

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	64MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	24
Program Memory Size	64KB (32K x 16)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	3.8K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 19x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SSOP (0.209", 5.30mm Width)
Supplier Device Package	28-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18lf26k22t-i-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 3: PIC18(L)F4XK22 PIN SUMMARY (CONTINUED)

40-PDIP	40-UQFN	44-TQFP	44-QFN	0/1	Analog	Comparator	СТМИ	SR Latch	Reference	(E)CCP	EUSART	MSSP	Timers	Interrupts	dn-lluq	Basic
9	24	26	26	RE1	AN6					P3B						
10	25	27	27	RE2	AN7					CCP5						
1	16	18	18	RE3											Y	MCLR VPP
11, 32	7, 26	7, 28	7,8 28, 29	Vdd												Vdd
12, 31	6, 27	6, 29	6, 30, 31	Vss												Vss
_	-	12, 13 33, 34	13	NC												

CCP2 multiplexed in fuses. T3CKI multiplexed in fuses. Note 1:

2:

3: CCP3/P3A multiplexed in fuses.

4: P2B multiplexed in fuses.

TABLE 1-3: PIC18(L)F4XK22 PINOUT I/O DESCRIPTIONS (CONTINUED)

	Pin Number		Din Nome	Pin	Buffer	Description		
PDIP	TQFP	QFN	UQFN	Pin Name	Туре	Туре	Description	
7	24	24	22	RA5/C2OUT/SRNQ/SS1/H	ILVDIN/A	N4		
				RA5	I/O	TTL	Digital I/O.	
				C2OUT	0	CMOS	Comparator C2 output.	
				SRNQ	0	TTL	SR latch \overline{Q} output.	
				SS1	I	TTL	SPI slave select input (MSSP1).	
				HLVDIN	I	Analog	High/Low-Voltage Detect input.	
				AN4	Ι	Analog	Analog input 4.	
14	31	33	29	RA6/CLKO/OSC2		n		
				RA6	I/O	TTL	Digital I/O.	
				CLKO	CLKO O — In RC mode, OSC2 pin output has 1/4 the frequency of OS instruction cycle rate.		In RC mode, OSC2 pin outputs CLKOUT which has 1/4 the frequency of OSC1 and denotes the instruction cycle rate.	
				OSC2	0	—	Oscillator crystal output. Connects to crystal or resonator in Crystal Oscillator mode.	
13	30	32	28	RA7/CLKI/OSC1	A7/CLKI/OSC1			
				RA7	I/O	TTL	Digital I/O.	
				CLKI	I	CMOS	External clock source input. Always associated with pin function OSC1.	
				OSC1	I	ST	Oscillator crystal input or external clock source input ST buffer when configured in RC mode; CMOS otherwise.	
33	8	9	8	RB0/INT0/FLT0/SRI/AN12				
				RB0	I/O	TTL	Digital I/O.	
				INT0	I	ST	External interrupt 0.	
				FLT0	I	ST	PWM Fault input for ECCP Auto-Shutdown.	
				SRI	I	ST	SR latch input.	
				AN12	Ι	Analog	Analog input 12.	
34	9	10	9	RB1/INT1/C12IN3-/AN10				
				RB1	I/O	TTL	Digital I/O.	
				INT1	I	ST	External interrupt 1.	
				C12IN3-	I	Analog	Comparators C1 and C2 inverting input.	
				AN10	Ι	Analog	Analog input 10.	
35	10	11	10	RB2/INT2/CTED1/AN8			1	
				RB2	I/O	TTL	Digital I/O.	
				INT2	I	ST	External interrupt 2.	
				CTED1	I	ST	CTMU Edge 1 input.	
				AN8	Ι	Analog	Analog input 8.	
36	11	12	11	RB3/CTED2/P2A/CCP2/C	12IN2-/AI	19		
				RB3	I/O	TTL	Digital I/O.	
				CTED2		ST	CIMU Edge 2 input.	
				P2A ⁽²⁾	0	CMOS	Enhanced CCP2 PWM output.	
				CCP2 ⁽²⁾	I/O	ST	Capture 2 input/Compare 2 output/PWM 2 output.	
				C12IN2-		Analog	Comparators C1 and C2 inverting input.	
				AN9	I	Analog	Analog input 9.	

Legend: TTL = TTL compatible input CMOS = CMOS compatible input or output; ST = Schmitt Trigger input with CMOS levels; I = Input; O = Output; P = Power.

Note 1: Default pin assignment for P2B, T3CKI, CCP3/P3A and CCP2/P2A when Configuration bits PB2MX, T3CMX, CCP3MX and CCP2MX are set.

2: Alternate pin assignment for P2B, T3CKI, CCP3/P3A and CCP2/P2A when Configuration bits PB2MX, T3CMX, CCP3MX and CCP2MX are clear.

2.9 Effects of Power-Managed Modes on the Various Clock Sources

For more information about the modes discussed in this section see **Section 3.0** "**Power-Managed Modes**". A quick reference list is also available in Table 3-1.

When PRI_IDLE mode is selected, the designated primary oscillator continues to run without interruption. For all other power-managed modes, the oscillator using the OSC1 pin is disabled. The OSC1 pin (and OSC2 pin, if used by the oscillator) will stop oscillating.

In secondary clock modes (SEC_RUN and SEC_IDLE), the secondary oscillator (SOSC) is operating and providing the device clock. The secondary oscillator may also run in all power-managed modes if required to clock Timer1, Timer3 or Timer5.

