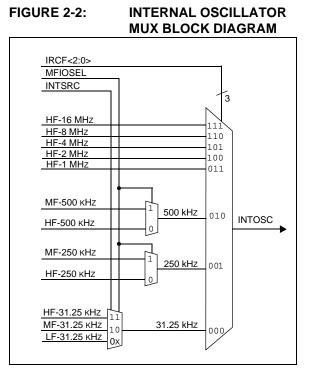


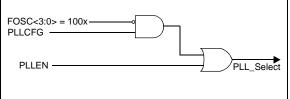
Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.


Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details


Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	48MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	35
Program Memory Size	8KB (4K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 30x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	44-VQFN Exposed Pad
Supplier Device Package	44-QFN (8×8)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18lf43k22-e-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

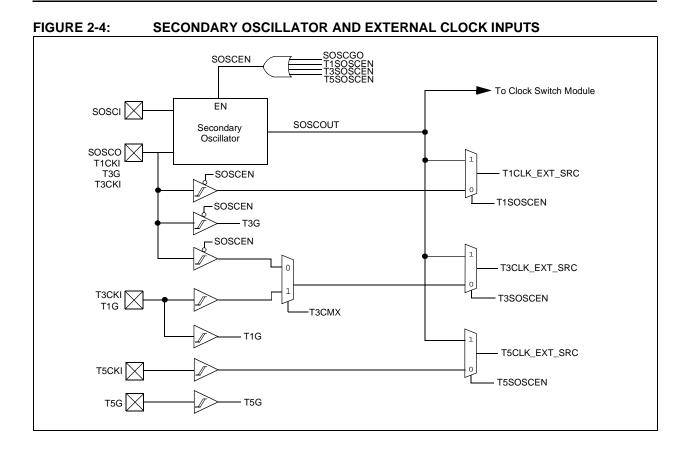


FIGURE 2-3: PLL_SELECT BLOCK DIAGRAM

TABLE 2-1: PLL_SELECT TRUTH TABLE

Primary Clock MUX Source	FOSC<3:0>	PLLCFG	PLLEN	PLL_Select
FOSC (any source)	0000-1111	0	0	0
OSC1/OSC2 (external source)	0000-0111	1	х	1
	1010-1111	0	1	1
INTOSC (internal source)	1000-1001	x	0	0
		x	1	1

3.5 Exiting Idle and Sleep Modes

An exit from Sleep mode or any of the Idle modes is triggered by any one of the following:

- an interrupt
- a Reset
- a Watchdog Time-out

This section discusses the triggers that cause exits from power-managed modes. The clocking subsystem actions are discussed in each of the power-managed modes (see Section 3.2 "Run Modes", Section 3.3 "Sleep Mode" and Section 3.4 "Idle Modes").

3.5.1 EXIT BY INTERRUPT

Any of the available interrupt sources can cause the device to exit from an Idle mode or the Sleep mode to a Run mode. To enable this functionality, an interrupt source must be enabled by setting its enable bit in one of the INTCON or PIE registers. The exit sequence is initiated when the corresponding interrupt flag bit is set.

The instruction immediately following the SLEEP instruction is executed on all exits by interrupt from Idle or Sleep modes. Code execution then branches to the interrupt vector if the GIE/GIEH bit of the INTCON register is set, otherwise code execution continues without branching (see Section 9.0 "Interrupts").

A fixed delay of interval TCSD following the wake event is required when leaving Sleep and Idle modes. This delay is required for the CPU to prepare for execution. Instruction execution resumes on the first clock cycle following this delay.

3.5.2 EXIT BY WDT TIME-OUT

A WDT time-out will cause different actions depending on which power-managed mode the device is in when the time-out occurs.

If the device is not executing code (all Idle modes and Sleep mode), the time-out will result in an exit from the power-managed mode (see **Section 3.2 "Run Modes"** and **Section 3.3 "Sleep Mode**"). If the device is executing code (all Run modes), the time-out will result in a WDT Reset (see **Section 24.3 "Watchdog Timer (WDT)**").

The WDT timer and postscaler are cleared by any one of the following:

- executing a **SLEEP** instruction
- executing a CLRWDT instruction
- the loss of the currently selected clock source when the Fail-Safe Clock Monitor is enabled
- modifying the IRCF bits in the OSCCON register when the internal oscillator block is the device clock source

3.5.3 EXIT BY RESET

Exiting Sleep and Idle modes by Reset causes code execution to restart at address '0'. See **Section 4.0** "**Reset**" for more details.

The exit delay time from Reset to the start of code execution depends on both the clock sources before and after the wake-up and the type of oscillator.

3.5.4 EXIT WITHOUT AN OSCILLATOR START-UP DELAY

Certain exits from power-managed modes do not invoke the OST at all. There are two cases:

- PRI_IDLE mode, where the primary clock source is not stopped and
- the primary clock source is not any of the LP, XT, HS or HSPLL modes.

In these instances, the primary clock source either does not require an oscillator start-up delay since it is already running (PRI_IDLE), or normally does not require an oscillator start-up delay (RC, EC, INTOSC, and INTOSCIO modes). However, a fixed delay of interval TCsD following the wake event is still required when leaving Sleep and Idle modes to allow the CPU to prepare for execution. Instruction execution resumes on the first clock cycle following this delay.

4.2 Register Definitions: Reset Control

REGISTER 4-1: RCON: RESET CONTROL REGISTER

R/W-0/0	R/W-q/u	U-0	R/W-1/q	R-1/q	R-1/q	R/W-q/u	R/W-0/q
IPEN	SBOREN ⁽¹⁾	_	RI	TO	PD	POR ⁽²⁾	BOR
bit 7	·				•	·	bit (
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimplei	mented bit, read	d as '0'	
'1' = Bit is set		'0' = Bit is cle	eared	•		R/Value at all c	ther Resets
x = Bit is unk	nown	u = unchang	jed	q = depends	on condition		
bit 7	IPEN: Interru	ot Priority Ena	ble bit				
		iority levels or					
				IC16CXXX Co	mpatibility mode	e)	
bit 6	SBOREN: BO	OR Software E	nable bit ⁽¹⁾				
	If BOREN<1:						
	1 = BOR is er						
	0 = BOR is di						
		<u>0> = 00, 10 </u>					
bit 5	Unimplemen	ted: Read as	'0'				
bit 4	RI: RESET IN	struction Flag	bit				
	0 = The RES		was executed	· ·	nware or Power evice Reset (mu	-on Reset) ust be set in fin	mware after a
bit 3	TO: Watchdo	g Time-out Fla	ag bit				
		ower-up, CLRW		or SLEEP instr	ruction		
bit 2	PD: Power-de	own Detection	Flag bit				
			the CLRWDT in				
			SLEEP instruc	ction			
bit 1		on Reset Stat					
		r-on Reset occ		cot in coffward	offer a Rower	on Reset occur	c)
bit 0	BOR: Brown-		-	Set in Soltware		on Reset occur	5)
				(set by firmwa	re only)		
						or Brown-out R	eset occurs)
Note 1: Wi	nen CONFIG2L[2:1] = 01, the	n the SBOREN	Reset state is	s '1'; otherwise,	it is '0'.	
	e actual Reset			• • • •	levice Reset. S		lowing this

register and Section 4.7 "Reset State of Registers" for additional information.

