
Microchip Technology - PIC18LF43K22-E/P Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Active

Core Processor PIC

Core Size 8-Bit

Speed 48MHz

Connectivity I²C, SPI, UART/USART

Peripherals Brown-out Detect/Reset, HLVD, POR, PWM, WDT

Number of I/O 35

Program Memory Size 8KB (4K x 16)

Program Memory Type FLASH

EEPROM Size 256 x 8

RAM Size 512 x 8

Voltage - Supply (Vcc/Vdd) 1.8V ~ 3.6V

Data Converters A/D 30x10b

Oscillator Type Internal

Operating Temperature -40°C ~ 125°C (TA)

Mounting Type Through Hole

Package / Case 40-DIP (0.600", 15.24mm)

Supplier Device Package 40-PDIP

Purchase URL https://www.e-xfl.com/product-detail/microchip-technology/pic18lf43k22-e-p

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/pic18lf43k22-e-p-4433718
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers


PIC18(L)F2X/4XK22
2.8 PLL Frequency Multiplier

A Phase-Locked Loop (PLL) circuit is provided as an
option for users who wish to use a lower frequency
oscillator circuit or to clock the device up to its highest
rated frequency from the crystal oscillator. This may be
useful for customers who are concerned with EMI due
to high-frequency crystals or users who require higher
clock speeds from an internal oscillator.

2.8.1 PLL IN EXTERNAL OSCILLATOR 
MODES

The PLL can be enabled for any of the external
oscillator modes using the OSC1/OSC2 pins by either
setting the PLLCFG bit (CONFIG1H<4>), or setting the
PLLEN bit (OSCTUNE<6>). The PLL is designed for
input frequencies of 4 MHz up to 16 MHz. The PLL then
multiplies the oscillator output frequency by four to
produce an internal clock frequency up to 64 MHz.
Oscillator frequencies below 4 MHz should not be used
with the PLL.

2.8.2 PLL IN HFINTOSC MODES

The 4x frequency multiplier can be used with the
internal oscillator block to produce faster device clock
speeds than are normally possible with the internal
oscillator. When enabled, the PLL multiplies the
HFINTOSC by four to produce clock rates up to
64 MHz.

Unlike external clock modes, when internal clock
modes are enabled, the PLL can only be controlled
through software. The PLLEN control bit of the
OSCTUNE register is used to enable or disable the
PLL operation when the HFINTOSC is used. 

The PLL is designed for input frequencies of 4 MHz up
to 16 MHz.
 2010-2016 Microchip Technology Inc. DS40001412G-page 37



PIC18(L)F2X/4XK22
5.1.2.3 PUSH and POP Instructions

Since the Top-of-Stack is readable and writable, the
ability to push values onto the stack and pull values off
the stack without disturbing normal program execution
is a desirable feature. The PIC18 instruction set
includes two instructions, PUSH and POP, that permit
the TOS to be manipulated under software control.
TOSU, TOSH and TOSL can be modified to place data
or a return address on the stack.

The PUSH instruction places the current PC value onto
the stack. This increments the Stack Pointer and loads
the current PC value onto the stack.

The POP instruction discards the current TOS by
decrementing the Stack Pointer. The previous value
pushed onto the stack then becomes the TOS value.

5.2 Register Definitions: Stack Pointer 

5.2.0.1 Stack Full and Underflow Resets

Device Resets on Stack Overflow and Stack Underflow
conditions are enabled by setting the STVREN bit in
Configuration Register 4L. When STVREN is set, a full
or underflow will set the appropriate STKFUL or
STKUNF bit and then cause a device Reset. When
STVREN is cleared, a full or underflow condition will set
the appropriate STKFUL or STKUNF bit but not cause
a device Reset. The STKFUL or STKUNF bits are
cleared by the user software or a Power-on Reset.

5.2.1 FAST REGISTER STACK

A fast register stack is provided for the Status, WREG
and BSR registers, to provide a “fast return” option for
interrupts. The stack for each register is only one level
deep and is neither readable nor writable. It is loaded
with the current value of the corresponding register
when the processor vectors for an interrupt. All
interrupt sources will push values into the stack
registers. The values in the registers are then loaded
back into their associated registers if the
RETFIE,FAST instruction is used to return from the
interrupt.

If both low and high priority interrupts are enabled, the
stack registers cannot be used reliably to return from
low priority interrupts. If a high priority interrupt occurs
while servicing a low priority interrupt, the stack register
values stored by the low priority interrupt will be
overwritten. In these cases, users must save the key
registers by software during a low priority interrupt.

If interrupt priority is not used, all interrupts may use the
fast register stack for returns from interrupt. If no
interrupts are used, the fast register stack can be used
to restore the Status, WREG and BSR registers at the
end of a subroutine call. To use the fast register stack
for a subroutine call, a CALL label, FAST instruction
must be executed to save the Status, WREG and BSR
registers to the fast register stack. A RETURN, FAST
instruction is then executed to restore these registers
from the fast register stack.

Example 5-1 shows a source code example that uses
the fast register stack during a subroutine call and
return.