In internal oscillator modes (INTOSC_RUN and INTOSC_IDLE), the internal oscillator block provides the device clock source. The 31.25 kHz LFINTOSC output can be used directly to provide the clock and may be enabled to support various special features, regardless of the power-managed mode (see Section 24.3 "Watchdog Timer (WDT)", Section 2.12 "Two-Speed Clock Start-up Mode" and Section 2.13 "Fail-Safe Clock Monitor" for more information on WDT, Fail-Safe Clock Monitor and Two-Speed Start-up). The HFINTOSC and MFINTOSC outputs may be used directly to clock the device or may be divided down by the postscaler. The HFINTOSC and MFINTOSC outputs are disabled when the clock is provided directly from the LFINTOSC output.

When the Sleep mode is selected, all clock sources are stopped. Since all the transistor switching currents have been stopped, Sleep mode achieves the lowest current consumption of the device (only leakage currents).

Enabling any on-chip feature that will operate during Sleep will increase the current consumed during Sleep. The LFINTOSC is required to support WDT operation. Other features may be operating that do not require a device clock source (i.e., SSP slave, PSP, INTn pins and others). Peripherals that may add significant current consumption are listed in Section 27.8 "DC Characteristics: Input/Output Characteristics, PIC18(L)F2X/4XK22".

2.10 Power-up Delays

Power-up delays are controlled by two timers, so that no external Reset circuitry is required for most applications. The delays ensure that the device is kept in Reset until the device power supply is stable under normal circumstances and the primary clock is operating and stable. For additional information on power-up delays, see **Section 4.6** "**Device Reset Timers**".

The first timer is the Power-up Timer (PWRT), which provides a fixed delay on power-up. It is enabled by clearing (= 0) the PWRTEN Configuration bit.

The second timer is the Oscillator Start-up Timer (OST), intended to keep the chip in Reset until the crystal oscillator is stable (LP, XT and HS modes). The OST does this by counting 1024 oscillator cycles before allowing the oscillator to clock the device.

When the PLL is enabled with external oscillator modes, the device is kept in Reset for an additional 2 ms, following the OST delay, so the PLL can lock to the incoming clock frequency.

There is a delay of interval TCSD, following POR, while the controller becomes ready to execute instructions. This delay runs concurrently with any other delays. This may be the only delay that occurs when any of the EC, RC or INTIOSC modes are used as the primary clock source.

When the HFINTOSC is selected as the primary clock, the main system clock can be delayed until the HFINTOSC is stable. This is user selectable by the HFOFST bit of the CONFIG3H Configuration register. When the HFOFST bit is cleared, the main system clock is delayed until the HFINTOSC is stable. When the HFOFST bit is set, the main system clock starts immediately.

In either case, the HFIOFS bit of the OSCCON register can be read to determine whether the HFINTOSC is operating and stable.

EXAMPLE 6-3:	WRITING T	O FLASH PROGRAM M	EMORY
	MOVLW	D'64′	; number of bytes in erase block
	MOVWF	COUNTER	-
	MOVLW	BUFFER_ADDR_HIGH	; point to buffer
	MOVWF	FSROH	
	MOVLW	BUFFER_ADDR_LOW	
	MOVWF	FSROL	
	MOVLW	CODE_ADDR_UPPER	; Load TBLPTR with the base
	MOVWF	TBLPTRU	; address of the memory block
	MOVLW	CODE_ADDR_HIGH	
	MOVWF	TBLPTRH	
	MOVLW	CODE_ADDR_LOW	
DEAD DIOGU	MOVWF	TBLDTRL	
READ_BLOCK	+ * תם זמיד		· road into TAPIAT and inc
	IBLRD"+	ייא איז איז א	; read Into TABLAI, and Inc
	MOVWE	POSTINCO	; store data
	DECESZ	COUNTER	; done?
	BRA	READ BLOCK	; repeat
MODIFY WORD			
	MOVLW	BUFFER ADDR HIGH	; point to buffer
	MOVWF	FSROH	-
	MOVLW	BUFFER_ADDR_LOW	
	MOVWF	FSROL	
	MOVLW	NEW_DATA_LOW	; update buffer word
	MOVWF	POSTINC0	
	MOVLW	NEW_DATA_HIGH	
	MOVWF	INDF0	
ERASE_BLOCK			
	MOVLW	CODE_ADDR_UPPER	; load TBLPTR with the base
	MOVWF	TBLPTRU	; address of the memory block
	MOVLW	CODE_ADDR_HIGH	
	MOVWF'	TBLPTRH	
	MOVLW	CODE_ADDR_LOW	
	MOVWF	IBLPIRL FEGONI FEDOD	: noint to Elach program moments
	BCF	FECON1 CEGS	; access Elash program memory
	BSF	EECON1 WREN	; enable write to memory
	BSF	EECON1, FREE	; enable Erase operation
	BCF	INTCON, GIE	; disable interrupts
	MOVLW	55h	*
Required	MOVWF	EECON2	; write 55h
Sequence	MOVLW	0AAh	
	MOVWF	EECON2	; write OAAh
	BSF	EECON1, WR	; start erase (CPU stall)
	BSF	INTCON, GIE	; re-enable interrupts
	TBLRD*-		; dummy read decrement
	MOVLW	BUFFER_ADDR_HIGH	; point to buffer
	MOVWF	FSROH	
	MOVLW	BUFFER_ADDR_LOW	
	MOVWF	FSROL	
WRITE_BUFFER_BACK	A MOUT W		·
		COINTED COINTED	, number of bytes in notaing register
	MOVWF	COUNTER D/64//DlockSize	, number of write blocks in 64 butes
	MULIME	COUNTERS	, number of wire blocks in 64 bytes
שפוקב פעקב ה∖ הסו	EGS	COULTERS	
"WTID_DIID_IO_HKI	TVOM	POSTINCO. W	; get low byte of buffer data
	MOVWF	TABLAT	; present data to table latch
	TBLWT+*		; write data, perform a short write
			; to internal TBLWT holding register

