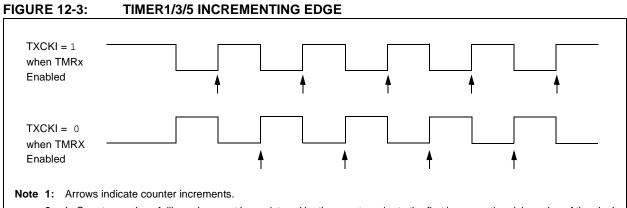
All of the PORTD pins are multiplexed with analog and digital peripheral modules. See Table 10-11.

Note: On a Power-on Reset, these pins are configured as analog inputs.

EXAMPLE 10-4: INITIALIZING PORTD

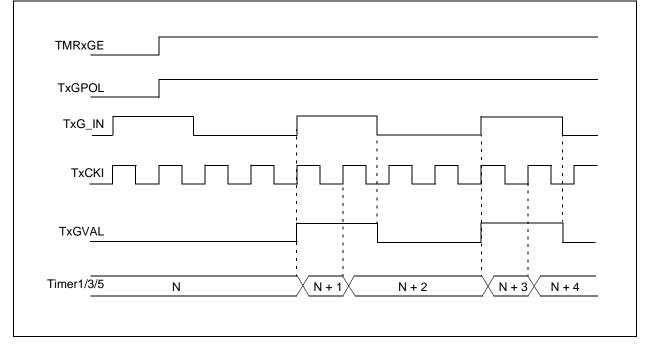
MOVLB CLRF	0xF PORTD	; Set BSR for banked SFRs ; Initialize PORTD by ; clearing output
		; data latches
CLRF	LATD	; Alternate method
		; to clear output
		; data latches
MOVLW	OCFh	; Value used to
		; initialize data
		; direction
MOVWF	TRISD	; Set RD<3:0> as inputs
		; RD<5:4> as outputs
		; RD<7:6> as inputs
MOVLW	30h	; Value used to
		; enable digital inputs
MOVWF	ANSELD	; RD<3:0> dig input enable
		; RC<7:6> dig input enable

10.5.1 PORTD OUTPUT PRIORITY


Each PORTD pin is multiplexed with other functions. The pins, their combined functions and their output priorities are briefly described here. For additional information, refer to the appropriate section in this data sheet.

When multiple outputs are enabled, the actual pin control goes to the peripheral with the higher priority. Table 10-4 lists the PORTD pin functions from the highest to the lowest priority.

Analog input functions, such as ADC, comparator and SR latch inputs, are not shown in the priority lists.


These inputs are active when the I/O pin is set for Analog mode using the ANSELx registers. Digital output functions may control the pin when it is in Analog mode with the priority shown below.

PIC18(L)F2X/4XK22

2: In Counter mode, a falling edge must be registered by the counter prior to the first incrementing rising edge of the clock.

FIGURE 12-4: TIMER1/3/5 GATE ENABLE MODE

ECCP Mode	PxM<1:0>	CCPx/PxA	PxB	PxC	PxD
Single	00	Yes ⁽¹⁾	Yes ⁽¹⁾	Yes ⁽¹⁾	Yes ⁽¹⁾
Half-Bridge	10	Yes	Yes	No	No
Full-Bridge, Forward	01	Yes	Yes	Yes	Yes
Full-Bridge, Reverse	11	Yes	Yes	Yes	Yes