REGISTER 5-1: STKPTR: STACK POINTER REGISTER

R/C-0 R/C-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0

STKFUL(1) STKUNF(1) — STKPTR<4:0>

bit 7 bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented C = Clearable only bit

-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 7 STKFUL: Stack Full Flag bit(1)

1 = Stack became full or overflowed 
0 = Stack has not become full or overflowed

bit 6 STKUNF: Stack Underflow Flag bit(1)

1 = Stack Underflow occurred 
0 = Stack Underflow did not occur

bit 5 Unimplemented: Read as ‘0’

bit 4-0 STKPTR<4:0>: Stack Pointer Location bits

Note 1: Bit 7 and bit 6 are cleared by user software or by a POR.
 2010-2016 Microchip Technology Inc.  DS40001412G-page 67



PIC18(L)F2X/4XK22
5.3 PIC18 Instruction Cycle

5.3.1 CLOCKING SCHEME

The microcontroller clock input, whether from an
internal or external source, is internally divided by four
to generate four non-overlapping quadrature clocks
(Q1, Q2, Q3 and Q4). Internally, the program counter is
incremented on every Q1; the instruction is fetched
from the program memory and latched into the
instruction register during Q4. The instruction is
decoded and executed during the following Q1 through
Q4. The clocks and instruction execution flow are
shown in Figure 5-3. 

5.3.2 INSTRUCTION FLOW/PIPELINING

An “Instruction Cycle” consists of four Q cycles: Q1
through Q4. The instruction fetch and execute are
pipelined in such a manner that a fetch takes one
instruction cycle, while the decode and execute take
another instruction cycle. However, due to the
pipelining, each instruction effectively executes in one
cycle. If an instruction causes the program counter to
change (e.g., GOTO), then two cycles are required to
complete the instruction (Example 5-3).

A fetch cycle begins with the Program Counter (PC)
incrementing in Q1.

In the execution cycle, the fetched instruction is latched
into the Instruction Register (IR) in cycle Q1. This
instruction is then decoded and executed during the
Q2, Q3 and Q4 cycles. Data memory is read during Q2
(operand read) and written during Q4 (destination
write).

FIGURE 5-3: CLOCK/INSTRUCTION CYCLE

EXAMPLE 5-3: INSTRUCTION PIPELINE FLOW

Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4

OSC1

Q1

Q2

Q3

Q4

PC

OSC2/CLKOUT
(RC mode)

PC PC + 2 PC + 4

Fetch INST (PC)
Execute INST (PC – 2)

Fetch INST (PC + 2)
Execute INST (PC)

Fetch INST (PC + 4)
Execute INST (PC + 2)

Internal
Phase
Clock

Note: All instructions are single cycle, except for any program branches. These take two cycles since the
fetch instruction is “flushed” from the pipeline while the new instruction is being fetched and then
executed. 

TCY0 TCY1 TCY2 TCY3 TCY4 TCY5

1. MOVLW 55h Fetch 1 Execute 1

2. MOVWF PORTB Fetch 2 Execute 2

3. BRA  SUB_1 Fetch 3 Execute 3

4. BSF   PORTA, BIT3 (Forced NOP) Fetch 4 Flush (NOP)

5. Instruction @ address SUB_1 Fetch SUB_1 Execute SUB_1
 2010-2016 Microchip Technology Inc.  DS40001412G-page 69



PIC18(L)F2X/4XK22
5.4.2  ACCESS BANK

While the use of the BSR with an embedded 8-bit
address allows users to address the entire range of
data memory, it also means that the user must always
ensure that the correct bank is selected. Otherwise,
data may be read from or written to the wrong location.
This can be disastrous if a GPR is the intended target
of an operation, but an SFR is written to instead.
Verifying and/or changing the BSR for each read or
write to data memory can become very inefficient.

To streamline access for the most commonly used data
memory locations, the data memory is configured with
an Access Bank, which allows users to access a
mapped block of memory without specifying a BSR.
The Access Bank consists of the first 96 bytes of mem-
ory (00h-5Fh) in Bank 0 and the last 160 bytes of mem-
ory (60h-FFh) in Block 15. The lower half is known as
the “Access RAM” and is composed of GPRs. This
upper half is also where the device’s SFRs are
mapped. These two areas are mapped contiguously in
the Access Bank and can be addressed in a linear
fashion by an 8-bit address (Figures 5-5 through 5-7).

The Access Bank is used by core PIC18 instructions
that include the Access RAM bit (the ‘a’ parameter in
the instruction). When ‘a’ is equal to ‘1’, the instruction
uses the BSR and the 8-bit address included in the
opcode for the data memory address. When ‘a’ is ‘0’,
however, the instruction is forced to use the Access
Bank address map; the current value of the BSR is
ignored entirely. 

Using this “forced” addressing allows the instruction to
operate on a data address in a single cycle, without
updating the BSR first. For 8-bit addresses of 60h and
above, this means that users can evaluate and operate
on SFRs more efficiently. The Access RAM below 60h
is a good place for data values that the user might need
to access rapidly, such as immediate computational
results or common program variables. Access RAM
also allows for faster and more code efficient context
saving and switching of variables.

