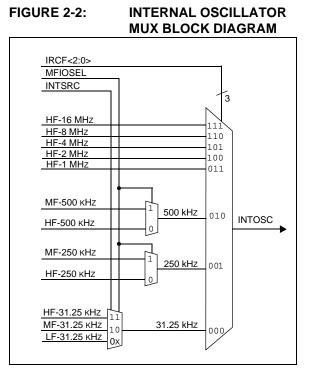


Welcome to E-XFL.COM

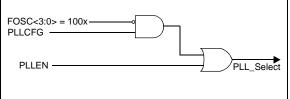
What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"


Details

E·XFI

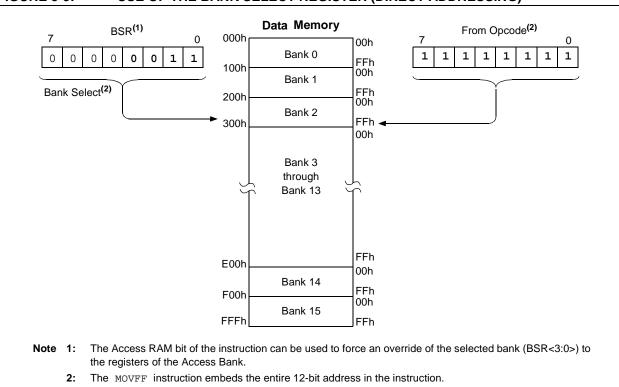

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	64MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	35
Program Memory Size	8KB (4K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 30x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-VQFN Exposed Pad
Supplier Device Package	44-QFN (8x8)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18lf43k22-i-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

FIGURE 2-3: PLL_SELECT BLOCK DIAGRAM

TABLE 2-1: PLL_SELECT TRUTH TABLE


Primary Clock MUX Source	FOSC<3:0>	PLLCFG	PLLEN	PLL_Select
FOSC (any source)	0000-1111	0	0	0
OSC1/OSC2 (external source)	0000-0111	1	х	1
	1010-1111	0	1	1
INTOSC (internal source)	1000-1001	x	0	0
		x	1	1

2.3 Register Definitions: Oscillator Control

REGISTER 2-1: OSCCON: OSCILLATOR CONTROL REGISTER

REGISTER : R/W-0	R/W-0	CON: OSCILL R/W-1	R/W-1	R-q	R-0	R/W-0	R/W-0
IDLEN		IRCF<2:0>		OSTS ⁽¹⁾	HFIOFS	SCS	
oit 7							bit
_egend:							
R = Readable	e bit W =	Writable bit	U = Unimp	lemented bit, re		q = depends or	
-n = Value at	POR '1' =	= Bit is set	'0' = Bit is	cleared		x = Bit is unkno	own
bit 7	IDLEN: Idle	Enable bit					
		enters Idle mod					
		enters Sleep mo		_	2)		
bit 6-4		Internal RC Os		ncy Select bits ^v	2)		
		ITOSC – (16 Mł ITOSC/2 – (8 M					
		ITOSC/2 – (8 M ITOSC/4 – (4 M					
		ITOSC/8 – (2 M					
	011 = HFIN	ITOSC/16 – (1 N	ИНz) ⁽³⁾				
	If INTSRC =	0 and MFIOSE	EL = 0:				
		ITOSC/32 - (50					
		ITOSC/64 – (25					
	000 = LFIN	TOSC – (31.25	kHz)				
	If INTSRC =	1 and MFIOSE	L = 0:				
		ITOSC/32 – (50					
		ITOSC/64 – (25 ITOSC/512 – (3	,				
		11030/312 - (3	1.20 KI IZ)				
		0 and MFIOSE					
		NTOSC – (500 k NTOSC/2 – (250					
		TOSC – (31.25					
		1 and MFIOSE	1 1.				
		TOSC – (500 k					
		TOSC/2 – (250					
	000 = MFIN	NTOSC/16 - (31	.25 kHz)				
bit 3	OSTS: Osci	llator Start-up Ti	me-out Status	bit			
		is running from		-		-	
		is running from		-	OSC, MFINTO	SC or LFINTOS	SC)
bit 2		FINTOSC Frequ	•	t			
		DSC frequency i DSC frequency i					
oit 1-0	SCS<1:0>: 3	System Clock S	elect bit				
		l oscillator block					
		dary (SOSC) os					
	00 = Primar	y clock (determi	ned by FOSC	<3:0> in CONFI	IG1H).		
Note 1: Re	eset state depe	ends on state of	the IESO Con	figuration bit.			
A 111	T000					MELOOFLIK	~~~~

- 2: INTOSC source may be determined by the INTSRC bit in OSCTUNE and the MFIOSEL bit in OSCCON2.
- **3:** Default output frequency of HFINTOSC on Reset.