7.6 Operation During Code-Protect

Data EEPROM memory has its own code-protect bits in Configuration Words. External read and write operations are disabled if code protection is enabled.

The microcontroller itself can both read and write to the internal data EEPROM, regardless of the state of the code-protect Configuration bit. Refer to Section 24.0 "Special Features of the CPU" for additional information.

7.7 Protection Against Spurious Write

There are conditions when the user may not want to write to the data EEPROM memory. To protect against spurious EEPROM writes, various mechanisms have been implemented. On power-up, the WREN bit is cleared. In addition, writes to the EEPROM are blocked during the Power-up Timer period (TPWRT). The write initiate sequence and the WREN bit together help prevent an accidental write during brown-out, power glitch or software malfunction.

7.8 Using the Data EEPROM

The data EEPROM is a high-endurance, byte addressable array that has been optimized for the storage of frequently changing information (e.g., program variables or other data that are updated often). When variables in one section change frequently, while variables in another section do not change, it is possible to exceed the total number of write cycles to the EEPROM without exceeding the total number of write cycles to a single byte. Refer to the Data EEPROM Memory parameters in **Section 27.0** "**Electrical Specifications**" for write cycle limits. If this is the case, then an array refresh must be performed. For this reason, variables that change infrequently (such as constants, IDs, calibration, etc.) should be stored in Flash program memory.

A simple data EEPROM refresh routine is shown in Example 7-3.

Note: If data EEPROM is only used to store constants and/or data that changes rarely, an array refresh is likely not required. See specification.

	CLRF	EEADR	;	Start at address 0
	CLRF	EEADRH	;	if > 256 bytes EEPROM
	BCF	EECON1, CFGS	;	Set for memory
	BCF	EECON1, EEPGD	;	Set for Data EEPROM
	BCF	INTCON, GIE	;	Disable interrupts
	BSF	EECON1, WREN	;	Enable writes
Loop			;	Loop to refresh array
	BSF	EECON1, RD	;	Read current address
	MOVLW	55h	;	
	MOVWF	EECON2	;	Write 55h
	MOVLW	0AAh	;	
	MOVWF	EECON2	;	Write OAAh
	BSF	EECON1, WR	;	Set WR bit to begin write
	BTFSC	EECON1, WR	;	Wait for write to complete
	BRA	\$-2		
	INCFSZ	EEADR, F	;	Increment address
	BRA	LOOP	;	Not zero, do it again
	INCFSZ	EEADRH, F	;	if > 256 bytes, Increment address
	BRA	LOOP	;	if > 256 bytes, Not zero, do it again
	BCF	EECON1, WREN	;	Disable writes
	BSF	INTCON, GIE	;	Enable interrupts

EXAMPLE 7-3: DATA EEPROM REFRESH ROUTINE

15.2 SPI Mode Overview

The Serial Peripheral Interface (SPI) bus is a synchronous serial data communication bus that operates in Full-Duplex mode. Devices communicate in a master/slave environment where the master device initiates the communication. A slave device is controlled through a chip select known as Slave Select.

The SPI bus specifies four signal connections:

- Serial Clock (SCKx)
- Serial Data Out (SDOx)
- Serial Data In (SDIx)
- Slave Select (SSx)

Figure 15-1 shows the block diagram of the MSSPx module when operating in SPI Mode.

The SPI bus operates with a single master device and one or more slave devices. When multiple slave devices are used, an independent Slave Select connection is required from the master device to each slave device.

Figure 15-4 shows a typical connection between a master device and multiple slave devices.

The master selects only one slave at a time. Most slave devices have tri-state outputs so their output signal appears disconnected from the bus when they are not selected.

Transmissions involve two shift registers, eight bits in size, one in the master and one in the slave. With either the master or the slave device, data is always shifted out one bit at a time, with the Most Significant bit (MSb) shifted out first. At the same time, a new Least Significant bit (LSb) is shifted into the same register.

Figure 15-5 shows a typical connection between two processors configured as master and slave devices.

Data is shifted out of both shift registers on the programmed clock edge and latched on the opposite edge of the clock.

The master device transmits information out on its SDOx output pin which is connected to, and received by, the slave's SDIx input pin. The slave device transmits information out on its SDOx output pin, which is connected to, and received by, the master's SDIx input pin.

To begin communication, the master device first sends out the clock signal. Both the master and the slave devices should be configured for the same clock polarity.

The master device starts a transmission by sending out the MSb from its shift register. The slave device reads this bit from that same line and saves it into the LSb position of its shift register. During each SPI clock cycle, a full-duplex data transmission occurs. This means that at the same time, the slave device is sending out the MSb from its shift register and the master device is reading this bit from that same line and saving it as the LSb of its shift register.