3: See Table 4-1.

Note 1: Brown-out Reset is indicated when BOR is '0' and POR is '1' (assuming that both POR and BOR were set to '1' by firmware immediately after POR).

2: It is recommended that the POR bit be set after a Power-on Reset has been detected so that subsequent Power-on Resets may be detected.

5.4.2 ACCESS BANK

While the use of the BSR with an embedded 8-bit address allows users to address the entire range of data memory, it also means that the user must always ensure that the correct bank is selected. Otherwise, data may be read from or written to the wrong location. This can be disastrous if a GPR is the intended target of an operation, but an SFR is written to instead. Verifying and/or changing the BSR for each read or write to data memory can become very inefficient.

To streamline access for the most commonly used data memory locations, the data memory is configured with an Access Bank, which allows users to access a mapped block of memory without specifying a BSR. The Access Bank consists of the first 96 bytes of memory (00h-5Fh) in Bank 0 and the last 160 bytes of memory (60h-FFh) in Block 15. The lower half is known as the "Access RAM" and is composed of GPRs. This upper half is also where the device's SFRs are mapped. These two areas are mapped contiguously in the Access Bank and can be addressed in a linear fashion by an 8-bit address (Figures 5-5 through 5-7).

The Access Bank is used by core PIC18 instructions that include the Access RAM bit (the 'a' parameter in the instruction). When 'a' is equal to '1', the instruction uses the BSR and the 8-bit address included in the opcode for the data memory address. When 'a' is '0', however, the instruction is forced to use the Access Bank address map; the current value of the BSR is ignored entirely.

Using this "forced" addressing allows the instruction to operate on a data address in a single cycle, without updating the BSR first. For 8-bit addresses of 60h and above, this means that users can evaluate and operate on SFRs more efficiently. The Access RAM below 60h is a good place for data values that the user might need to access rapidly, such as immediate computational results or common program variables. Access RAM also allows for faster and more code efficient context saving and switching of variables.

The mapping of the Access Bank is slightly different when the extended instruction set is enabled (XINST Configuration bit = 1). This is discussed in more detail in Section 5.7.3 "Mapping the Access Bank in Indexed Literal Offset Mode".

5.4.3 GENERAL PURPOSE REGISTER FILE

PIC18 devices may have banked memory in the GPR area. This is data RAM, which is available for use by all instructions. GPRs start at the bottom of Bank 0 (address 000h) and grow upwards towards the bottom of the SFR area. GPRs are not initialized by a Power-on Reset and are unchanged on all other Resets.

5.4.4 SPECIAL FUNCTION REGISTERS

The Special Function Registers (SFRs) are registers used by the CPU and peripheral modules for controlling the desired operation of the device. These registers are implemented as static RAM. SFRs start at the top of data memory (FFFh) and extend downward to occupy the top portion of Bank 15 (F38h to FFFh). A list of these registers is given in Table 5-1 and Table 5-2.

The SFRs can be classified into two sets: those associated with the "core" device functionality (ALU, Resets and interrupts) and those related to the peripheral functions. The Reset and interrupt registers are described in their respective chapters, while the ALU's STATUS register is described later in this section. Registers related to the operation of a peripheral feature are described in the chapter for that peripheral.

The SFRs are typically distributed among the peripherals whose functions they control. Unused SFR locations are unimplemented and read as '0's.

TABLE	5-2: RI	EGISTER	FILE SUN		OR PIC18	(L)F2X/47	(K22 DEV	ICES (CO	NIINUEL)
Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	<u>Value on</u> POR, BOR
FA2h	IPR2	OSCFIP	C1IP	C2IP	EEIP	BCL1IP	HLVDIP	TMR3IP	CCP2IP	1111 1111
FA1h	PIR2	OSCFIF	C1IF	C2IF	EEIF	BCL1IF	HLVDIF	TMR3IF	CCP2IF	0000 0000
FA0h	PIE2	OSCFIE	C1IE	C2IE	EEIE	BCL1IE	HLVDIE	TMR3IE	CCP2IE	0000 0000
F9Fh	IPR1	—	ADIP	RC1IP	TX1IP	SSP1IP	CCP1IP	TMR2IP	TMR1IP	-111 1111
F9Eh	PIR1	_	ADIF	RC1IF	TX1IF	SSP1IF	CCP1IF	TMR2IF	TMR1IF	-000 0000
F9Dh	PIE1	_	ADIE	RC1IE	TX1IE	SSP1IE	CCP1IE	TMR2IE	TMR1IE	-000 0000
F9Ch	HLVDCON	VDIRMAG	BGVST	IRVST	HLVDEN		HLVDL	<3:0>		0000 0000
F9Bh	OSCTUNE	INTSRC	PLLEN			TUN	<5:0>			00xx xxxx
F96h	TRISE	WPUE3	_	_	_	_	TRISE2 ⁽¹⁾	TRISE1 ⁽¹⁾	TRISE0 ⁽¹⁾	1111
F95h	TRISD ⁽¹⁾	TRISD7	TRISD6	TRISD5	TRISD4	TRISD3	TRISD2	TRISD1	TRISD0	1111 1111
F94h	TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	1111 1111
F93h	TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	1111 1111
F92h	TRISA	TRISA7	TRISA6	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	1111 1111
F8Dh	LATE ⁽¹⁾	—	—	_	_	—	LATE2	LATE1	LATE0	xxx
F8Ch	LATD ⁽¹⁾	LATD7	LATD6	LATD5	LATD4	LATD3	LATD2	LATD1	LATD0	xxxx xxxx
F8Bh	LATC	LATC7	LATC6	LATC5	LATC4	LATC3	LATC2	LATC1	LATC0	xxxx xxxx
F8Ah	LATB	LATB7	LATB6	LATB5	LATB4	LATB3	LATB2	LATB1	LATB0	xxxx xxxx
F89h	LATA	LATA7	LATA6	LATA5	LATA4	LATA3	LATA2	LATA1	LATA0	xxxx xxxx
	PORTE ⁽²⁾	_	_	_	_	RE3	_	_	_	x
F84h	PORTE ⁽¹⁾	_	_	_	_	RE3	RE2	RE1	RE0	x000
F83h	PORTD ⁽¹⁾	RD7	RD6	RD5	RD4	RD3	RD2	RD1	RD0	0000 0000
F82h	PORTC	RC7	RC6	RC5	RC4	RC3	RC2	RC1	RC0	0000 00xx
F81h	PORTB	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	xxx0 0000
F80h	PORTA	RA7	RA6	RA5	RA4	RA3	RA2	RA1	RA0	xx0x 0000
F7Fh	IPR5	_	_	_	_	_	TMR6IP	TMR5IP	TMR4IP	111
F7Eh	PIR5	_	_	_	_	_	TMR6IF	TMR5IF	TMR4IF	111
F7Dh	PIE5	_	_	_	_	_	TMR6IE	TMR5IE	TMR4IE	000
F7Ch	IPR4	_	_	_	_	_	CCP5IP	CCP4IP	CCP3IP	000
F7Bh	PIR4	_	_	_	_	_	CCP5IF	CCP4IF	CCP3IF	000
F7Ah	PIE4	_	_	_	_	_	CCP5IE	CCP4IE	CCP3IE	000
F79h	CM1CON0	C10N	C1OUT	C10E	C1POL	C1SP	C1R	C1CH	1<1:0>	0000 1000
F78h	CM2CON0	C2ON	C2OUT	C2OE	C2POL	C2SP	C2R	C2CH	l<1:0>	0000 1000
F77h	CM2CON1	MC1OUT	MC2OUT	C1RSEL	C2RSEL	C1HYS	C2HYS	C1SYNC	C2SYNC	0000 0000
F76h	SPBRGH2		1	EUSAR	T2 Baud Rate	Generator, Hi				0000 0000
F75h	SPBRG2				T2 Baud Rate					0000 0000
F74h	RCREG2				T2 Receive Re		,			0000 0000
F73h	TXREG2				T2 Transmit R	0				0000 0000
F72h	TXSTA2	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	0000 0010
F71h	RCSTA2	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	0000 000x
F70h	BAUDCON2	ABDOVF	RCIDL	DTRXP	CKTXP	BRG16	_	WUE	ABDEN	01x0 0-00
F6Fh	SSP2BUF		SSP2 Receive Buffer/Transmit Register							
F6Eh	SSP2ADD	SSP2 Add	SSP2 Address Register in I ² C Slave Mode. SSP2 Baud Rate Reload Register in I ² C Master Mode							
F6Dh	SSP2STAT	SMP	CKE	D/A	P	S	R/W	UA	BF	0000 0000
F6Ch	SSP2CON1	WCOL	SSPOV	SSPEN	CKP		SSPM			0000 0000
F6Bh	SSP2CON1	GCEN	ACKSTAT	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	0000 0000
F6Ah	SSP2CON2	JULIN	NONOTAI	NONDT	SSP1 MASK I	-		NOLIN	ULIN	1111 1111
F69h	SSP2CON3	ACKTIM	PCIE	SCIE	BOEN	SDAHT	SBCDE	AHEN	DHEN	0000 0000
Legend:					= value deper				DILIN	3000 0000