The mapping of the Access Bank is slightly different
when the extended instruction set is enabled (XINST
Configuration bit = 1). This is discussed in more detail
in Section 5.7.3 “Mapping the Access Bank in
Indexed Literal Offset Mode”.

5.4.3 GENERAL PURPOSE REGISTER 
FILE

PIC18 devices may have banked memory in the GPR
area. This is data RAM, which is available for use by all
instructions. GPRs start at the bottom of Bank 0
(address 000h) and grow upwards towards the bottom of
the SFR area. GPRs are not initialized by a Power-on
Reset and are unchanged on all other Resets.

5.4.4 SPECIAL FUNCTION REGISTERS

The Special Function Registers (SFRs) are registers
used by the CPU and peripheral modules for controlling
the desired operation of the device. These registers are
implemented as static RAM. SFRs start at the top of
data memory (FFFh) and extend downward to occupy
the top portion of Bank 15 (F38h to FFFh). A list of
these registers is given in Table 5-1 and Table 5-2.

The SFRs can be classified into two sets: those
associated with the “core” device functionality (ALU,
Resets and interrupts) and those related to the
peripheral functions. The Reset and interrupt registers
are described in their respective chapters, while the
ALU’s STATUS register is described later in this
section. Registers related to the operation of a
peripheral feature are described in the chapter for that
peripheral.

The SFRs are typically distributed among the
peripherals whose functions they control. Unused SFR
locations are unimplemented and read as ‘0’s.
 2010-2016 Microchip Technology Inc.  DS40001412G-page 77



PIC18(L)F2X/4XK22
5.6.3.1 FSR Registers and the INDF 
Operand

At the core of indirect addressing are three sets of reg-
isters: FSR0, FSR1 and FSR2. Each represents a pair
of 8-bit registers, FSRnH and FSRnL. Each FSR pair
holds a 12-bit value, therefore, the four upper bits of the
FSRnH register are not used. The 12-bit FSR value can
address the entire range of the data memory in a linear
fashion. The FSR register pairs, then, serve as pointers
to data memory locations. 

Indirect addressing is accomplished with a set of
Indirect File Operands, INDF0 through INDF2. These
can be thought of as “virtual” registers: they are
mapped in the SFR space but are not physically
implemented. Reading or writing to a particular INDF
register actually accesses its corresponding FSR
register pair. A read from INDF1, for example, reads
the data at the address indicated by FSR1H:FSR1L.
Instructions that use the INDF registers as operands
actually use the contents of their corresponding FSR as
a pointer to the instruction’s target. The INDF operand
is just a convenient way of using the pointer.

Because indirect addressing uses a full 12-bit address,
data RAM banking is not necessary. Thus, the current
contents of the BSR and the Access RAM bit have no
effect on determining the target address.

5.6.3.2 FSR Registers and POSTINC, 
POSTDEC, PREINC and PLUSW

In addition to the INDF operand, each FSR register pair
also has four additional indirect operands. Like INDF,
these are “virtual” registers which cannot be directly
read or written. Accessing these registers actually
accesses the location to which the associated FSR
register pair points, and also performs a specific action
on the FSR value. They are:

• POSTDEC: accesses the location to which the 
FSR points, then automatically decrements the 
FSR by 1 afterwards

• POSTINC: accesses the location to which the 
FSR points, then automatically increments the 
FSR by 1 afterwards

• PREINC: automatically increments the FSR by 
one, then uses the location to which the FSR 
points in the operation

• PLUSW: adds the signed value of the W register 
(range of -127 to 128) to that of the FSR and uses 
the location to which the result points in the 
operation.

In this context, accessing an INDF register uses the
value in the associated FSR register without changing
it. Similarly, accessing a PLUSW register gives the
FSR value an offset by that in the W register; however,
neither W nor the FSR is actually changed in the
operation. Accessing the other virtual registers
changes the value of the FSR register.

FIGURE 5-10: INDIRECT ADDRESSING 

FSR1H:FSR1L

07

Data Memory

000h

100h

200h

300h

F00h

E00h

FFFh

Bank 0

Bank 1

Bank 2

Bank 14

Bank 15

Bank 3
through
Bank 13

ADDWF, INDF1, 1

07

Using an instruction with one of the
indirect addressing registers as the
operand....

...uses the 12-bit address stored in
the FSR pair associated with that
register....

...to determine the data memory
location to be used in that operation.

In this case, the FSR1 pair contains
ECCh. This means the contents of
location ECCh will be added to that
of the W register and stored back in
ECCh.

x x x x 1 1 1 0 1 1 0 0 1 1 0 0
DS40001412G-page 86   2010-2016 Microchip Technology Inc.



PIC18(L)F2X/4XK22
FIGURE 14-7: EXAMPLE ENHANCED PWM OUTPUT RELATIONSHIPS (ACTIVE-LOW STATE)

0

Period

00

10

01

11

Signal
PRx+1

PxM<1:0>

PxA Modulated

PxA Modulated

PxB Modulated

PxA Active

PxB Inactive

PxC Inactive

PxD Modulated

PxA Inactive

PxB Modulated

PxC Active

PxD Inactive

Pulse

Width

(Single Output)

(Half-Bridge)

(Full-Bridge,

Forward)

(Full-Bridge,

Reverse)

Delay(1) Delay(1)

Relationships:
• Period = 4 * TOSC * (PRx + 1) * (TMRx Prescale Value)
• Pulse Width = TOSC * (CCPRxL<7:0>:CCPxCON<5:4>) * (TMRx Prescale Value)
• Delay = 4 * TOSC * (PWMxCON<6:0>)

Note 1: Dead-band delay is programmed using the PWMxCON register (Section 14.4.5 “Programmable Dead-Band Delay
Mode”).
DS40001412G-page 186   2010-2016 Microchip Technology Inc.