After 8 bits have been shifted out, the master and slave have exchanged register values.

If there is more data to exchange, the shift registers are loaded with new data and the process repeats itself.

Whether the data is meaningful or not (dummy data), depends on the application software. This leads to three scenarios for data transmission:

- Master sends useful data and slave sends dummy data.
- Master sends useful data and slave sends useful data.
- Master sends dummy data and slave sends useful data.

Transmissions may involve any number of clock cycles. When there is no more data to be transmitted, the master stops sending the clock signal and it deselects the slave.

Every slave device connected to the bus that has not been selected through its slave select line must disregard the clock and transmission signals and must not transmit out any data of its own.

FIGURE 15-22: I²C SLAVE, 10-BIT ADDRESS, TRANSMISSION (SEN = 0, AHEN = 0, DHEN = 0)

PIC18(L)F2X/4XK22

15.6.8 ACKNOWLEDGE SEQUENCE TIMING

An Acknowledge sequence is enabled by setting the Acknowledge Sequence Enable bit, ACKEN, of the SSPxCON2 register. When this bit is set, the SCLx pin is pulled low and the contents of the Acknowledge data bit are presented on the SDAx pin. If the user wishes to generate an Acknowledge, then the ACKDT bit should be cleared. If not, the user should set the ACKDT bit before starting an Acknowledge sequence. The Baud Rate Generator then counts for one rollover period (TBRG) and the SCLx pin is deasserted (pulled high). When the SCLx pin is sampled high (clock arbitration), the Baud Rate Generator counts for TBRG. The SCLx pin is then pulled low. Following this, the ACKEN bit is automatically cleared, the Baud Rate Generator is turned off and the MSSPx module then goes into Idle mode (Figure 15-30).

15.6.8.1 WCOL Status Flag

If the user writes the SSPxBUF when an Acknowledge sequence is in progress, then WCOL is set and the contents of the buffer are unchanged (the write does not occur).

15.6.9 STOP CONDITION TIMING

A Stop bit is asserted on the SDAx pin at the end of a receive/transmit by setting the Stop Sequence Enable bit, PEN, of the SSPxCON2 register. At the end of a receive/transmit, the SCLx line is held low after the falling edge of the ninth clock. When the PEN bit is set, the master will assert the SDAx line low. When the SDAx line is sampled low, the Baud Rate Generator is reloaded and counts down to '0'. When the Baud Rate Generator times out, the SCLx pin will be brought high and one TBRG (Baud Rate Generator rollover count) later, the SDAx pin will be deasserted. When the SDAx pin is sampled high while SCLx is high, the P bit of the SSPxSTAT register is set. A TBRG later, the PEN bit is cleared and the SSPxIF bit is set (Figure 15-31).

15.6.9.1 WCOL Status Flag

If the user writes the SSPxBUF when a Stop sequence is in progress, then the WCOL bit is set and the contents of the buffer are unchanged (the write does not occur).

FIGURE 15-30: ACKNOWLEDGE SEQUENCE WAVEFORM

15.6.13 MULTI -MASTER COMMUNICATION, BUS COLLISION AND BUS ARBITRATION

Multi-Master mode support is achieved by bus arbitration. When the master outputs address/data bits onto the SDAx pin, arbitration takes place when the master outputs a '1' on SDAx, by letting SDAx float high and another master asserts a '0'. When the SCLx pin floats high, data should be stable. If the expected data on SDAx is a '1' and the data sampled on the SDAx pin is '0', then a bus collision has taken place. The master will set the Bus Collision Interrupt Flag, BCLxIF, and reset the I²C port to its Idle state (Figure 15-32).

If a transmit was in progress when the bus collision occurred, the transmission is halted, the BF flag is cleared, the SDAx and SCLx lines are deasserted and the SSPxBUF can be written to. When the user services the bus collision Interrupt Service Routine and if the I^2C bus is free, the user can resume communication by asserting a Start condition.

If a Start, Repeated Start, Stop or Acknowledge condition was in progress when the bus collision occurred, the condition is aborted, the SDAx and SCLx lines are deasserted and the respective control bits in the SSPxCON2 register are cleared. When the user services the bus collision Interrupt Service Routine and if the I^2C bus is free, the user can resume communication by asserting a Start condition.

The master will continue to monitor the SDAx and SCLx pins. If a Stop condition occurs, the SSPxIF bit will be set.

A write to the SSPxBUF will start the transmission of data at the first data bit, regardless of where the transmitter left off when the bus collision occurred.

In Multi-Master mode, the interrupt generation on the detection of Start and Stop conditions allows the determination of when the bus is free. Control of the l^2C bus can be taken when the P bit is set in the SSPxSTAT register, or the bus is Idle and the S and P bits are cleared.

FIGURE 16-2: EUSART RECEIVE BLOCK DIAGRAM

The operation of the EUSART module is controlled through three registers:

- Transmit Status and Control (TXSTAx)
- Receive Status and Control (RCSTAx)
- Baud Rate Control (BAUDCONx)

These registers are detailed in Register 16-1, Register 16-2 and Register 16-3, respectively.

For all modes of EUSART operation, the TRIS control bits corresponding to the RXx/DTx and TXx/CKx pins should be set to '1'. The EUSART control will automatically reconfigure the pin from input to output, as needed.