FIGURE 5-9: USE OF THE BANK SELECT REGISTER (DIRECT ADDRESSING)

7.0 DATA EEPROM MEMORY

The data EEPROM is a nonvolatile memory array, separate from the data RAM and program memory, which is used for long-term storage of program data. It is not directly mapped in either the register file or program memory space but is indirectly addressed through the Special Function Registers (SFRs). The EEPROM is readable and writable during normal operation over the entire VDD range.

Four SFRs are used to read and write to the data EEPROM as well as the program memory. They are:

- EECON1
- EECON2
- EEDATA
- EEADR
- EEADRH

The data EEPROM allows byte read and write. When interfacing to the data memory block, EEDATA holds the 8-bit data for read/write and the EEADR:EEADRH register pair hold the address of the EEPROM location being accessed.

The EEPROM data memory is rated for high erase/write cycle endurance. A byte write automatically erases the location and writes the new data (erase-before-write). The write time is controlled by an on-chip timer; it will vary with voltage and temperature as well as from chip-to-chip. Please refer to the Data EEPROM Memory parameters in Section 27.0 "Electrical Specifica-tions" for limits.

7.1 EEADR and EEADRH Registers

The EEADR register is used to address the data EEPROM for read and write operations. The 8-bit range of the register can address a memory range of 256 bytes (00h to FFh). The EEADRH register expands the range to 1024 bytes by adding an additional two address bits.

7.2 EECON1 and EECON2 Registers

Access to the data EEPROM is controlled by two registers: EECON1 and EECON2. These are the same registers which control access to the program memory and are used in a similar manner for the data EEPROM.

The EECON1 register (Register 7-1) is the control register for data and program memory access. Control bit EEPGD determines if the access will be to program or data EEPROM memory. When the EEPGD bit is clear, operations will access the data EEPROM memory. When the EEPGD bit is set, program memory is accessed.

Control bit, CFGS, determines if the access will be to the Configuration registers or to program memory/data EEPROM memory. When the CFGS bit is set, subsequent operations access Configuration registers. When the CFGS bit is clear, the EEPGD bit selects either program Flash or data EEPROM memory.

The WREN bit, when set, will allow a write operation. On power-up, the WREN bit is clear.

The WRERR bit is set by hardware when the WR bit is set and cleared when the internal programming timer expires and the write operation is complete.

Note:	During normal operation, the WRERR								
	may read as '1'. This can indicate that a								
	write operation was prematurely termi-								
	nated by a Reset, or a write operation was								
	attempted improperly.								

The WR control bit initiates write operations. The bit can be set but not cleared by software. It is cleared only by hardware at the completion of the write operation.

Note: The EEIF interrupt flag bit of the PIR2 register is set when the write is complete. It must be cleared by software.

Control bits, RD and WR, start read and erase/write operations, respectively. These bits are set by firmware and cleared by hardware at the completion of the operation.

The RD bit cannot be set when accessing program memory (EEPGD = 1). Program memory is read using table read instructions. See **Section 6.1 "Table Reads and Table Writes"** regarding table reads.

The EECON2 register is not a physical register. It is used exclusively in the memory write and erase sequences. Reading EECON2 will read all '0's.

8.0 8 x 8 HARDWARE MULTIPLIER

8.1 Introduction

All PIC18 devices include an 8 x 8 hardware multiplier as part of the ALU. The multiplier performs an unsigned operation and yields a 16-bit result that is stored in the product register pair, PRODH:PRODL. The multiplier's operation does not affect any flags in the STATUS register.

Making multiplication a hardware operation allows it to be completed in a single instruction cycle. This has the advantages of higher computational throughput and reduced code size for multiplication algorithms and allows the PIC18 devices to be used in many applications previously reserved for digital signal processors. A comparison of various hardware and software multiply operations, along with the savings in memory and execution time, is shown in Table 8-1.

8.2 Operation

Example 8-1 shows the instruction sequence for an 8 x 8 unsigned multiplication. Only one instruction is required when one of the arguments is already loaded in the WREG register.

Example 8-2 shows the sequence to do an 8 x 8 signed multiplication. To account for the sign bits of the arguments, each argument's Most Significant bit (MSb) is tested and the appropriate subtractions are done.