PIC18(L)F2X/4XK22
15.0 MASTER SYNCHRONOUS 
SERIAL PORT (MSSP1 AND 
MSSP2) MODULE

15.1 Master SSPx (MSSPx) Module 
Overview

The Master Synchronous Serial Port (MSSPx) module
is a serial interface useful for communicating with other
peripheral or microcontroller devices. These peripheral
devices may be Serial EEPROMs, shift registers,
display drivers, A/D converters, etc. The MSSPx
module can operate in one of two modes:

• Serial Peripheral Interface (SPI)

• Inter-Integrated Circuit (I2C)

The SPI interface supports the following modes and
features:

• Master mode

• Slave mode

• Clock Parity

• Slave Select Synchronization (Slave mode only)

• Daisy chain connection of slave devices

Figure 15-1 is a block diagram of the SPI interface
module.

FIGURE 15-1: MSSPx BLOCK DIAGRAM (SPI MODE)

(            )

Read Write

Data Bus

SSPxSR Reg

SSPxM<3:0>

bit 0 Shift
Clock

SSx Control
Enable

Edge
Select

Clock Select

TMR2 Output

TOSCPrescaler
4, 16, 64

2

Edge
Select

2 (CKP, CKE)

4

TRIS bit

SDOx

SSPxBUF Reg

SDIx

SSx

SCKx

Baud Rate
Generator
(SSPxADD)
DS40001412G-page 204   2010-2016 Microchip Technology Inc.



PIC18(L)F2X/4XK22
15.5.3.3 7-bit Transmission with Address 
Hold Enabled

Setting the AHEN bit of the SSPxCON3 register
enables additional clock stretching and interrupt
generation after the 8th falling edge of a received
matching address. Once a matching address has
been clocked in, CKP is cleared and the SSPxIF
interrupt is set.

Figure 15-19 displays a standard waveform of a 7-bit
Address Slave Transmission with AHEN enabled.

1. Bus starts Idle.

2. Master sends Start condition; the S bit of
SSPxSTAT is set; SSPxIF is set if interrupt on
Start detect is enabled.

3. Master sends matching address with R/W bit
set. After the 8th falling edge of the SCLx line the
CKP bit is cleared and SSPxIF interrupt is
generated.

4. Slave software clears SSPxIF.

5. Slave software reads ACKTIM bit of SSPxCON3
register, and R/W and D/A of the SSPxSTAT
register to determine the source of the interrupt.

6. Slave reads the address value from the SSPxBUF
register clearing the BF bit.

7. Slave software decides from this information if it
wishes to ACK or not ACK and sets ACKDT bit
of the SSPxCON2 register accordingly.

8. Slave sets the CKP bit releasing SCLx.

9. Master clocks in the ACK value from the slave.

10. Slave hardware automatically clears the CKP bit
and sets SSPxIF after the ACK if the R/W bit is
set.

11. Slave software clears SSPxIF.

12. Slave loads value to transmit to the master into
SSPxBUF setting the BF bit.

13. Slave sets CKP bit releasing the clock.

14. Master clocks out the data from the slave and
sends an ACK value on the 9th SCLx pulse.

15. Slave hardware copies the ACK value into the
ACKSTAT bit of the SSPxCON2 register.

16. Steps 10-15 are repeated for each byte
transmitted to the master from the slave.

17. If the master sends a not ACK the slave
releases the bus allowing the master to send a
Stop and end the communication.

Note: SSPxBUF cannot be loaded until after the
ACK.

Note: Master must send a not ACK on the last byte
to ensure that the slave releases the SCLx
line to receive a Stop.
 2010-2016 Microchip Technology Inc.  DS40001412G-page 227



PIC18(L)F2X/4XK22
  

REGISTER 15-7: SSPxADD: MSSPx ADDRESS AND BAUD RATE REGISTER (I2C MODE)

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0

ADD<7:0>

bit 7 bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets

‘1’ = Bit is set ‘0’ = Bit is cleared

Master mode:

bit 7-0 ADD<7:0>: Baud Rate Clock Divider bits
SCLx pin clock period = ((ADD<7:0> + 1) *4)/FOSC

10-Bit Slave mode — Most Significant Address byte:

bit 7-3 Not used: Unused for Most Significant Address byte. Bit state of this register is a “don’t care”. Bit 
pattern sent by master is fixed by I2C specification and must be equal to ‘11110’. However, those bits 
are compared by hardware and are not affected by the value in this register.

bit 2-1 ADD<2:1>: Two Most Significant bits of 10-bit address

bit 0 Not used: Unused in this mode. Bit state is a “don’t care”.