When the receiver or transmitter section is not enabled then the corresponding RXx/DTx or TXx/CKx pin may be used for general purpose input and output.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register
									on Page
BAUDCON1	ABDOVF	RCIDL	DTRXP	CKTXP	BRG16	_	WUE	ABDEN	271
BAUDCON2	ABDOVF	RCIDL	DTRXP	CKTXP	BRG16	—	WUE	ABDEN	271
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	109
IPR1	—	ADIP	RC1IP	TX1IP	SSP1IP	CCP1IP	TMR2IP	TMR1IP	121
IPR3	SSP2IP	BCL2IP	RC2IP	TX2IP	CTMUIP	TMR5GIP	TMR3GIP	TMR1GIP	123
PIE1	—	ADIE	RC1IE	TX1IE	SSP1IE	CCP1IE	TMR2IE	TMR1IE	117
PIE3	SSP2IE	BCL2IE	RC2IE	TX2IE	CTMUIE	TMR5GIE	TMR3GIE	TMR1GIE	119
PIR1	—	ADIF	RC1IF	TX1IF	SSP1IF	CCP1IF	TMR2IF	TMR1IF	112
PIR3	SSP2IF	BCL2IF	RC2IF	TX2IF	CTMUIF	TMR5GIF	TMR3GIF	TMR1GIF	114
PMD0	UART2MD	UART1MD	TMR6MD	TMR5MD	TMR4MD	TMR3MD	TMR2MD	TMR1MD	52
RCSTA1	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	270
RCSTA2	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	270
SPBRG1			EUSART1	Baud Rate	Generator,	Low Byte			—
SPBRGH1			EUSART1	Baud Rate	Generator,	High Byte			—
SPBRG2			EUSART2	Baud Rate	Generator,	Low Byte			—
SPBRGH2			EUSART2	Baud Rate	Generator,	High Byte			—
ANSELC	ANSC7	ANSC6	ANSC5	ANSC4	ANSC3	ANSC2	-		150
ANSELD ⁽¹⁾	ANSD7	ANSD6	ANSD5	ANSD4	ANSD3	ANSD2	ANSD1	ANSD0	150
TRISB ⁽²⁾	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	151
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	151
TRISD ⁽¹⁾	TRISD7	TRISD6	TRISD5	TRISD4	TRISD3	TRISD2	TRISD1	TRISD0	151
TXREG1			EU	SART1 Tra	nsmit Regis	ster			—
TXSTA1	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	269
TXREG2			EU	SART2 Tra	nsmit Regis	ster			—
TXSTA2	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	269

TABLE 16-9: REGISTERS ASSOCIATED WITH SYNCHRONOUS SLAVE TRANSMISSION

Legend: — = unimplemented locations, read as '0'. Shaded bits are not used for synchronous slave transmission.

Note 1: PIC18(L)F4XK22 devices.

2: PIC18(L)F2XK22 devices.

18.9 Register Definitions: Comparator Control

REGISTER 18-1: CMxCON0: COMPARATOR x CONTROL REGISTER

R/W-0	R-0	R/W-0	R/W-0	R/W-1	R/W-0	R/W-0	R/W-0		
CxON	CxOUT	CxOE	CxPOL	CxSP	CxR	CxCH	<1:0>		
bit 7							bit 0		
									
Legend:									
R = Readable	e bit	W = Writable	bit	U = Unimpler	mented bit, rea	ad as '0'			
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unknown			
bit 7	CxON: Comp 1 = Compara 0 = Compara	arator Cx Enal tor Cx is enable tor Cx is disabl	ole bit ed ed						
bit 6	CxOUT: Comparator Cx Output bit $\frac{\text{If CxPOL} = 1 \text{ (inverted polarity):}}{\text{CxOUT} = 0 \text{ when CxVIN+ > CxVIN-}}$ $\frac{\text{CxOUT} = 1 \text{ when CxVIN+ < CxVIN-}}{\text{If CxPOL} = 0 \text{ (non-inverted polarity):}}$ $\frac{\text{CxOUT} = 1 \text{ when CxVIN+ > CxVIN-}}{\text{CxOUT} = 1 \text{ when CxVIN+ > CxVIN-}}$								
bit 5	CxOE: Comp 1 = CxOUT is 0 = CxOUT is	arator Cx Outp present on the internal only	out Enable bit e CxOUT pin ⁽¹)					
bit 4	CxPOL: Com 1 = CxOUT lo 0 = CxOUT lo	parator Cx Ou ogic is inverted ogic is not inver	tput Polarity S ted	elect bit					
bit 3	CxSP: Comp 1 = Cx operat 0 = Cx operat	arator Cx Spee tes in Normal-F tes in Low-Pow	d/Power Sele Power, Higher ver, Low-Spee	ct bit Speed mode d mode					
bit 2	CxR: Comparator Cx Reference Select bit (non-inverting input) 1 = CxVIN+ connects to CxVREF output 0 = CxVIN+ connects to C12IN+ pin								
bit 1-0	CxCH<1:0>: Comparator Cx Channel Select bit 00 = C12IN0- pin of Cx connects to CxVIN- 01 = C12IN1- pin of Cx connects to CxVIN- 10 = C12IN2- pin of Cx connects to CxVIN- 11 = C12IN3- pin of Cx connects to CxVIN-								

Note 1: Comparator output requires the following three conditions: CxOE = 1, CxON = 1 and corresponding port TRIS bit = 0.