TABLE 5-2:	REGISTER FILE SUMMARY FOR PIC18(L)F2X/4XK22 DEVICES (CONTINUED)
------------	---

 $\label{eq:legend: Legend: Legend: a generative state of the state of$

Note 1: PIC18(L)F4XK22 devices only.

2: PIC18(L)F2XK22 devices only.

3: PIC18(L)F23/24K22 and PIC18(L)F43/44K22 devices only.

4: PIC18(L)F26K22 and PIC18(L)F46K22 devices only.

R/W-1	R/W-1	R/W-1	R/W-1	U-0	R/W-1	U-0	R/W-1				
RBPU	INTEDG0	INTEDG1	INTEDG2	—	TMR0IP	_	RBIP				
bit 7	• •						bit				
Legend:											
R = Readable		W = Writable		-	mented bit, read						
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unk	nown				
bit 7		TB Pull-up Ena									
		FB pull-ups are		that the nin i	s an input and th	e correspondi	na WPLIB bit i				
	set.				s an input and t	ie concoponali					
bit 6	INTEDG0: E>	kternal Interrup	t 0 Edge Sele	ct bit							
		1 = Interrupt on rising edge									
	-	on falling edge									
bit 5		NTEDG1: External Interrupt 1 Edge Select bit									
		on rising edge on falling edge									
bit 4	•	0 0		ot hit							
DIL 4	INTEDG2: External Interrupt 2 Edge Select bit 1 = Interrupt on rising edge										
		on falling edge)								
bit 3	Unimplemen	ted: Read as '	0'								
bit 2	TMROIP: TMI	R0 Overflow In	terrupt Priority	/ bit							
	1 = High priority										
	0 = Low prior	rity									
bit 1	Unimplemen	ted: Read as '	0'								
bit 0	RBIP: RB Po	rt Change Inte	rrupt Priority b	it							
	1 = High prio	2									
	0 = Low prior	P1+1/									

REGISTER 9-2: INTCON2: INTERRUPT CONTROL 2 REGISTER

Note:	Interrupt flag bits are set when an interrupt
	condition occurs, regardless of the state of
	its corresponding enable bit or the global
	enable bit. User software should ensure
	the appropriate interrupt flag bits are clear
	prior to enabling an interrupt. This feature
	allows for software polling.

10.2 PORTB Registers

PORTB is an 8-bit wide, bidirectional port. The corresponding data direction register is TRISB. Setting a TRISB bit (= 1) will make the corresponding PORTB pin an input (i.e., disable the output driver). Clearing a TRISB bit (= 0) will make the corresponding PORTB pin an output (i.e., enable the output driver and put the contents of the output latch on the selected pin).

The Data Latch register (LATB) is also memory mapped. Read-modify-write operations on the LATB register read and write the latched output value for PORTB.

EXAMPLE 10-2:	INITIALIZING PORTB
EXAMPLE 10-2:	INITIALIZING PURIB

MOVLB	0xF	; Set BSR for banked SFRs
CLRF	PORTB	; Initialize PORTB by
		; clearing output
		; data latches
CLRF	LATB	; Alternate method
		; to clear output
		; data latches
MOVLW	0F0h	; Value for init
MOVWF	ANSELB	; Enable RB<3:0> for
		; digital input pins
		; (not required if config bit
		; PBADEN is clear)
MOVLW	0CFh	; Value used to
		; initialize data
		; direction
MOVWF	TRISB	; Set RB<3:0> as inputs
		; RB<5:4> as outputs
		; RB<7:6> as inputs

10.2.1 PORTB OUTPUT PRIORITY

Each PORTB pin is multiplexed with other functions. The pins, their combined functions and their output priorities are briefly described here. For additional information, refer to the appropriate section in this data sheet.

When multiple outputs are enabled, the actual pin control goes to the peripheral with the higher priority. Table 10-4 lists the PORTB pin functions from the highest to the lowest priority.

Analog input functions, such as ADC, comparator and SR latch inputs, are not shown in the priority lists.