10-Bit Slave mode — Least Significant Address byte:

bit 7-0 ADD<7:0>: Eight Least Significant bits of 10-bit address

7-Bit Slave mode:

bit 7-1 ADD<7:1>: 7-bit address

bit 0 Not used: Unused in this mode. Bit state is a “don’t care”.
DS40001412G-page 258   2010-2016 Microchip Technology Inc.



PIC18(L)F2X/4XK22
16.5 EUSART Synchronous Mode

Synchronous serial communications are typically used
in systems with a single master and one or more
slaves. The master device contains the necessary
circuitry for baud rate generation and supplies the clock
for all devices in the system. Slave devices can take
advantage of the master clock by eliminating the
internal clock generation circuitry. 

There are two signal lines in Synchronous mode: a
bidirectional data line and a clock line. Slaves use the
external clock supplied by the master to shift the serial
data into and out of their respective receive and
transmit shift registers. Since the data line is
bidirectional, synchronous operation is half-duplex
only. Half-duplex refers to the fact that master and
slave devices can receive and transmit data but not
both simultaneously. The EUSART can operate as
either a master or slave device.

Start and Stop bits are not used in synchronous
transmissions.

16.5.1 SYNCHRONOUS MASTER MODE

The following bits are used to configure the EUSART
for Synchronous Master operation:

• SYNC = 1
• CSRC = 1
• SREN = 0 (for transmit); SREN = 1 (for receive)

• CREN = 0 (for transmit); CREN = 1 (for receive)

• SPEN = 1

Setting the SYNC bit of the TXSTAx register configures
the device for synchronous operation. Setting the CSRC
bit of the TXSTAx register configures the device as a
master. Clearing the SREN and CREN bits of the
RCSTAx register ensures that the device is in the
Transmit mode, otherwise the device will be configured
to receive. Setting the SPEN bit of the RCSTAx register
enables the EUSART. If the RXx/DTx or TXx/CKx pins
are shared with an analog peripheral the analog I/O
functions must be disabled by clearing the corresponding
ANSEL bits.

The TRIS bits corresponding to the RXx/DTx and
TXx/CKx pins should be set.

16.5.1.1 Master Clock

Synchronous data transfers use a separate clock line,
which is synchronous with the data. A device configured
as a master transmits the clock on the TXx/CKx line. The
TXx/CKx pin output driver is automatically enabled when
the EUSART is configured for synchronous transmit or
receive operation. Serial data bits change on the leading
edge to ensure they are valid at the trailing edge of each
clock. One clock cycle is generated for each data bit.
Only as many clock cycles are generated as there are
data bits.

16.5.1.2 Clock Polarity

A clock polarity option is provided for Microwire
compatibility. Clock polarity is selected with the CKTXP
bit of the BAUDCONx register. Setting the CKTXP bit
sets the clock Idle state as high. When the CKTXP bit
is set, the data changes on the falling edge of each
clock and is sampled on the rising edge of each clock.
Clearing the CKTXP bit sets the Idle state as low. When
the CKTXP bit is cleared, the data changes on the
rising edge of each clock and is sampled on the falling
edge of each clock. 

16.5.1.3 Synchronous Master Transmission

Data is transferred out of the device on the RXx/DTx
pin. The RXx/DTx and TXx/CKx pin output drivers are
automatically enabled when the EUSART is configured
for synchronous master transmit operation. 

A transmission is initiated by writing a character to the
TXREGx register. If the TSR still contains all or part of
a previous character the new character data is held in
the TXREGx until the last bit of the previous character
has been transmitted. If this is the first character, or the
previous character has been completely flushed from
the TSR, the data in the TXREGx is immediately trans-
ferred to the TSR. The transmission of the character
commences immediately following the transfer of the
data to the TSR from the TXREGx.

Each data bit changes on the leading edge of the
master clock and remains valid until the subsequent
leading clock edge.

16.5.1.4 Data Polarity

The polarity of the transmit and receive data can be
controlled with the DTRXP bit of the BAUDCONx
register. The default state of this bit is ‘0’ which selects
high true transmit and receive data. Setting the DTRXP
bit to ‘1’ will invert the data resulting in low true transmit
and receive data.

Note: The TSR register is not mapped in data
memory, so it is not available to the user.
DS40001412G-page 280   2010-2016 Microchip Technology Inc.



PIC18(L)F2X/4XK22
16.5.1.6 Synchronous Master Reception

Data is received at the RXx/DTx pin. The RXx/DTx pin
output driver must be disabled by setting the
corresponding TRIS bits when the EUSART is
configured for synchronous master receive operation.

In Synchronous mode, reception is enabled by setting
either the Single Receive Enable bit (SREN of the
RCSTAx register) or the Continuous Receive Enable
bit (CREN of the RCSTAx register).

When SREN is set and CREN is clear, only as many
clock cycles are generated as there are data bits in a
single character. The SREN bit is automatically cleared
at the completion of one character. When CREN is set,
clocks are continuously generated until CREN is
cleared. If CREN is cleared in the middle of a character
the CK clock stops immediately and the partial charac-
ter is discarded. If SREN and CREN are both set, then
SREN is cleared at the completion of the first character
and CREN takes precedence.