22.0 DIGITAL-TO-ANALOG CONVERTER (DAC) MODULE

The Digital-to-Analog Converter supplies a variable voltage reference, ratiometric with the input source, with 32 selectable output levels.

The input of the DAC can be connected to:

- External VREF pins
- VDD supply voltage
- FVR (Fixed Voltage Reference)

The output of the DAC can be configured to supply a reference voltage to the following:

- Comparator positive input
- ADC input channel
- DACOUT pin

The Digital-to-Analog Converter (DAC) can be enabled by setting the DACEN bit of the VREFCON1 register.

22.1 Output Voltage Selection

The DAC has 32 voltage level ranges. The 32 levels are set with the DACR<4:0> bits of the VREFCON2 register.

The DAC output voltage is determined by the following equations:

EQUATION 22-1: DAC OUTPUT VOLTAGE

$$VOUT = \left((VSRC+ - VSRC-) \neq \frac{DACR < 4:0>}{2^5} \right) + VSRC-$$
$$VSRC+ = VDD, VREF+ or FVR1$$
$$VSRC- = VSS or VREF-$$

22.2 Ratiometric Output Level

The DAC output value is derived using a resistor ladder with each end of the ladder tied to a positive and negative voltage reference input source. If the voltage of either input source fluctuates, a similar fluctuation will result in the DAC output value.

The value of the individual resistors within the ladder can be found in **Section 27.0** "**Electrical Specifications**".

22.3 Low-Power Voltage State

In order for the DAC module to consume the least amount of power, one of the two voltage reference input sources to the resistor ladder must be disconnected. Either the positive voltage source, (VSRC+), or the negative voltage source, (VSRC-) can be disabled. The negative voltage source is disabled by setting the DACLPS bit in the VREFCON1 register. Clearing the DACLPS bit in the VREFCON1 register disables the positive voltage source.

22.4 Output Clamped to Positive Voltage Source

The DAC output voltage can be set to VsRC+ with the least amount of power consumption by performing the following:

- Clearing the DACEN bit in the VREFCON1 register.
- Setting the DACLPS bit in the VREFCON1 register.
- Configuring the DACPSS bits to the proper positive source.
- Configuring the DACRx bits to '11111' in the VREFCON2 register.

This is also the method used to output the voltage level from the FVR to an output pin. See **Section 22.6 "DAC Voltage Reference Output"** for more information.

22.5 Output Clamped to Negative Voltage Source

The DAC output voltage can be set to VSRC- with the least amount of power consumption by performing the following:

- Clearing the DACEN bit in the VREFCON1 register.
- Clearing the DACLPS bit in the VREFCON1 register.
- Configuring the DACPSS bits to the proper negative source.
- Configuring the DACRx bits to '00000' in the VREFCON2 register.

This allows the comparator to detect a zero-crossing while not consuming additional current through the DAC module.

22.6 DAC Voltage Reference Output

The DAC can be output to the DACOUT pin by setting the DACOE bit of the VREFCON1 register to '1'. Selecting the DAC reference voltage for output on the DACOUT pin automatically overrides the digital output buffer and digital input threshold detector functions of that pin. Reading the DACOUT pin when it has been configured for DAC reference voltage output will always return a '0'.

Due to the limited current drive capability, a buffer must be used on the DAC voltage reference output for external connections to DACOUT. Figure 22-2 shows an example buffering technique.

24.2 Register Definitions: Configuration Word

REGISTER 24-1: CONFIG1H: CONFIGURATION REGISTER 1 HIGH

				ILE OID I EIX						
R/P-0	R/P-0	R/P-1	R/P-0	R/P-0	R/P-1	R/P-0	R/P-1			
IESO	FCMEN	PRICLKEN	PLLCFG		FOSC	<3:0>				
bit 7							bit 0			
Legend:										
R = Readal	ole bit	P = Programn	nable bit	U = Unimple	mented bit, read	d as '0'				
-n = Value v	when device is un	programmed		x = Bit is unk	nown					
bit 7 bit 6	IESO⁽¹⁾: Inte 1 = Oscillator 0 = Oscillator FCMEN⁽¹⁾: F	rnal/External Os r Switchover mo r Switchover mo ail-Safe Clock I	scillator Switch ode enabled ode disabled Monitor Enable	nover bit e bit						
	1 = Fail-Safe Clock Monitor enabled 0 = Fail-Safe Clock Monitor disabled									
bit 5	PRICLKEN: 1 = Primary (0 = Primary (PRICLKEN: Primary Clock Enable bit 1 = Primary Clock is always enabled 0 = Primary Clock can be disabled by software								
bit 4	PLLCFG: 4 > 1 = 4 x PLL a 0 = 4 x PLL is	CPLL Enable bialways enabled, s under softwar	t Oscillator mu e control, PLL	ltiplied by 4 EN (OSCTUN	E<6>)					
bit 3-0	FOSC<3:0>: 1111 = Exte 1110 = Exte 1101 = EC o 1100 = EC o 1011 = EC o 1010 = EC o 1010 = Inter 1000 = Inter 0111 = Exte 0110 = Exte 0110 = EC o 0101 = EC o 0101 = HS o 0010 = HS o 0001 = XT o 0000 = LP o	Oscillator Sele rnal RC oscillat rnal RC oscillat oscillator (low p oscillator, CLKC oscillator, CLKC nal oscillator, CLKC nal oscillator bl rnal RC oscillat rnal RC oscillat oscillator (high oscillator, CLKC oscillator (high oscillator (high oscillator oscillator bl oscillator (high oscillator bl oscillator (high oscillator bl oscillator bl oscillat	ction bits or, CLKOUT fi over, ≤500 k l out function o um power, 50 out function o ock, CLKOUT ock or or, CLKOUT fi power, >16 M out function o um power, >16 M	unction on RAI unction on RAI Hz) n OSC2 (low) 0 kHz-16 MHz n OSC2 (medi function on OS unction on OS IHz) n OSC2 (high MHz-16 MHz) Hz)	5 5 5 5 5 6 6 6 7 7 7 7 7 7 7 7 7 7 7 7	lz)) kHz-16 MHz) lz)				
Note 1:	When FOSC<3:0:	> is configured	for HS, XT, or	LP oscillator a	nd FCMEN bit i	s set, then the I	ESO bit			