These inputs are active when the I/O pin is set for Analog mode using the ANSELx registers. Digital output functions may control the pin when it is in Analog mode with the priority shown below.

10.3 Additional PORTB Pin Functions

PORTB pins RB<7:4> have an interrupt-on-change option. All PORTB pins have a weak pull-up option.

10.3.1 WEAK PULL-UPS

Each of the PORTB pins has an individually controlled weak internal pull-up. When set, each bit of the WPUB register enables the corresponding pin pull-up. When cleared, the RBPU bit of the INTCON2 register enables pull-ups on all pins which also have their corresponding WPUB bit set. When set, the RBPU bit disables all weak pull-ups. The weak pull-up is automatically turned off when the port pin is configured as an output. The pull-ups are disabled on a Power-on Reset.

Note:	On a Power-on Reset, RB<5:0> are configured as analog inputs by default and read as '0'; RB<7:6> are configured as digital inputs.
	When the PBADEN Configuration bit is set to '1', RB<5:0> will alternatively be configured as digital inputs on POR.

10.3.2 INTERRUPT-ON-CHANGE

Four of the PORTB pins (RB<7:4>) are individually configurable as interrupt-on-change pins. Control bits in the IOCB register enable (when set) or disable (when clear) the interrupt function for each pin.

When set, the RBIE bit of the INTCON register enables interrupts on all pins which also have their corresponding IOCB bit set. When clear, the RBIE bit disables all interrupt-on-changes.

Only pins configured as inputs can cause this interrupt to occur (i.e., any RB<7:4> pin configured as an output is excluded from the interrupt-on-change comparison).

For enabled interrupt-on-change pins, the values are compared with the old value latched on the last read of PORTB. The 'mismatch' outputs of the last read are OR'd together to set the PORTB Change Interrupt flag bit (RBIF) in the INTCON register.

This interrupt can wake the device from the Sleep mode, or any of the Idle modes. The user, in the Interrupt Service Routine, can clear the interrupt in the following manner:

- Any read or write of PORTB to clear the mismatch condition (except when PORTB is the source or destination of a MOVFF instruction).
- b) Execute at least one instruction after reading or writing PORTB, then clear the flag bit, RBIF.

Pin Name	Function	TRIS Setting	ANSEL setting	Pin Type	Buffer Type	Description
RC5/SDO1/AN17	RC5	0	0	0	DIG	LATC<5> data output; not affected by analog input.
		1	0	I	ST	PORTC<5> data input; disabled when analog input enabled.
	SDO1	0	0	0	DIG	MSSP1 SPI data output.
	AN17	1	1	I	AN	Analog input 17.
RC6/P3A/CCP3/TX1/	RC6	0	0	0	DIG	LATC<6> data output; not affected by analog input.
CK1/AN18		1	0	I	ST	PORTC<6> data input; disabled when analog input enabled.
	P3A ^{(2), (3)}	0	0	0	CMOS	Enhanced CCP3 PWM output 1.
	CCP3 ^{(2), (3)}	0	0	0	DIG	Compare 3 output/PWM 3 output.
		1	0	I	ST	Capture 3 input.
	TX1	1	0	0	DIG	EUSART asynchronous transmit data output.
	CK1	1	0	0	DIG	EUSART synchronous serial clock output.
		1	0	Ι	ST	EUSART synchronous serial clock input.
	AN18	1	1	I	AN	Analog input 18.
RC7/P3B/RX1/DT1/	RC7	0	0	0	DIG	LATC<7> data output; not affected by analog input.
AN19		1	0	Ι	ST	PORTC<7> data input; disabled when analog input enabled.
	P3B	0	0	0	CMOS	Enhanced CCP3 PWM output 2.
	RX1	1	0	I	ST	EUSART asynchronous receive data in.
	DT1	1	0	0	DIG	EUSART synchronous serial data output.
		1	0	I	ST	EUSART synchronous serial data input.
	AN19	1	1	I	AN	Analog input 19.

TABLE 10-8: PORTC I/O SUMMARY (CONTINUED)

Legend:AN = Analog input or output; TTL = TTL compatible input; HV = High Voltage; OD = Open Drain; XTAL = Crystal; CMOS =
CMOS compatible input or output; ST = Schmitt Trigger input with CMOS levels; I^2C = Schmitt Trigger input with I^2C .

Note 1: Default pin assignment for P2B, T3CKI, CCP3 and CCP2 when Configuration bits PB2MX, T3CMX, CCP3MX and CCP2MX are set.

2: Alternate pin assignment for P2B, T3CKI, CCP3 and CCP2 when Configuration bits PB2MX, T3CMX, CCP3MX and CCP2MX are clear.

3: Function on PORTD and PORTE for PIC18FXXK22 devices.

15.5.3 SLAVE TRANSMISSION

When the R/W bit of the incoming address byte is set and an address match occurs, the R/W bit of the SSPxSTAT register is set. The received address is loaded into the SSPxBUF register, and an ACK pulse is sent by the slave on the ninth bit.

Following the ACK, slave hardware clears the CKP bit and the SCLx pin is held low (see **Section 15.5.6** "**Clock Stretching**" for more detail). By stretching the clock, the master will be unable to assert another clock pulse until the slave is done preparing the transmit data.

The transmit data must be loaded into the SSPxBUF register which also loads the SSPxSR register. Then the SCLx pin should be released by setting the CKP bit of the SSPxCON1 register. The eight data bits are shifted out on the falling edge of the SCLx input. This ensures that the SDAx signal is valid during the SCLx high time.

The ACK pulse from the master-receiver is latched on the rising edge of the ninth SCLx input pulse. This ACK value is copied to the ACKSTAT bit of the SSPxCON2 register. If ACKSTAT is set (not ACK), then the data transfer is complete. In this case, when the not ACK is latched by the slave, the slave goes Idle and waits for another occurrence of the Start bit. If the SDAx line was low (ACK), the next transmit data must be loaded into the SSPxBUF register. Again, the SCLx pin must be released by setting bit CKP.

An MSSPx interrupt is generated for each data transfer byte. The SSPxIF bit must be cleared by software and the SSPxSTAT register is used to determine the status of the byte. The SSPxIF bit is set on the falling edge of the ninth clock pulse.

15.5.3.1 Slave Mode Bus Collision

A slave receives a Read request and begins shifting data out on the SDAx line. If a bus collision is detected and the SBCDE bit of the SSPxCON3 register is set, the BCLxIF bit of the PIRx register is set. Once a bus collision is detected, the slave goes Idle and waits to be addressed again. User software can use the BCLxIF bit to handle a slave bus collision.

15.5.3.2 7-bit Transmission

A master device can transmit a read request to a slave, and then clock data out of the slave. The list below outlines what software for a slave will need to do to accomplish a standard transmission. Figure 15-18 can be used as a reference to this list.