TABLE 14-12: EXAMPLE PIN ASSIGNMENTS FOR VARIOUS PWM ENHANCED MODES

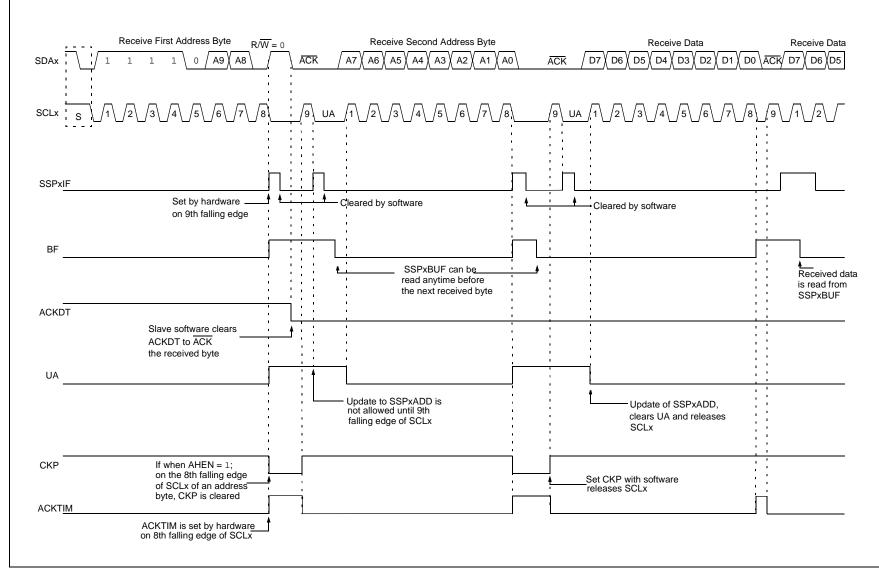

Note 1: PWM Steering enables outputs in Single mode.

FIGURE 14-6: EXAMPLE PWM (ENHANCED MODE) OUTPUT RELATIONSHIPS (ACTIVE-HIGH STATE)

PxM<1:0>	Signal	0 ◀ Pulse Width	PRX+1
		-	── Period ───►
00 (Single Output)	PxA Modulated	 Delay ⁽¹⁾	Delaý ⁽¹⁾
	PxA Modulated		
10 (Half-Bridge)	PxB Modulated	_ ' _ <u>'</u>	
	PxA Active		
(Full-Bridge,	PxB Inactive		
⁰¹ Forward)	PxC Inactive		
	PxD Modulated		
	PxA Inactive		
11 (Full-Bridge,	PxB Modulated		
Reverse)	PxC Active		
	PxD Inactive		

Period = 4 * Tosc * (PRx + 1) * (TMRx Prescale Value)
Pulse Width = Tosc * (CCPRxL<7:0>:CCPxCON<5:4>) * (TMRx Prescale Value)
Delay = 4 * Tosc * (PWMxCON<6:0>)

Note 1: Dead-band delay is programmed using the PWMxCON register (Section 14.4.5 "Programmable Dead-Band Delay Mode").

FIGURE 15-21: I²C SLAVE, 10-BIT ADDRESS, RECEPTION (SEN = 0, AHEN = 1, DHEN = 0)

PIC18(L)F2X/4XK22

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R-0	R-0	R-0						
SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D						
bit 7							bit						
Legend:													
R = Readable	e bit	W = Writable	bit	U = Unimple	emented bit, rea	d as '0'							
-n = Value at	POR	'1' = Bit is se	t	'0' = Bit is cl	eared	x = Bit is unkr	nown						
bit 7	SPEN: Serial Port Enable bit 1 = Serial port enabled (configures RXx/DTx and TXx/CKx pins as serial port pins)												
		port enabled (co port disabled (he		DTx and TXx/0	CKx pins as ser	ial port pins)							
bit 6	RX9: 9-bit F	Receive Enable	bit										
		9-bit reception8-bit reception											
bit 5	SREN: Sing	gle Receive Ena	ble bit										
	Asynchrono	ous mode:											
	Don't care												
		<u>us mode – Maste</u>											
		s single receive es single receive											
		leared after rece		ete.									
	<u>Synchronou</u>	<u>us mode – Slave</u>	<u>)</u>										
	Don't care												
bit 4	CREN: Continuous Receive Enable bit												
	Asynchronous mode:												
	1 = Enables receiver												
	0 = Disables receiver Synchronous mode:												
	<u>Synchronous mode</u> : 1 = Enables continuous receive until enable bit CREN is cleared (CREN overrides SREN)												
	 0 = Disables continuous receive until enable bit CREM is cleared (CREM overhoes SREM) 												
bit 3	ADDEN: Ad	dress Detect E	nable bit										
	Asynchronc	ous mode 9-bit (<u>RX9 = 1)</u> :										
	1 = Enables address detection, enable interrupt and load the receive buffer when RSR<8> is set 0 = Disables address detection, all bytes are received and ninth bit can be used as parity bit Asynchronous mode 8-bit (RX9 = 0):												
	Don't care												
bit 2	FERR: Frar	ning Error bit											
	 1 = Framing error (can be updated by reading RCREGx register and receive next valid byte) 0 = No framing error 												
bit 1	OERR: Ove	errun Error bit											
	1 = Overru 0 = No ove	n error (can be o errun error	cleared by clea	aring bit CREN	1)								
h :+ 0	DYOD . Nint												
bit 0	TAJD. INITI	h bit of Receive	d Data										