EXAMPLE 8-1: 8 x 8 UNSIGNED MULTIPLY ROUTINE

MULWF ARG2 ; ARG1 * ARG2 -> ; PRODH:PRODL	MOVF	ARG1,	W	;					
; PRODH:PRODL	MULWF	ARG2		;	ARG1	*	ARG2	->	
				;	PRODH: PRODL				

EXAMPLE 8-2: 8 x 8 SIGNED MULTIPLY

MOVF	ARG1, W		
MULWF	ARG2	;	ARG1 * ARG2 ->
		;	PRODH:PRODL
BTFSC	ARG2, SB	;	Test Sign Bit
SUBWF	PRODH, F	;	PRODH = PRODH
		;	- ARG1
MOVF	ARG2, W		
BTFSC	ARG1, SB	;	Test Sign Bit
SUBWF	PRODH, F	;	PRODH = PRODH
		;	- ARG2

		Program	Cycles	Time				
Routine	Multiply Method	Memory (Words)	(Max)	@ 64 MHz	@ 40 MHz	@ 10 MHz	@ 4 MHz	
Q v Q unoignod	Without hardware multiply	13	69	4.3 μs	6.9 μs	27.6 μs	69 μs	
8 x 8 unsigned	Hardware multiply	1	1	62.5 ns	100 ns	400 ns	1 μs	
Q v Q aignad	Without hardware multiply	33	91	5.7 μs	9.1 μs	36.4 μs	91 μs	
8 x 8 signed	Hardware multiply	6	6	375 ns	600 ns	2.4 μs	6 μs	
16 x 16 uppigpod	Without hardware multiply	21	242	15.1 μs	24.2 μs	96.8 μs	242 μs	
16 x 16 unsigned	Hardware multiply	28	28	1.8 μs	2.8 μs	11.2 μs	28 μs	
16 x 16 signed	Without hardware multiply	52	254	15.9 μs	25.4 μs	102.6 μs	254 μs	
16 x 16 signed	Hardware multiply	35	40	2.5 μs	4.0 μs	16.0 μs	40 µs	

TABLE 8-1: PERFORMANCE COMPARISON FOR VARIOUS MULTIPLY OPERATIONS

TABLE 10-5.									
Pin	Function	TRIS Setting	ANSEL Setting	Pin Type	Buffer Type	Description			
RB6/KBI2/PGC	RB6	0	—	0	DIG	LATB<6> data output; not affected by analog input.			
		1	_	I	TTL	PORTB<6> data input; disabled when analog input enabled.			
	IOC2	1	—	I	TTL	Interrupt-on-change pin.			
	TX2 ⁽³⁾	1	—	0	DIG	EUSART asynchronous transmit data output.			
	CK2 ⁽³⁾	1	—	EUSART synchronous serial clock output.					
		1	_	Ι	EUSART synchronous serial clock input.				
	PGC	x	_	I	ST	In-Circuit Debugger and ICSP [™] programming clock input.			
RB7/KBI3/PGD	RB7	0	—	0	DIG	LATB<7> data output; not affected by analog input.			
		1	_	Ι	TTL	PORTB<7> data input; disabled when analog input enabled.			
	IOC3	1	—	I	TTL	Interrupt-on-change pin.			
	RX2 ^{(2), (3)}	1	—	I	ST	EUSART asynchronous receive data input.			
	DT2 ^{(2), (3)}	1	—	0	DIG	EUSART synchronous serial data output.			
		1	—	Ι	ST	EUSART synchronous serial data input.			
	PGD	x		0	DIG	In-Circuit Debugger and ICSP [™] programming data output.			
		x	—	Ι	ST	In-Circuit Debugger and ICSP [™] programming data input.			

TABLE 10-5: PORTB I/O SUMMARY (CONTINUED)

Legend: AN = Analog input or output; TTL = TTL compatible input; HV = High Voltage; OD = Open Drain; XTAL = Crystal; CMOS = CMOS compatible input or output; ST = Schmitt Trigger input with CMOS levels; I^2C = Schmitt Trigger input with I^2C .

Note 1: Default pin assignment for P2B, T3CKI, CCP3 and CCP2 when Configuration bits PB2MX, T3CMX, CCP3MX and CCP2MX are set.

2: Alternate pin assignment for P2B, T3CKI, CCP3 and CCP2 when Configuration bits PB2MX, T3CMX, CCP3MX and CCP2MX are clear.

3: Function on PORTD and PORTE for PIC18(L)F4XK22 devices.

REGISTER I	U-Z. FURI	C. FURIERI	EGISTER						
U-0	U-0	U-0	U-0	R/W-u/x	R/W-u/x	R/W-u/x	R/W-u/x		
_	—	—	—	RE3 ⁽¹⁾	RE2 ^{(2), (3)}	RE1 ^{(2), (3)}	RE0 ^{(2), (3)}		
bit 7							bit C		
Legend:									
R = Readable bit W = Writable bit			U = Unimplemented bit, read as '0'						
'1' = Bit is set	' = Bit is set '0' = Bit is cleared			x = Bit is unknown					
-n/n = Value at POR and BOR/Value at all other Resets									

REGISTER 10-2: PORTE: PORTE REGISTER

bit 3 **RE3:** PORTE Input bit value⁽¹⁾

bit 2-0 **RE<2:0>:** PORTE I/O bit values^{(2), (3)}

Note 1: Port is available as input only when MCLRE = 0.