- 1. Master sends a Start condition on SDAx and SCLx.
- 2. S bit of SSPxSTAT is set; SSPxIF is set if interrupt on Start detect is enabled.
- 3. Matching address with R/W bit set is received by the slave setting SSPxIF bit.
- 4. Slave hardware generates an ACK and sets SSPxIF.
- 5. SSPxIF bit is cleared by user.
- 6. Software reads the received address from SSPxBUF, clearing BF.
- 7. R/\overline{W} is set so CKP was automatically cleared after the ACK.
- 8. The slave software loads the transmit data into SSPxBUF.
- 9. CKP bit is set releasing SCLx, allowing the master to clock the data out of the slave.
- 10. SSPxIF is set after the ACK response from the master is loaded into the ACKSTAT register.
- 11. SSPxIF bit is cleared.
- 12. The slave software checks the ACKSTAT bit to see if the master wants to clock out more data.

Note 1: If the master ACKs the clock will be stretched.

2: ACKSTAT is the only bit updated on the rising edge of SCLx (9th) rather than the falling.

- 13. Steps 9-13 are repeated for each transmitted byte.
- 14. If the master sends a not ACK; the clock is not held, but SSPxIF is still set.
- 15. The master sends a Restart condition or a Stop.
- 16. The slave is no longer addressed.

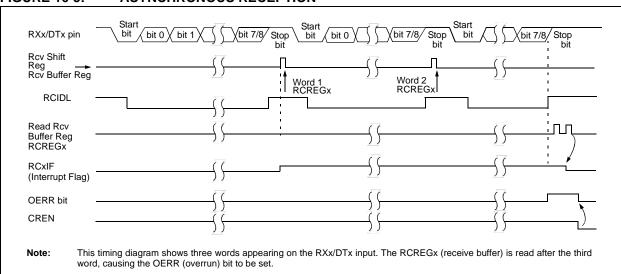

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
ANSELA	_	_	ANSA5	—	ANSA3	ANSA2	ANSA1	ANSA0	149
ANSELB		_	ANSB5	ANSB4	ANSB3	ANSB2	ANSB1 ⁽¹⁾	ANSB0 ⁽¹⁾	150
ANSELC	ANSC7	ANSC6	ANSC5	ANSC4	ANSC3	ANSC2	_	_	150
ANSELD	ANSD7	ANSD6	ANSD5	ANSD4	ANSD3	ANSD2	ANSD1 ⁽²⁾	ANSD0 ⁽²⁾	150
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	109
IPR1	_	ADIP	RC1IP	TX1IP	SSP1IP	CCP1IP	TMR2IP	TMR1IP	121
IPR2	OSCFIP	C1IP	C2IP	EEIP	BCL1IP	HLVDIP	TMR3IP	CCP2IP	122
IPR3	SSP2IP	BCL2IP	RC2IP	TX2IP	CTMUIP	TMR5GIP	TMR3GIP	TMR1GIP	123
PIE1	_	ADIE	RC1IE	TX1IE	SSP1IE	CCP1IE	TMR2IE	TMR1IE	117
PIE2	OSCFIE	C1IE	C2IE	EEIE	BCL1IE	HLVDIE	TMR3IE	CCP2IE	118
PIE3	SSP2IE	BCL2IE	RC2IE	TX2IE	CTMUIE	TMR5GIE	TMR3GIE	TMR1GIE	119
PIR1	_	ADIF	RC1IF	TX1IF	SSP1IF	CCP1IF	TMR2IF	TMR1IF	112
PIR2	OSCFIF	C1IF	C2IF	EEIF	BCL1IF	HLVDIF	TMR3IF	CCP2IF	113
PIR3	SSP2IF	BCL2IF	RC2IF	TX2IF	CTMUIF	TMR5GIF	TMR3GIF	TMR1GIF	114
PMD1	MSSP2MD	MSSP1MD	_	CCP5MD	CCP4MD	CCP3MD	CCP2MD	CCP1MD	53
SSP1ADD	SSP1 Addre	ss Register in	I ² C Slave n	node. SSP1	Baud Rate	Reload Reg	ister in I ² C M	laster mode.	258
SSP1BUF			SSP1 Re	eceive Buffe	er/Transmit	Register			_
SSP1CON1	WCOL	SSPOV	SSPEN	CKP		SSPI	M<3:0>		253
SSP1CON2	GCEN	ACKSTAT	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	255
SSP1CON3	ACKTIM	PCIE	SCIE	BOEN	SDAHT	SBCDE	AHEN	DHEN	256
SSP1MSK			S	SP1 MASK	Register bi	ts			257
SSP1STAT	SMP	CKE	D/A	Р	S	R/W	UA	BF	252
SSP2ADD	SSP2 Addre	ss Register in	I ² C Slave n	node. SSP2	Baud Rate	Reload Reg	ister in I ² C M	laster mode.	258
SSP2BUF			SSP2 Re	eceive Buffe	er/Transmit	Register			_
SSP2CON1	WCOL	SSPOV	SSPEN	CKP		SSPI	M<3:0>		253
SSP2CON2	GCEN	ACKSTAT	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	255
SSP2CON3	ACKTIM	PCIE	SCIE	BOEN	SDAHT	SBCDE	AHEN	DHEN	256
SSP2MSK			S	SP1 MASK	Register bi				257
SSP2STAT	SMP	CKE	D/A	Р	S	R/W	UA	BF	252
TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1 ⁽¹⁾	TRISB0 ⁽¹⁾	151
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	151
TRISD	TRISD7	TRISD6	TRISD5	TRISD4	TRISD3	TRISD2	TRISD1 ⁽²⁾	TRISD0 ⁽²⁾	151

TABLE 15-2: REGISTERS ASSOCIATED WITH I²C OPERATION

Legend: Shaded bits are not used by the MSSPx in I^2C mode.

Note 1: PIC18(L)F2XK22 devices.

2: PIC18(L)F4XK22 devices.