REGISTER 16-2: RCSTAX: RECEIVE STATUS AND CONTROL REGISTER

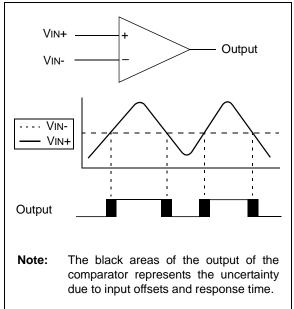
		SYNC = 0, BRGH = 0, BRG16 = 1													
BAUD	Fosc = 8.000 MHz			Fosc = 4.000 MHz			Fosc = 3.6864 MHz			Fosc = 1.000 MHz					
RATE	Actual Rate	% Error	SPBRGHx: SPBRGx (decimal)	Actual Rate	% Error	SPBRGHx: SPBRGx (decimal)	Actual Rate	% Error	SPBRGHx :SPBRGx (decimal)	Actual Rate	% Error	SPBRGHx: SPBRGx (decimal)			
300	299.9	-0.02	1666	300.1	0.04	832	300.0	0.00	767	300.5	0.16	207			
1200	1199	-0.08	416	1202	0.16	207	1200	0.00	191	1202	0.16	51			
2400	2404	0.16	207	2404	0.16	103	2400	0.00	95	2404	0.16	25			
9600	9615	0.16	51	9615	0.16	25	9600	0.00	23	_	_	_			
10417	10417	0.00	47	10417	0.00	23	10473	0.53	21	10417	0.00	5			
19.2k	19.23k	0.16	25	19.23k	0.16	12	19.20k	0.00	11	_	_	_			
57.6k	55556	-3.55	8	—	_	_	57.60k	0.00	3	_	_	_			
115.2k	_	_	_	_	_	_	115.2k	0.00	1	_	_	_			

TABLE 16-5: BAUD RATES FOR ASYNCHRONOUS MODES (CONTINUED)

				SYNC	C = 0, BR	GH = 1, BRG1	6 = 1 or S	'NC = 1, E	3RG16 = 1			
BAUD	D Fosc = 64.000 MHz		Fosc = 18.432 MHz			Fosc = 16.000 MHz			Fos	Fosc = 11.0592 MHz		
RATE	Actual Rate	% Error	SPBRGHx: SPBRGx (decimal)	Actual Rate	% Error	SPBRGHx: SPBRGx (decimal)	Actual Rate	% Error	SPBRGHx :SPBRGx (decimal)	Actual Rate	% Error	SPBRGHx: SPBRGx (decimal)
300	300	0.00	53332	300.0	0.00	15359	300.0	0.00	13332	300.0	0.00	9215
1200	1200	0.00	13332	1200	0.00	3839	1200.1	0.01	3332	1200	0.00	2303
2400	2400	0.00	6666	2400	0.00	1919	2399.5	-0.02	1666	2400	0.00	1151
9600	9598.1	-0.02	1666	9600	0.00	479	9592	-0.08	416	9600	0.00	287
10417	10417	0.00	1535	10425	0.08	441	10417	0.00	383	10433	0.16	264
19.2k	19.21k	0.04	832	19.20k	0.00	239	19.23k	0.16	207	19.20k	0.00	143
57.6k	57.55k	-0.08	277	57.60k	0.00	79	57.97k	0.64	68	57.60k	0.00	47
115.2k	115.11k	-0.08	138	115.2k	0.00	39	114.29k	-0.79	34	115.2k	0.00	23