should also be set to prevent a false failed clock indication and to enable automatic clock switch over from the internal oscillator block to the external oscillator when the OST times out.

REGISTER 24-7: CONFIG5H: CONFIGURATION REGISTER 5 HIGH

R/C-1	R/C-1	U-0	U-0	U-0	U-0	U-0	U-0
CPD	CPB	—	—	—	—	—	—
bit 7							bit 0
Legend:							

R = Readable bit	U = Unimplemented bit, read as '0'
-n = Value when device is unprogrammed	C = Clearable only bit

bit 7	CPD: Data EEPROM Code Protection bit
	1 = Data EEPROM not code-protected 0 = Data EEPROM code-protected
bit 6	CPB: Boot Block Code Protection bit
	1 = Boot Block not code-protected
	0 = Boot Block code-protected
bit 5-0	Unimplemented: Read as '0'

REGISTER 24-8: CONFIG6L: CONFIGURATION REGISTER 6 LOW

U-0	U-0	U-0	U-0	R/C-1	R/C-1	R/C-1	R/C-1
—	—	—	—	WRT3 ⁽¹⁾	WRT2 ⁽¹⁾	WRT1	WRT0
bit 7							bit 0

Legend:	
R = Readable bit	U = Unimplemented bit, read as '0'
-n = Value when device is unprogrammed	C = Clearable only bit

bit 7-4	Unimplemented: Read as '0'
bit 3	WRT3: Write Protection bit ⁽¹⁾
	1 = Block 3 not write-protected
	0 = Block 3 write-protected
bit 2	WRT2: Write Protection bit ⁽¹⁾
	1 = Block 2 not write-protected
	0 = Block 2 write-protected
bit 1	WRT1: Write Protection bit
	1 = Block 1 not write-protected
	0 = Block 1 write-protected
bit 0	WRT0: Write Protection bit
	1 = Block 0 not write-protected
	0 = Block 0 write-protected

Note 1: Available on PIC18(L)FX5K22 and PIC18(L)FX6K22 devices.

24.5.1 PROGRAM MEMORY CODE PROTECTION

The program memory may be read to or written from any location using the table read and table write instructions. The device ID may be read with table reads. The Configuration registers may be read and written with the table read and table write instructions.

In Normal execution mode, the CPn bits have no direct effect. CPn bits inhibit external reads and writes. A block of user memory may be protected from table writes if the WRTn Configuration bit is '0'. The EBTRn bits control table reads. For a block of user memory with the EBTRn bit cleared to '0', a table READ instruction that executes from within that block is allowed to read. A table read instruction that executes from a location outside of that block is not allowed to read and will result in reading '0's. Figures 24-3 through 24-5 illustrate table write and table read protection.

Note:	Code protection bits may only be written							
	to a '0' from a '1' state. It is not possible to							
	write a '1' to a bit in the '0' state. Code pro-							
	tection bits are only set to '1' by a full chip							
	erase or block erase function. The full chip							
	erase and block erase functions can only							
	be initiated via ICSP™ or an external							
	programmer.							

FIGURE 24-3: TABLE WRITE (WRTn) DISALLOWED

Register Values	Program Memor	/ Co	Configuration Bit Settings				
		000000h 0007FFh 000800h	WRTB, EBTRB = 11				
TBLPTR = 0008FFh	▶┍►		WRT0, EBTR0 = 01				
PC = 001FFEh	TBLWT*	001FFFh 002000h					
		003FFFh 004000h	WRT1, EBTR1 = 11				
PC = 005FFEh	TBLWT*	005FFFh	WRT2, EBTR2 = 11				
		007EEEb	WRT3, EBTR3 = 11				
Results: All table writes disabled to Blockn whenever WRTn = 0.							