FIGURE 16-5: ASYNCHRONOUS RECEPTION

TABLE 16-2: REGISTERS ASSOCIATED WITH ASYNCHRONOUS RECEPTION

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
BAUDCON1	ABDOVF	RCIDL	DTRXP	CKTXP	BRG16	_	WUE	ABDEN	271
BAUDCON2	ABDOVF	RCIDL	DTRXP	CKTXP	BRG16	_	WUE	ABDEN	271
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	109
IPR1	—	ADIP	RC1IP	TX1IP	SSP1IP	CCP1IP	TMR2IP	TMR1IP	121
IPR3	SSP2IP	BCL2IP	RC2IP	TX2IP	CTMUIP	TMR5GIP	TMR3GIP	TMR1GIP	123
PIE1	—	ADIE	RC1IE	TX1IE	SSP1IE	CCP1IE	TMR2IE	TMR1IE	117
PIE3	SSP2IE	BCL2IE	RC2IE	TX2IE	CTMUIE	TMR5GIE	TMR3GIE	TMR1GIE	119
PIR1	—	ADIF	RC1IF	TX1IF	SSP1IF	CCP1IF	TMR2IF	TMR1IF	112
PIR3	SSP2IF	BCL2IF	RC2IF	TX2IF	CTMUIF	TMR5GIF	TMR3GIF	TMR1GIF	114
PMD0	UART2MD	UART1MD	TMR6MD	TMR5MD	TMR4MD	TMR3MD	TMR2MD	TMR1MD	52
RCREG1			EU	SART1 Re	ceive Regis	ter			—
RCSTA1	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	270
RCREG2			EU	SART2 Re	ceive Regis	ter			—
RCSTA2	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	270
SPBRG1			EUSART1	Baud Rate	Generator,	Low Byte			—
SPBRGH1			EUSART1	Baud Rate	Generator,	High Byte			—
SPBRG2			EUSART2	Baud Rate	Generator,	Low Byte			—
SPBRGH2			EUSART2	Baud Rate	Generator,	High Byte			—
TRISB ⁽²⁾	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	151
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	151
TRISD ⁽¹⁾	TRISD7	TRISD6	TRISD5	TRISD4	TRISD3	TRISD2	TRISD1	TRISD0	151
ANSELC	ANSC7	ANSC6	ANSC5	ANSC4	ANSC3	ANSC2	_	—	150
ANSELD ⁽¹⁾	ANSD7	ANSD6	ANSD5	ANSD4	ANSD3	ANSD2	ANSD1	ANSD0	150
TXSTA1	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	269
TXSTA2	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	269

Legend: — = unimplemented locations, read as '0'. Shaded bits are not used for asynchronous reception.

1: PIC18(L)F4XK22 devices.

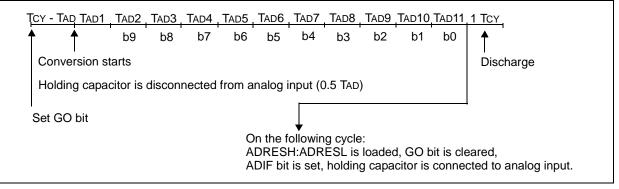
2: PIC18(L)F2XK22 devices.

Note

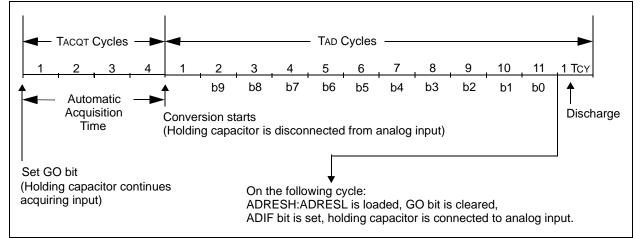
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R-0	R-0	R-0
SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D
bit 7							bit
Legend:							
R = Readable	e bit	W = Writable	e bit	U = Unimple	emented bit, rea	d as '0'	
-n = Value at	POR	'1' = Bit is se	t	ʻ0' = Bit is cl	eared	x = Bit is unkr	nown
bit 7		al Port Enable b					
		port enabled (co port disabled (he		DTx and TXx/	CKx pins as ser	ial port pins)	
bit 6	RX9: 9-bit F	Receive Enable	bit				
		9-bit reception8-bit reception					
bit 5	SREN: Sing	gle Receive Ena	ble bit				
	Asynchrono	ous mode:					
	Don't care						
		<u>is mode – Maste</u>					
		s single receive es single receive					
		leared after rece		ete.			
	<u>Synchronou</u>	<u>ıs mode – Slave</u>	<u>.</u>				
	Don't care						
bit 4	CREN: Con	tinuous Receive	e Enable bit				
	<u>Asynchronc</u>						
	1 = Enable						
	0 = Disable Synchronou						
			ceive until enal	hle hit CREN	is cleared (CRF	N overrides SR	EN)
		es continuous re					
bit 3	ADDEN: Ad	dress Detect E	nable bit				
	Asynchronc	ous mode 9-bit (<u>RX9 = 1)</u> :				
	0 = Disable		ction, all bytes			ouffer when RSF n be used as pa	
	Don't care						
bit 2	FERR: Frar	ning Error bit					
	1 = Framin 0 = No fran		updated by rea	ading RCREG	x register and re	eceive next valio	d byte)
bit 1	OERR: Ove	errun Error bit					
	1 = Overru 0 = No ove	n error (can be o rrun error	cleared by clea	aring bit CREN	1)		
bit 0	RX9D: Nint	h bit of Receive	d Data				
			abata				

REGISTER 16-2: RCSTAX: RECEIVE STATUS AND CONTROL REGISTER

17.2 ADC Operation


17.2.1 STARTING A CONVERSION

To enable the ADC module, the ADON bit of the ADCON0 register must be set to a '1'. Setting the GO/ DONE bit of the ADCON0 register to a '1' will, depending on the ACQT bits of the ADCON2 register, either immediately start the Analog-to-Digital conversion or start an acquisition delay followed by the Analog-to-Digital conversion. Figure 17-3 shows the operation of the A/D converter after the GO bit has been set and the ACQT<2:0> bits are cleared. A conversion is started after the following instruction to allow entry into SLEEP mode before the conversion begins.


Figure 17-4 shows the operation of the A/D converter after the GO bit has been set and the ACQT<2:0> bits are set to '010' which selects a 4 TAD acquisition time before the conversion starts.

Note:	The GO/DONE bit should not be set in the							
	same instruction that turns on the ADC.							
	Refer	to	Section 17.2.10	"A/D				
	Conversion Procedure".							

FIGURE 17-3: A/D CONVERSION TAD CYCLES (ACQT<2:0> = 000, TACQ = 0)

FIGURE 17-4: A/D CONVERSION TAD CYCLES (ACQT<2:0> = 010, TACQ = 4 TAD)