				SYNC	C = 0, BR	GH = 1, BRG1	6 = 1 or S	/NC = 1, I	BRG16 = 1			
BAUD	Fosc = 8.000 MHz		Fos	sc = 4.00	0 MHz	Fosc = 3.6864 MHz			Fosc = 1.000 MHz			
RATE	Actual Rate	% Error	SPBRGHx: SPBRGx (decimal)	Actual Rate	% Error	SPBRGHx: SPBRGx (decimal)	Actual Rate	% Error	SPBRGHx :SPBRGx (decimal)	Actual Rate	% Error	SPBRGHx: SPBRGx (decimal)
300	300.0	0.00	6666	300.0	0.01	3332	300.0	0.00	3071	300.1	0.04	832
1200	1200	-0.02	1666	1200	0.04	832	1200	0.00	767	1202	0.16	207
2400	2401	0.04	832	2398	0.08	416	2400	0.00	383	2404	0.16	103
9600	9615	0.16	207	9615	0.16	103	9600	0.00	95	9615	0.16	25
10417	10417	0.00	191	10417	0.00	95	10473	0.53	87	10417	0.00	23
19.2k	19.23k	0.16	103	19.23k	0.16	51	19.20k	0.00	47	19.23k	0.16	12
57.6k	57.14k	-0.79	34	58.82k	2.12	16	57.60k	0.00	15	_	_	—
115.2k	117.6k	2.12	16	111.1k	-3.55	8	115.2k	0.00	7		_	—

18.0 COMPARATOR MODULE


Comparators are used to interface analog circuits to a digital circuit by comparing two analog voltages and providing a digital indication of their relative magnitudes. The comparators are very useful mixed signal building blocks because they provide analog functionality independent of the program execution. The analog comparator module includes the following features:

- Independent comparator control
- Programmable input selection
- Comparator output is available internally/externally
- Programmable output polarity
- Interrupt-on-change
- Wake-up from Sleep
- Programmable Speed/Power optimization
- PWM shutdown
- · Programmable and fixed voltage reference
- Selectable Hysteresis

18.1 Comparator Overview

A single comparator is shown in Figure 18-1 along with the relationship between the analog input levels and the digital output. When the analog voltage at VIN+ is less than the analog voltage at VIN-, the output of the comparator is a digital low level. When the analog voltage at VIN+ is greater than the analog voltage at VIN-, the output of the comparator is a digital high level.

FIGURE 18-1: SINGLE COMPARATOR

U-0	U-0	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1
_	—		WDTI	PS<3:0>		WDTEN<1:0>	
bit 7							bit
Legend:							
R = Readable	e bit	P = Programma	ble bit	U = Unimpleme	nted bit, read as '	0'	
-n = Value wh	nen device is unprogra	ammed		x = Bit is unknow	wn		
bit 7-6	Unimplemented	I: Read as '0'					
bit 5-2	WDTPS<3:0>: V	Vatchdog Timer	Postscale Selec	t bits			
	1111 = 1:32,768	•					
	1110 = 1:16,384	Ļ					
	1101 = 1:8,192						
	1100 = 1:4,096						
	1011 = 1:2,048						
	1010 = 1:1,024						
	1001 = 1:512						
	1000 = 1:256						
	0111 = 1:128						
	0110 = 1:64						
	0101 = 1:32						
	0100 = 1:16						
	0011 = 1:8						
	0010 = 1:4						
	0001 = 1:2						
	0000 = 1:1						
bit 1-0	WDTEN<1:0>: \	Vatchdog Timer	Enable bits				
	11 = WDT enabl	led in hardware;	SWDTEN bit dis	abled			
	10 = WDT control						
	01 = WDT enab	led when device	is active, disabl	ed when device is	in Sleep; SWDTE	EN bit disabled	
		led in hardware;			1,7 -		

REGISTER 24-3: CONFIG2H: CONFIGURATION REGISTER 2 HIGH

27.0 ELECTRICAL SPECIFICATIONS

Absolute Maximum Ratings (†)