To initiate reception, set either SREN or CREN. Data is
sampled at the RXx/DTx pin on the trailing edge of the
TXx/CKx clock pin and is shifted into the Receive Shift
Register (RSR). When a complete character is
received into the RSR, the RCxIF bit is set and the
character is automatically transferred to the two
character receive FIFO. The Least Significant eight bits
of the top character in the receive FIFO are available in
RCREGx. The RCxIF bit remains set as long as there
are un-read characters in the receive FIFO.

16.5.1.7 Slave Clock

Synchronous data transfers use a separate clock line,
which is synchronous with the data. A device configured
as a slave receives the clock on the TXx/CKx line. The
TXx/CKx pin output driver must be disabled by setting
the associated TRIS bit when the device is configured
for synchronous slave transmit or receive operation.
Serial data bits change on the leading edge to ensure
they are valid at the trailing edge of each clock. One data
bit is transferred for each clock cycle. Only as many
clock cycles should be received as there are data bits.

16.5.1.8 Receive Overrun Error

The receive FIFO buffer can hold two characters. An
overrun error will be generated if a third character, in its
entirety, is received before RCREGx is read to access
the FIFO. When this happens the OERR bit of the
RCSTAx register is set. Previous data in the FIFO will
not be overwritten. The two characters in the FIFO
buffer can be read, however, no additional characters
will be received until the error is cleared. The OERR bit
can only be cleared by clearing the overrun condition.
If the overrun error occurred when the SREN bit is set
and CREN is clear then the error is cleared by reading
RCREGx. 

If the overrun occurred when the CREN bit is set then
the error condition is cleared by either clearing the
CREN bit of the RCSTAx register or by clearing the
SPEN bit which resets the EUSART.

16.5.1.9 Receiving 9-bit Characters

The EUSART supports 9-bit character reception. When
the RX9 bit of the RCSTAx register is set the EUSART
will shift 9-bits into the RSR for each character
received. The RX9D bit of the RCSTAx register is the
ninth, and Most Significant, data bit of the top unread
character in the receive FIFO. When reading 9-bit data
from the receive FIFO buffer, the RX9D data bit must
be read before reading the eight Least Significant bits
from the RCREGx.

16.5.1.10 Synchronous Master Reception 
Setup:

1. Initialize the SPBRGHx, SPBRGx register pair
for the appropriate baud rate. Set or clear the
BRGH and BRG16 bits, as required, to achieve
the desired baud rate.

2. Set the RXx/DTx and TXx/CKx TRIS controls to
‘1’.

3. Enable the synchronous master serial port by
setting bits SYNC, SPEN and CSRC. Disable
RXx/DTx and TXx/CKx output drivers by setting
the corresponding TRIS bits.

4. Ensure bits CREN and SREN are clear.

5. If using interrupts, set the GIE/GIEH and PEIE/
GIEL bits of the INTCON register and set
RCxIE.

6. If 9-bit reception is desired, set bit RX9.

7. Start reception by setting the SREN bit or for
continuous reception, set the CREN bit.

8. Interrupt flag bit RCxIF will be set when recep-
tion of a character is complete. An interrupt will
be generated if the enable bit RCxIE was set.

9. Read the RCSTAx register to get the ninth bit (if
enabled) and determine if any error occurred
during reception.

10. Read the 8-bit received data by reading the
RCREGx register.

11. If an overrun error occurs, clear the error by
either clearing the CREN bit of the RCSTAx
register or by clearing the SPEN bit which resets
the EUSART. 
 2010-2016 Microchip Technology Inc.  DS40001412G-page 283



PIC18(L)F2X/4XK22
REGISTER 17-2: ADCON1: A/D CONTROL REGISTER 1

R/W-0 U-0 U-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0

TRIGSEL — — — PVCFG<1:0> NVCFG<1:0>

bit 7 bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 7 TRIGSEL: Special Trigger Select bit
1 = Selects the special trigger from CTMU
0 = Selects the special trigger from CCP5

bit 6-4 Unimplemented: Read as ‘0’

bit 3-2 PVCFG<1:0>: Positive Voltage Reference Configuration bits

00 = A/D VREF+ connected to internal signal, AVDD

01 = A/D VREF+ connected to external pin, VREF+
10 = A/D VREF+ connected to internal signal, FVR BUF2

11 = Reserved (by default, A/D VREF+ connected to internal signal, AVDD)

bit 1-0 NVCFG<1:0>: Negative Voltage Reference Configuration bits

00 = A/D VREF- connected to internal signal, AVSS

01 = A/D VREF- connected to external pin, VREF-
10 = Reserved (by default, A/D VREF- connected to internal signal, AVSS)

11 = Reserved (by default, A/D VREF- connected to internal signal, AVSS)
DS40001412G-page 296   2010-2016 Microchip Technology Inc.