U-0	U-0	U-0	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1
_	_	_	BORV	′<1:0> ⁽¹⁾	BOREN	<1:0> (2)	PWRTEN ⁽²⁾
bit 7							bit
Legend:	1.12					0 1	
R = Readable		P = Programma	able bit	•	nted bit, read as	0'	
-n = Value wh	nen device is unprogr	ammed		x = Bit is unkno	wn		
bit 7-5	Unimplementee	d: Read as '0'					
L 4 4 0	4-3 BORV<1:0>: Brown-out Reset Voltage bits ⁽¹⁾						
bit 4-3			oltage bits				
DIT 4-3	11 = VBOR set to	o 1.9V nominal	oltage bits(")				
dit 4-3	11 = VBOR set to 10 = VBOR set to	o 1.9V nominal o 2.2V nominal	oltage bits				
dit 4-3	11 = VBOR set to 10 = VBOR set to 01 = VBOR set to	o 1.9V nominal o 2.2V nominal o 2.5V nominal	Oltage Dits."				
	11 = VBOR set to 10 = VBOR set to 01 = VBOR set to 00 = VBOR set to	o 1.9V nominal o 2.2V nominal o 2.5V nominal o 2.85V nominal	J				
	11 = VBOR set to 10 = VBOR set to 01 = VBOR set to 00 = VBOR set to BOREN<1:0>: E	o 1.9V nominal o 2.2V nominal o 2.5V nominal o 2.85V nominal Brown-out Reset	Enable bits ⁽²⁾	/ (SBOREN is dis	abled)		
	11 = VBOR set to 10 = VBOR set to 01 = VBOR set to 00 = VBOR set to BOREN<1:0>: E 11 = Brown-ou	o 1.9V nominal o 2.2V nominal o 2.5V nominal o 2.85V nominal Brown-out Reset tt Reset enabled	Enable bits ⁽²⁾ in hardware only	/ (SBOREN is dis / and disabled in {			
	11 = VBOR set to 10 = VBOR set to 01 = VBOR set to 00 = VBOR set to BOREN<1:0>: E 11 = Brown-ou 10 = Brown-ou	o 1.9V nominal o 2.2V nominal o 2.5V nominal o 2.85V nominal Brown-out Reset tt Reset enabled	Enable bits ⁽²⁾ in hardware only	۲ (SBOREN is dis ۲ and disabled in S			
	11 = VBOR set to 10 = VBOR set to 01 = VBOR set to 00 = VBOR set to BOREN<1:0>: E 11 = Brown-ou 10 = Brown-ou (SBOREN	o 1.9V nominal o 2.2V nominal o 2.5V nominal o 2.85V nominal Brown-out Reset it Reset enabled t Reset enabled N is disabled)	Enable bits ⁽²⁾ in hardware only in hardware only		Sleep mode		
bit 2-1	11 = VBOR set to 10 = VBOR set to 01 = VBOR set to 00 = VBOR set to BOREN<1:0>: E 11 = Brown-ou 10 = Brown-ou (SBOREN	o 1.9V nominal o 2.2V nominal o 2.5V nominal o 2.85V nominal Brown-out Reset it Reset enabled it Reset enabled v is disabled) it Reset enabled	Enable bits ⁽²⁾ in hardware only in hardware only and controlled b	y and disabled in S y software (SBOF	Sleep mode		
	11 = VBOR set to 10 = VBOR set to 01 = VBOR set to 00 = VBOR set to BOREN<1:0>: E 11 = Brown-ou 10 = Brown-ou (SBOREN 01 = Brown-ou	o 1.9V nominal o 2.2V nominal o 2.5V nominal o 2.85V nominal Brown-out Reset tt Reset enabled tt Reset enabled v is disabled) tt Reset enabled tt Reset disabled	Enable bits ⁽²⁾ in hardware only in hardware only and controlled b in hardware and	y and disabled in S y software (SBOF	Sleep mode		
bit 2-1	11 = VBOR set to 10 = VBOR set to 01 = VBOR set to 00 = VBOR set to BOREN<1:0>: F 11 = Brown-ou 10 = Brown-ou (SBOREN 01 = Brown-ou 00 = Brown-ou	o 1.9V nominal o 2.2V nominal o 2.5V nominal o 2.85V nominal Brown-out Reset it Reset enabled it Reset enabled v is disabled) it Reset enabled it Reset disabled er-up Timer Enabled	Enable bits ⁽²⁾ in hardware only in hardware only and controlled b in hardware and	y and disabled in S y software (SBOF	Sleep mode		

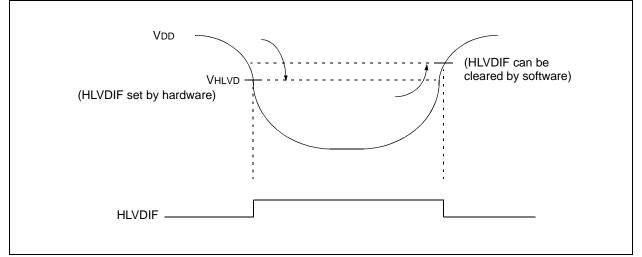
2: The Power-up Timer is decoupled from Brown-out Reset, allowing these features to be independently controlled.

POP	Pop Top of Return Stack	PUSH	Push Top of Return Stack
Syntax:	POP	Syntax:	PUSH
Operands:	None	Operands:	None
Operation:	$(TOS) \rightarrow bit bucket$	Operation:	$(PC + 2) \rightarrow TOS$
Status Affected:	None	Status Affected:	None
Encoding:	0000 0000 0000 0110	Encoding:	0000 0000 0000 0101
Description:	The TOS value is pulled off the return stack and is discarded. The TOS value then becomes the previous value that was pushed onto the return stack. This instruction is provided to enable the user to properly manage the return stack to incorporate a software stack.	Description: Words:	The PC + 2 is pushed onto the top of the return stack. The previous TOS value is pushed down on the stack. This instruction allows implementing a software stack by modifying TOS and then pushing it onto the return stack.
Words:	1	Cycles:	1
Cycles:	1	Q Cycle Activity:	
Q Cycle Activity:		Q1	Q2 Q3 Q4
Q1 Decode	Q2Q3Q4NoPOP TOSNooperationvalueoperation	Decode	PUSH No No PC + 2 onto operation operation return stack
Example:	POP Goto new	Example: Before Instruc	PUSH
Before Instruct TOS Stack (1 I	ion = 0031A2h evel down) = 014332h	TOS PC	= 345Ah = 0124h
After Instructio TOS PC	n = 014332h = NEW	After Instructio PC TOS Stack (1	on = 0126h = 0126h level down) = 345Ah

SUBWFB	Su	btract	W from f wit	h Borrow			
Syntax:	SU	IBWFB	f {,d {,a}}				
Operands:	0 ≤	f ≤ 255					
		[0,1]					
		[0,1]	_				
Operation:	(f) ·	- (W) - ($(\overline{C}) \rightarrow dest$				
Status Affected:	N,	OV, C, E	DC, Z				
Encoding:	(0101 10da ffff ffff					
Description: Words:	Subtract W and the CARRY flag (borrow) from register 'f' (2's comple- ment method). If 'd' is '0', the result is stored in W. If 'd' is '1', the result is stored back in register 'f' (default). If 'a' is '0', the Access Bank is selected. If 'a' is '1', the BSR is used to select the GPR bank. If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever $f \le 95$ (5Fh). See Section 25.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed Literal Offset Mode" for details.						
	1						
Cycles:	1						
Q Cycle Activity: Q1		Q2	Q3	Q4			
Decode	F	Read	Process	Write to			
		gister 'f'	Data	destination			
Example 1:	S	UBWFB	REG, 1, 0				
Before Instruc	tion						
REG W C	= = =	19h 0Dh 1	(0001 10) (0000 11)				
After Instructic REG W C Z	n = = =	0Ch 0Dh 1 0	(0000 11) (0000 11)				
N	=	Ō	; result is p	ositive			
Example 2:		UBWFB	REG, 0, 0				
Before Instruc REG W C	tion = = =	1Bh 1Ah 0	(0001 10: (0001 10:	11) 10)			
After Instructic REG W C	= =	1Bh 00h 1	(0001 103	11)			
Z N	= = =	1 0	; result is ze	ero			
Example 3:		UBWFB	REG, 1, 0				
Before Instruc REG W C	= = =	03h 0Eh 1		11) 10)			
After Instructic REG	n =	F5h	(1111 01) ; [2's comp]	01) 			
W C	=	0Eh 0	(0000 11				
Z N	= =	0 1	; result is n	egative			