Ambient temperature under bias	40°C to +125°C
Storage temperature	65°C to +150°C
Voltage on any pin with respect to Vss (except VDD, and MCLR)	0.3V to (VDD + 0.3V)
Voltage on VDD with respect to VSS	
PIC18LF24K22	-0.3V to +4.5V
PIC18(L)F26K22	-0.3V to +6.5V
Voltage on MCLR with respect to Vss (Note 2)	0V to +11.0V
Total power dissipation (Note 1)	1.0W
Maximum current out of Vss pin (-40°C to +85°C)	300 mA
Maximum current out of Vss pin (+85°C to +125°C)	125 mA
Maximum current into VDD pin (-40°C to +85°C)	200 mA
Maximum current into VDD pin (+85°C to +125°C)	85 mA
Input clamp current, Iικ (Vi < 0 or Vi > VDD)	±20 mA
Output clamp current, loк (Vo < 0 or Vo > VDD)	±20 mA
Maximum output current sunk by any I/O pin	25 mA
Maximum output current sourced by any I/O pin	25 mA
Maximum current sunk by all ports (-40°C to +85°C)	200 mA
Maximum current sunk by all ports (+85°C to +125°C)	110 mA
Maximum current sourced by all ports (-40°C to +85°C)	185 mA
Maximum current sourced by all ports (+85°C to +125°C)	70 mA

- **Note 1:** Power dissipation is calculated as follows: Pdis = VDD x {IDD $-\sum$ IOH} + \sum {(VDD - VOH) x IOH} + \sum (VOL x IOL)
 - 2: Voltage spikes below Vss at the MCLR/VPP/RE3 pin, inducing currents greater than 80 mA, may cause latch-up. Thus, a series resistor of 50-100Ω should be used when applying a "low" level to the MCLR/VPP/ RE3 pin, rather than pulling this pin directly to Vss.

† NOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

27.4 DC Characteristics: RC Idle Supply Current, PIC18(L)F2X/4XK22

PIC18LF2X/4XK22		Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +125^{\circ}C$								
PIC18F2X/4XK22		Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +125^{\circ}C$								
Param No.	Device Characteristics	Тур	Max	Units		5				
D045	Supply Current (IDD) ^{(1),(2)}	0.5	18	μΑ	-40°C	VDD = 1.8V	Fosc = 31 kHz			
		0.6	18	μΑ	+25°C		(RC_IDLE mode, LFINTOSC source)			
		0.7	—	μΑ	+60°C					
		0.75	20	μΑ	+85°C					
		2.3	22	μΑ	+125°C					
D046		1.1	20	μΑ	-40°C	VDD = 3.0V				
		1.2	20	μΑ	+25°C					
		1.3	—	μΑ	+60°C					
		1.4	22	μΑ	+85°C					
		3.2	25	μΑ	+125°C					
D047		17	30	μΑ	-40°C	VDD = 2.3V	Fosc = 31 kHz (RC_IDLE mode, LFINTOSC source)			
		13	30	μΑ	+25°C					
		14	30	μΑ	+85°C					
		15	45	μΑ	+125°C					
D048		19	35	μΑ	-40°C	VDD = 3.0V				
		15	35	μΑ	+25°C					
		16	35	μΑ	+85°C					
		17	50	μΑ	+125°C					
D049		21	40	μΑ	-40°C	VDD = 5.0V				
		15	40	μΑ	+25°C					
		16	40	μΑ	+85°C					
		18	60	μΑ	+125°C					
D050		0.11	0.20	mA	-40°C to +125°C	VDD = 1.8V	Fosc = 500 kHz			
D051		0.12	0.25	mA	-40°C to +125°C	VDD = 3.0V	(RC_IDLE mode, MFINTOSC source)			
D052		0.14	0.21	mA	-40°C to +125°C	VDD = 2.3V	Fosc = 500 kHz			
D053		0.15	0.25	mA	-40°C to +125°C	VDD = 3.0V	(RC_IDLE mode, MFINTOSC source)			
D054		0.20	0.31	mA	-40°C to +125°C	VDD = 5.0V				

Note 1: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on the current consumption.