PIC18(L)F2X/4XK22
FIGURE 17-5: ANALOG INPUT MODEL        

FIGURE 17-6: ADC TRANSFER FUNCTION

CPINVA

Rs ANx

5 pF

V
D

D

I LEAKAGE(1)

RIC  1k

Sampling
Switch

SS Rss

CHOLD = 13.5 pF

VSS/VREF-

2.5V

Rss (k)

2.0V
1.5V

.1 1 10

VDD

Legend: CPIN
I LEAKAGE

RIC

SS
CHOLD

= Input Capacitance
= Leakage current at the pin due to

= Interconnect Resistance
= Sampling Switch
= Sample/Hold Capacitance

various junctions

Discharge
Switch

3.0V
3.5V

100

Note 1: See Section 27.0 “Electrical Specifications”.

3FFh

3FEh

A
D

C
 O

u
tp

u
t 

C
o

d
e

3FDh

3FCh

004h

003h

002h

001h

000h

Full-Scale

3FBh

1/2 LSB ideal

VSS/VREF- Zero-Scale
Transition

VDD/VREF+

Transition

1/2 LSB ideal

Full-Scale Range

Analog Input Voltage
DS40001412G-page 300   2010-2016 Microchip Technology Inc.



PIC18(L)F2X/4XK22
23.7 Operation During Sleep

When enabled, the HLVD circuitry continues to operate
during Sleep. If the device voltage crosses the trip
point, the HLVDIF bit will be set and the device will
wake-up from Sleep. Device execution will continue
from the interrupt vector address if interrupts have
been globally enabled.

23.8 Effects of a Reset   

A device Reset forces all registers to their Reset state.
This forces the HLVD module to be turned off. 

TABLE 23-1: REGISTERS ASSOCIATED WITH HIGH/LOW-VOLTAGE DETECT MODULE

Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Reset 
Values 

on page

HLVDCON VDIRMAG BGVST IRVST HLVDEN HLVDL<3:0> 337

INTCON GIE/GIEH PEIE/GIEL TMR0IE INT0IE RBIE TMR0IF INT0IF RBIF 109

IPR2 OSCFIP C1IP C2IP EEIP BCL1IP HLVDIP TMR3IP CCP2IP 122

PIE2 OSCFIE C1IE C2IE EEIE BCL1IE HLVDIE TMR3IE CCP2IE 118

PIR2 OSCFIF C1IF C2IF EEIF BCL1IF HLVDIF TMR3IF CCP2IF 113

TRISA TRISA7 TRISA6 TRISA5 TRISA4 TRISA3 TRISA2 TRISA1 TRISA0 151

Legend: — = unimplemented locations, read as ‘0’. Shaded bits are unused by the HLVD module.
DS40001412G-page 342   2010-2016 Microchip Technology Inc.



PIC18(L)F2X/4XK22
FIGURE 25-1: GENERAL FORMAT FOR INSTRUCTIONS    

Byte-oriented file register operations

15                  10      9     8   7                               0

d = 0 for result destination to be WREG register 

OPCODE     d      a              f (FILE #)

d = 1 for result destination to be file register (f)
a = 0 to force Access Bank 

Bit-oriented file register operations

15          12 11          9  8   7                                0

OPCODE   b (BIT #)   a        f (FILE #)

b = 3-bit position of bit in file register (f) 

Literal operations

15                              8    7                                 0

 OPCODE                       k (literal)

k = 8-bit immediate value

Byte to Byte move operations (2-word)

15           12  11                                                0

OPCODE                     f (Source FILE #)

CALL, GOTO and Branch operations 

15                                    8  7                            0

OPCODE                   n<7:0> (literal)     

n = 20-bit immediate value

a = 1 for BSR to select bank
f  = 8-bit file register address

a = 0 to force Access Bank
a = 1 for BSR to select bank
f  = 8-bit file register address

15                  12   11                                         0

1111                        n<19:8> (literal)

15           12  11                                                0

    1111                     f (Destination FILE #)

f = 12-bit file register address

Control operations

Example Instruction

ADDWF MYREG, W, B

MOVFF MYREG1, MYREG2

BSF MYREG, bit, B

MOVLW 7Fh

GOTO Label

15                                    8   7                             0

OPCODE                   n<7:0> (literal)     

15                  12   11                                           0

1111                      n<19:8> (literal)

CALL MYFUNC

15                       11  10                                       0

  OPCODE                   n<10:0> (literal)     

S = Fast bit

BRA MYFUNC

15                               8  7                                   0

OPCODE                      n<7:0> (literal)     BC MYFUNC

S

DS40001412G-page 362   2010-2016 Microchip Technology Inc.



PIC18(L)F2X/4XK22
25.2.2 EXTENDED INSTRUCTION SET 
  

ADDFSR Add Literal to FSR 

Syntax: ADDFSR   f, k

Operands: 0  k  63
f  [ 0, 1, 2 ]

Operation: FSR(f) + k  FSR(f)

Status Affected: None

Encoding: 1110 1000 ffkk kkkk

Description: The 6-bit literal ‘k’ is added to the 
contents of the FSR specified by ‘f’. 