							i		
Mnemonic, Operands		Description	Cycles	16-Bit Instruction Word			Status	Neter	
				MSb			LSb	Affected	Notes
BIT-ORIEN	TED OP	ERATIONS							
BCF	f, b, a	Bit Clear f	1	1001	bbba	ffff	ffff	None	1, 2
BSF	f, b, a	Bit Set f	1	1000	bbba	ffff	ffff	None	1, 2
BTFSC	f, b, a	Bit Test f, Skip if Clear	1 (2 or 3)	1011	bbba	ffff	ffff	None	3, 4
BTFSS	f, b, a	Bit Test f, Skip if Set	1 (2 or 3)	1010	bbba	ffff	ffff	None	3, 4
BTG	f, b, a	Bit Toggle f	1	0111	bbba	ffff	ffff	None	1, 2
CONTROL	OPERA	TIONS						·	
BC	n	Branch if Carry	1 (2)	1110	0010	nnnn	nnnn	None	
BN	n	Branch if Negative	1 (2)	1110	0110	nnnn	nnnn	None	
BNC	n	Branch if Not Carry	1 (2)	1110	0011	nnnn	nnnn	None	
BNN	n	Branch if Not Negative	1 (2)	1110	0111	nnnn	nnnn	None	
BNOV	n	Branch if Not Overflow	1 (2)	1110	0101	nnnn	nnnn	None	
BNZ	n	Branch if Not Zero	1 (2)	1110	0001	nnnn	nnnn	None	
BOV	n	Branch if Overflow	1 (2)	1110	0100	nnnn	nnnn	None	
BRA	n	Branch Unconditionally	2	1101	0nnn	nnnn	nnnn	None	
BZ	n	Branch if Zero	1 (2)	1110	0000	nnnn	nnnn	None	
CALL	k, s	Call subroutine 1st word	2	1110	110s	kkkk	kkkk	None	
		2nd word		1111	kkkk	kkkk	kkkk		
CLRWDT	—	Clear Watchdog Timer	1	0000	0000	0000	0100	TO, PD	
DAW	—	Decimal Adjust WREG	1	0000	0000	0000	0111	С	
GOTO	k	Go to address 1st word	2	1110	1111	kkkk	kkkk	None	
		2nd word		1111	kkkk	kkkk	kkkk		
NOP	—	No Operation	1	0000	0000	0000	0000	None	
NOP	—	No Operation	1	1111	XXXX	XXXX	XXXX	None	4
POP	—	Pop top of return stack (TOS)	1	0000	0000	0000	0110	None	
PUSH	—	Push top of return stack (TOS)	1	0000	0000	0000	0101	None	
RCALL	n	Relative Call	2	1101	1nnn	nnnn	nnnn	None	
RESET		Software device Reset	1	0000	0000	1111	1111	All	
RETFIE	S	Return from interrupt enable	2	0000	0000	0001	000s	GIE/GIEH, PEIE/GIEL	
RETLW	k	Return with literal in WREG	2	0000	1100	kkkk	kkkk	None	
RETURN	S	Return from Subroutine	2	0000	0000	0001	001s	None	
SLEEP	_	Go into Standby mode	1	0000	0000	0000	0011	TO, PD	

TABLE 25-2: PIC18(L)F2X/4XK22 INSTRUCTION SET (CONTINUED)

Note 1: When a PORT register is modified as a function of itself (e.g., MOVF PORTB, 1, 0), the value used will be that value present on the pins themselves. For example, if the data latch is '1' for a pin configured as input and is driven low by an external device, the data will be written back with a '0'.

2: If this instruction is executed on the TMR0 register (and where applicable, 'd' = 1), the prescaler will be cleared if assigned.

3: If Program Counter (PC) is modified or a conditional test is true, the instruction requires two cycles. The second cycle is executed as a NOP.

4: Some instructions are two-word instructions. The second word of these instructions will be executed as a NOP unless the first word of the instruction retrieves the information embedded in these 16 bits. This ensures that all program memory locations have a valid instruction.

25.2.5 SPECIAL CONSIDERATIONS WITH MICROCHIP MPLAB[®] IDE TOOLS

The latest versions of Microchip's software tools have been designed to fully support the extended instruction set of the PIC18(L)F2X/4XK22 family of devices. This includes the MPLAB C18 C compiler, MPASM assembly language and MPLAB Integrated Development Environment (IDE).

When selecting a target device for software development, MPLAB IDE will automatically set default Configuration bits for that device. The default setting for the XINST Configuration bit is '0', disabling the extended instruction set and Indexed Literal Offset Addressing mode. For proper execution of applications developed to take advantage of the extended instruction set, XINST must be set during programming.

To develop software for the extended instruction set, the user must enable support for the instructions and the Indexed Addressing mode in their language tool(s). Depending on the environment being used, this may be done in several ways:

- A menu option, or dialog box within the environment, that allows the user to configure the language tool and its settings for the project
- A command line option
- A directive in the source code

These options vary between different compilers, assemblers and development environments. Users are encouraged to review the documentation accompanying their development systems for the appropriate information.

© 2010-2016 Microchip Technology Inc.

44-Lead Plastic Quad Flat, No Lead Package (ML) - 8x8 mm Body [QFN or VQFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	MILLIMETERS				
Dimension	MIN	NOM	MAX		
Contact Pitch	E	0.65 BSC			
Optional Center Pad Width	X2			6.60	
Optional Center Pad Length	Y2			6.60	
Contact Pad Spacing	C1		8.00		
Contact Pad Spacing	C2		8.00		
Contact Pad Width (X44)	X1			0.35	
Contact Pad Length (X44)	Y1			0.85	
Contact Pad to Contact Pad (X40)	G1	0.30			
Contact Pad to Center Pad (X44)	G2	0.28			
Thermal Via Diameter	V		0.33		
Thermal Via Pitch	EV		1.20		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

2. For best soldering results, thermal vias, if used, should be filled or tented to avoid solder loss during reflow process

Microchip Technology Drawing No. C04-2103C