Test condition: All Peripheral Module Control bits in PMD0, PMD1 and PMD2 set to '1'.

2: The test conditions for all IDD measurements in active operation mode are:

All I/O pins set as outputs driven to Vss;

 $\overline{MCLR} = VDD;$

OSC1 = external square wave, from rail-to-rail (PRI_RUN and PRI_IDLE only).

PIC18LF2X/4XK22		Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +125^{\circ}C$								
PIC18F2X/4XK22		Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +125^{\circ}C$								
Param No.	Device Characteristics	Тур	Max	Units	Conditions					
D055		0.25	0.40	mA	-40°C to +125°C	Vdd = 1.8V	Fosc = 1 MHz			
D056		0.35	0.50	mA	-40°C to +125°C	VDD = 3.0V	(RC_IDLE mode, HFINTOSC source)			
D057		0.30	0.45	mA	-40°C to +125°C	VDD = 2.3V	Fosc = 1 MHz			
D058		0.40	0.50	mA	-40°C to +125°C	VDD = 3.0V	(RC_IDLE mode, HFINTOSC source)			
D059		0.45	0.60	mA	-40°C to +125°C	VDD = 5.0V				
D060		0.50	0.7	mA	-40°C to +125°C	VDD = 1.8V	Fosc = 16 MHz			
D061		0.80	1.1	mA	-40°C to +125°C	VDD = 3.0V	(RC_IDLE mode, HFINTOSC source)			
D062		0.65	1.0	mA	-40°C to +125°C	VDD = 2.3V	Fosc = 16 MHz			
D063		0.80	1.1	mA	-40°C to +125°C	VDD = 3.0V	(RC_IDLE mode, HFINTOSC source)			
D064		0.95	1.2	mA	-40°C to +125°C	VDD = 5.0V				
D066		2.5	3.5	mA	-40°C to +125°C	VDD = 3.0V	Fosc = 64 MHz (RC_IDLE mode, HFINTOSC + PLL source)			
D068		2.5	3.5	mA	-40°C to +125°C	VDD = 3.0V	Fosc = 64 MHz			
D069		3.0	4.5	mA	-40°C to +125°C	VDD = 5.0V	(RC_IDLE mode, HFINTOSC + PLL source)			

27.4 DC Characteristics: RC Idle Supply Current, PIC18(L)F2X/4XK22 (Continued)

Note 1: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on the current consumption.

Test condition: All Peripheral Module Control bits in PMD0, PMD1 and PMD2 set to '1'.

2: The test conditions for all IDD measurements in active operation mode are:

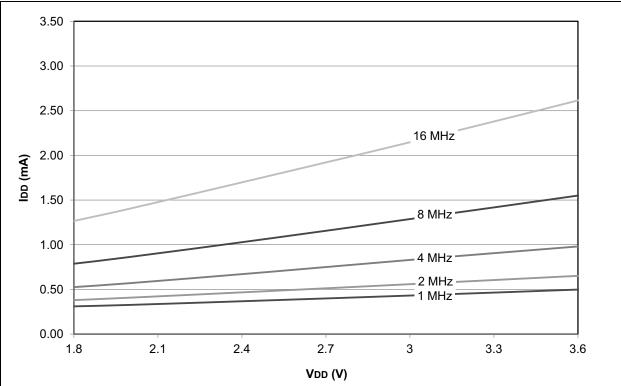
All I/O pins set as outputs driven to Vss;

OSC1 = external square wave, from rail-to-rail (PRI_RUN and PRI_IDLE only).

TABLE 27-3: FIXED VOLTAGE REFERENCE (FVR) SPECIFICATIONS

Param No.	Sym	Characteristics	Min	Тур	Max	Units	Comments		
VR01	Vrout	VR voltage output to ADC	0.973	1.024	1.085	V	1x output, VDD \ge 2.5V		
			1.946	2.048	2.171	V	$2x$ output, VDD $\ge 2.5V$		
			3.891	4.096	4.342	V	$4x$ output, VDD \ge 4.75V (PIC18F2X/4XK22)		
VR02 \	VROUT		0.942	1.024	1.096	V	$1x$ output, VDD $\ge 2.5V$		
		modules	1.884	2.048	2.191	V	$2x$ output, VDD $\ge 2.5V$		
			3.768	4.096	4.383	V	$4x$ output, VDD \ge 4.75V (PIC18F2X/4XK22)		
VR04*	TSTABLE	Settling Time	_	25	100	μs	0 to 125°C		

* These parameters are characterized but not tested.