Words: 1

Cycles: 1

Q Cycle Activity:

Q1 Q2 Q3 Q4

Decode Read
literal ‘k’

Process 
Data

Write to 
FSR

Example: ADDFSR 2, 23h

Before Instruction
FSR2 = 03FFh

After Instruction
FSR2 = 0422h

ADDULNK Add Literal to FSR2 and Return

Syntax: ADDULNK   k

Operands: 0  k  63

Operation: FSR2 + k  FSR2,

(TOS) PC

Status Affected: None

Encoding: 1110 1000 11kk kkkk

Description: The 6-bit literal ‘k’ is added to the 
contents of FSR2. A RETURN is then 
executed by loading the PC with the 
TOS. 
The instruction takes two cycles to 
execute; a NOP is performed during 
the second cycle.
This may be thought of as a special 
case of the ADDFSR instruction, 
where f = 3 (binary ‘11’); it operates 
only on FSR2. 

Words: 1

Cycles: 2

Q Cycle Activity:

Q1 Q2 Q3 Q4

Decode Read
literal ‘k’

Process 
Data

Write to 
FSR

No 
Operation

No 
Operation

No 
Operation

No 
Operation

Example: ADDULNK 23h

Before Instruction
FSR2 = 03FFh
PC = 0100h

After Instruction
FSR2 = 0422h
PC = (TOS)

Note: All PIC18 instructions may take an optional label argument preceding the instruction mnemonic for use in
symbolic addressing. If a label is used, the instruction syntax then becomes: {label} instruction argument(s).
 2010-2016 Microchip Technology Inc.  DS40001412G-page 403



PIC18(L)F2X/4XK22
FIGURE 27-9: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND 
POWER-UP TIMER TIMING       

FIGURE 27-10: BROWN-OUT RESET TIMING       

VDD

MCLR

Internal
POR

PWRT
Time-out

OSC
Time-out

Internal
Reset

Watchdog
Timer
Reset

33

32

30

31
34

I/O pins

34

Note: Refer to Figure 27-6 for load conditions.

VDD BVDD

35
VBGAP = 1.2V

VIVRST

Enable Internal

Internal Reference
36

Reference Voltage

Voltage Stable
 2010-2016 Microchip Technology Inc.  DS40001412G-page 439



PIC18(L)F2X/4XK22
FIGURE 28-54: PIC18F2X/4XK22 TYPICAL IDD: PRI_RUN EC HIGH POWER

FIGURE 28-55: PIC18F2X/4XK22 MAXIMUM IDD: PRI_RUN EC HIGH POWER

4 MHz 

10 MHz 

16 MHz 

20 MHz 

40 MHz 

64 MHz 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

2.3 2.7 3.1 3.5 3.9 4.3 4.7 5.1 5.5 

ID
D

 (
m

A
) 

VDD (V) 

4 MHz 

10 MHz 

16 MHz 

20 MHz 

40 MHz 

64 MHz 

0 

2 

4 

6 

8 

10 

12 

14 

2.3 2.7 3.1 3.5 3.9 4.3 4.7 5.1 5.5 

ID
D

 (
m

A
) 

VDD (V) 
 2010-2016 Microchip Technology Inc.  DS40001412G-page 481



PIC18(L)F2X/4XK22
DS40001412G-page 518   2010-2016 Microchip Technology Inc.



PIC18(L)F2X/4XK22
APPENDIX A: REVISION HISTORY

Revision A (February 2010)

Initial release of this document.

Revision B (April 2010)

Updated Figures 2-4, 12-1 and 18-2; Updated
Registers 2-2, 10-4, 10-5, 10-7, 17-2, 24-1 and 24-5;
Updated Sections 10.3.2, 18.8.4, Synchronizing
Comparator Output to Timer1; Updated Sections 27.2,
27-3, 27-4, 27-5, 27-6, 27-7 and 27-9; Updated Tables
27-2, 27-3, 27-4 and 27-7; Other minor corrections.

Revision C (July 2010)

Added 40-pin UQFN diagram; Updated Table 2 and
Table 1-3 to add 40-UQFN column; Updated Table 1-1
to add “40-pin UQFN”; Updated Figure 27-1; Added
Figure 27-2; Updated Table 27-6; Added 40-Lead
UQFN Package Marking Information and Details;
Updated Packaging Information section; Updated
Table B-1 to add “40-pin UQFN”; Updated Product
Identification System section; Other minor corrections.  

Revision D (November 2010)

Updated the data sheet to new format; Revised Tables
1-2, 1-3, 5-2, 10-1, 10-5, 10-6, 10-8, 10-9, 10-11, 10-
14, 14-13 and Register 14-5; Updated the Electrical
Characteristics section.

Revision E (January 2012)

Updated Section 2.5.2, EC Mode; Updated Table 3-2;
Removed Table 3-3; Updated Section 14.4.8;
Removed CM2CON Register; Updated the Electrical
Characteristics section; Updated the Packaging
Information section; Updated the Char. Data section;
Other minor corrections.

Revision F (May 2012)

Minor corrections; release of Final data sheet.

Revision G (August 2016)

Minor corrections to Tables 1-2, 17-1, 27-11, 27-14, 27-
22, Section 2.6.1, Example 7-3, Registers 9-4, 9-5,
9-11, 14-5, Figures 10-1, 17-3, 17-4, 27-23; Updated
Packaging Information Section.
DS40001412G-page 534   2010-2016 Microchip Technology Inc.