SWAPF	Swap f								
Syntax:	•	SWAPF f {,d {,a}}							
Operands:		$0 \le f \le 255$							
op of an add	$d \in [0,1]$ $a \in [0,1]$								
Operation:	$(f<3:0>) \rightarrow dest<7:4>,$ $(f<7:4>) \rightarrow dest<3:0>$								
Status Affected:	None								
Encoding:	0011	10da	ffff	ffff					
Mush	'f' are exchanged. If 'd' is '0', the result is placed in W. If 'd' is '1', the result is placed in register 'f' (default). If 'a' is '0', the Access Bank is selected. If 'a' is '1', the BSR is used to select the GPR bank. If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever $f \le 95$ (5Fh). See Section 25.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed Literal Offset Mode" for details.								
Words:	1								
Cycles:	1								
Q Cycle Activity:									
Q1	Q2	Q3	3	Q4					

		-17	-
Decode	Read	Process	Write to
	register 'f'	Data	destination


REG, 1, 0

Example:

SWAPF

Before Instruction REG = 53h After Instruction REG = 35h

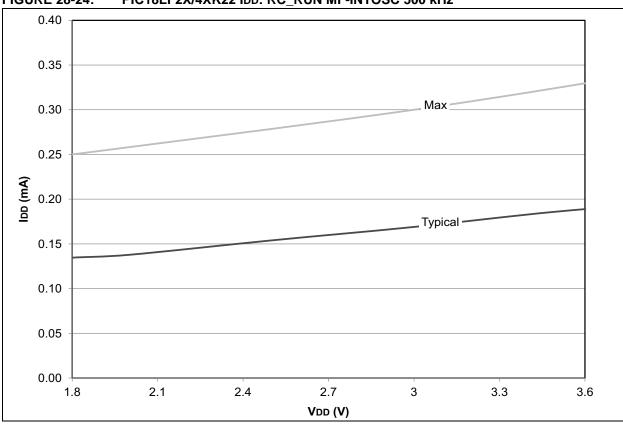
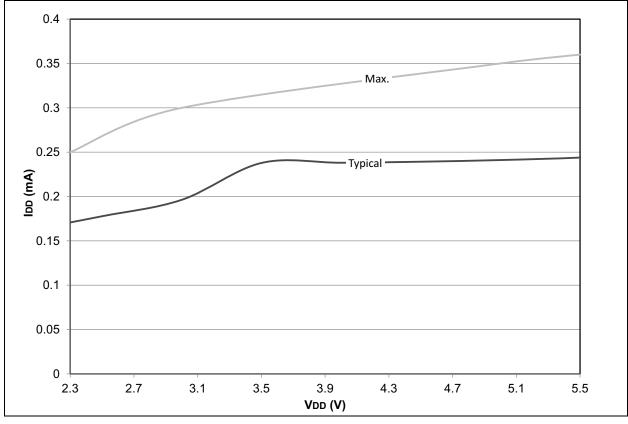
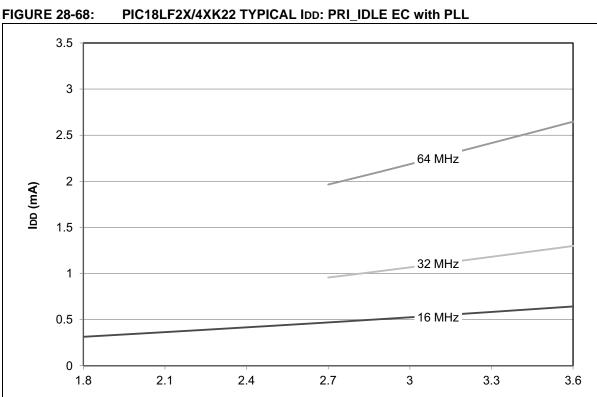


TABLE 27-5: HIGH/LOW-VOLTAGE DETECT CHARACTERISTICS

Г


Standard Operating Conditions (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +125^{\circ}C$									
Param No.	Symbol	Characteristic	HLVDL<3:0>	Min	Тур†	Max	Units	Conditions	
		HLVD Voltage on VDD	0000	1.69	1.84	1.99	V		
		Transition High-to-Low	0001	1.92	2.07	2.22	V		
			0010	2.08	2.28	2.48	V		
			0011	2.24	2.44	2.64	V		
			0100	2.34	2.54	2.74	V		
			0101	2.54	2.74	2.94	V		
			0110	2.62	2.87	3.12	V		
			0111	2.76	3.01	3.26	V		
			1000	3.00	3.30	3.60	V		
			1001	3.18	3.48	3.78	V		
			1010	3.44	3.69	3.94	V		
			1011	3.66	3.91	4.16	V		
			1100	3.90	4.15	4.40	V		
			1101	4.11	4.41	4.71	V		
			1110	4.39	4.74	5.09	V		
			1111	V(H	ILVDIN p	oin)	v		


† Production tested at TAMB = 25°C. Specifications over temperature limits ensured by characterization.

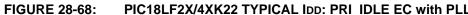
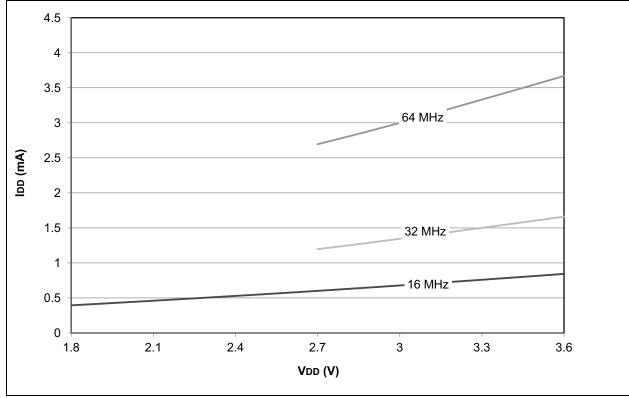


FIGURE 28-24: PIC18LF2X/4XK22 IDD: RC_RUN MF-INTOSC 500 kHz



VDD (V)