TABLE 27-4: CHARGE TIME MEASUREMENT UNIT (CTMU) SPECIFICATIONS

Operating Conditions: 1.8V < VDD < 5.5V, -40°C < TA < +125°C (unless otherwise stated)								
Param No.	Sym	Characteristics	Min	Typ ⁽¹⁾	Max	Units	Comments	
CT01	Ιουτ1	CTMU Current Source, Base Range	_	0.55	_	μA	IRNG<1:0>=01	
CT02	Ιουτ2	CTMU Current Source, 10X Range		5.5		μA	IRNG<1:0>=10	
CT03	Ιουτ3	CTMU Current Source, 100X Range		55		μA	IRNG<1:0>=11 VDD ≥ 3.0V	

Note 1: Nominal value at center point of current trim range (CTMUICON<7:2>=000000).

PIC18(L)F2X/4XK22

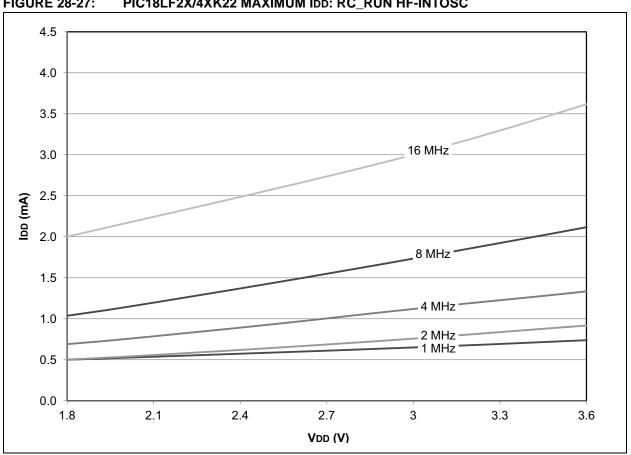
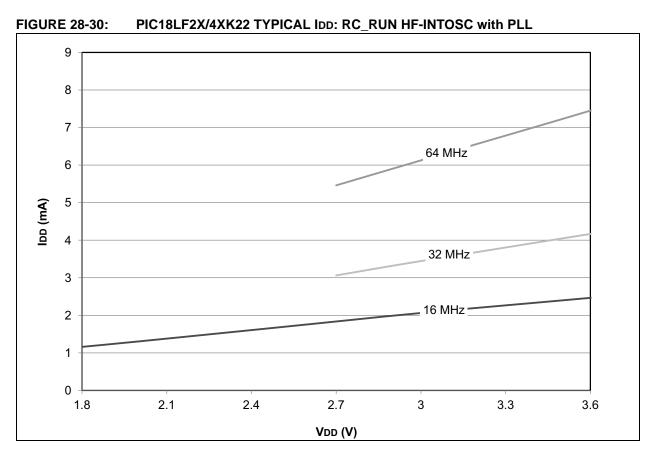
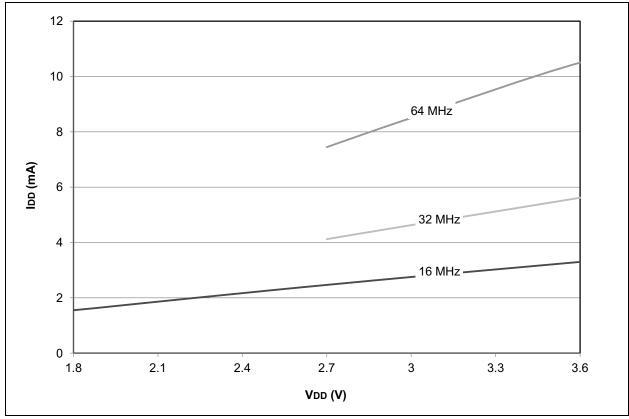
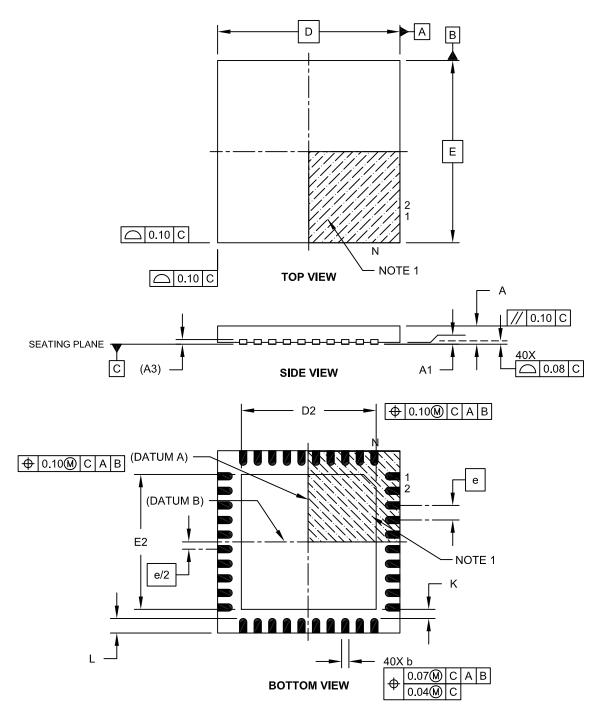


FIGURE 28-27: PIC18LF2X/4XK22 MAXIMUM IDD: RC_RUN HF-INTOSC

© 2010-2016 Microchip Technology Inc.


FIGURE 28-31: PIC18LF2X/4XK22 MAXIMUM IDD: RC_RUN HF-INTOSC with PLL

© 2010-2016 Microchip Technology Inc.

40-Lead Ultra Thin Plastic Quad Flat, No Lead Package (MV) – 5x5x0.5 mm Body [UQFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-156A Sheet 1 of 2

APPENDIX A: REVISION HISTORY

Revision A (February 2010)

Initial release of this document.

Revision B (April 2010)

Updated Figures 2-4, 12-1 and 18-2; Updated Registers 2-2, 10-4, 10-5, 10-7, 17-2, 24-1 and 24-5; Updated Sections 10.3.2, 18.8.4, Synchronizing Comparator Output to Timer1; Updated Sections 27.2, 27-3, 27-4, 27-5, 27-6, 27-7 and 27-9; Updated Tables 27-2, 27-3, 27-4 and 27-7; Other minor corrections.

Revision C (July 2010)

Added 40-pin UQFN diagram; Updated Table 2 and Table 1-3 to add 40-UQFN column; Updated Table 1-1 to add "40-pin UQFN"; Updated Figure 27-1; Added Figure 27-2; Updated Table 27-6; Added 40-Lead UQFN Package Marking Information and Details; Updated Packaging Information section; Updated Table B-1 to add "40-pin UQFN"; Updated Product Identification System section; Other minor corrections.

Revision D (November 2010)

Updated the data sheet to new format; Revised Tables 1-2, 1-3, 5-2, 10-1, 10-5, 10-6, 10-8, 10-9, 10-11, 10-14, 14-13 and Register 14-5; Updated the Electrical Characteristics section.

Revision E (January 2012)

Updated Section 2.5.2, EC Mode; Updated Table 3-2; Removed Table 3-3; Updated Section 14.4.8; Removed CM2CON Register; Updated the Electrical Characteristics section; Updated the Packaging Information section; Updated the Char. Data section; Other minor corrections.

Revision F (May 2012)

Minor corrections; release of Final data sheet.

Revision G (August 2016)

Minor corrections to Tables 1-2, 17-1, 27-11, 27-14, 27-22, Section 2.6.1, Example 7-3, Registers 9-4, 9-5, 9-11, 14-5, Figures 10-1, 17-3, 17-4, 27-23; Updated Packaging Information Section.