- 2: Writes to PORTx are written to corresponding LATx register. Reads from PORTx register is return of I/O pin values.
- 3: Available on PIC18(L)F4XK22 devices.

REGISTER 10-3: ANSELA – PORTA ANALOG SELECT REGISTER

U-0	U-0	R/W-1	U-0	R/W-1	R/W-1	R/W-1	R/W-1
—	—	ANSA5	—	ANSA3	ANSA2	ANSA1	ANSA0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	t, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-6	Unimplemented: Read as '0'
bit 5	ANSA5: RA5 Analog Select bit
	1 = Digital input buffer disabled0 = Digital input buffer enabled
bit 4	Unimplemented: Read as '0'
bit 3-0	ANSA<3:0>: RA<3:0> Analog Select bit
	1 = Digital input buffer disabled

0 = Digital input buffer enabled

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
IPR2	OSCFIP	C1IP	C2IP	EEIP	BCL1IP	HLVDIP	TMR3IP	CCP2IP	122
IPR4	—	—	—	—	_	CCP5IP	CCP4IP	CCP3IP	124
PIE1	—	ADIE	RC1IE	TX1IE	SSP1IE	CCP1IE	TMR2IE	TMR1IE	117
PIE2	OSCFIE	C1IE	C2IE	EEIE	BCL1IE	HLVDIE	TMR3IE	CCP2IE	118
PIE4	—	—	—	—		CCP5IE	CCP4IE	CCP3IE	120
PIR1	—	ADIF	RC1IF	TX1IF	SSP1IF	CCP1IF	TMR2IF	TMR1IF	112
PIR2	OSCFIF	C1IF	C2IF	EEIF	BCL1IF	HLVDIF	TMR3IF	CCP2IF	113
PIR4	—	—	—	—	—	CCP5IF	CCP4IF	CCP3IF	115
PMD0	UART2MD	UART1MD	TMR6MD	TMR5MD	TMR4MD	TMR3MD	TMR2MD	TMR1MD	52
PMD1	MSSP2MD	MSSP1MD	—	CCP5MD	CCP4MD	CCP3MD	CCP2MD	CCP1MD	53
T1CON	TMR10	CS<1:0>	T1CKP	S<1:0>	T1SOSCEN	T1SYNC	T1RD16	166	
T1GCON	TMR1GE	T1GPOL	T1GTM	T1GSPM	T1GGO/DONE	T1GVAL	T1GSS	<1:0>	167
T3CON	TMR30	CS<1:0>	T3CKP	S<1:0>	T3SOSCEN	T3SYNC	T3RD16	TMR3ON	166
T3GCON	TMR3GE	T3GPOL	T3GTM	T3GSPM	T3GGO/DONE	T3GVAL	T3GSS	S<1:0>	167
T5CON	TMR50	CS<1:0>	T5CKP	S<1:0>	T5SOSCEN	T5SYNC	T5RD16	TMR5ON	166
T5GCON	TMR5GE	T5GPOL	T5GTM	T5GSPM	T5GGO/DONE	T5GVAL	T5GSS	S<1:0>	167
TMR1H		Holding	Register for th	e Most Signifi	cant Byte of the 1	6-bit TMR1 R	egister		_
TMR1L			Least Sign	ificant Byte of	the 16-bit TMR1	Register			
TMR3H		Holding	Register for th	e Most Signifi	cant Byte of the 1	6-bit TMR3 R	egister		_
TMR3L			Least Sign	ificant Byte of	the 16-bit TMR3	Register			_
TMR5H		Holding	Register for th	e Most Signifi	cant Byte of the 1	6-bit TMR5 R	egister		_
TMR5L			Least Sign	ificant Byte of	the 16-bit TMR5	Register			_
TRISA	TRISA7	TRISA6	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	151
TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	151
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	151
TRISD ⁽¹⁾	TRISD7	TRISD6	TRISD5	TRISD4	TRISD3	TRISD2	TRISD1	TRISD0	151
TRISE	WPUE3	_	—	_	—	TRISE2 ⁽¹⁾	TRISE1 ⁽¹⁾	TRISE0 ⁽¹⁾	151

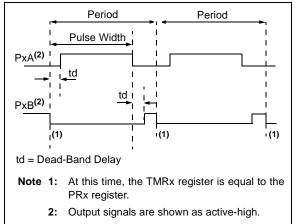
TABLE 14-5:	REGISTERS ASSOCIATED WITH COMPARE (CONTINUED))
-------------	--	------------	---

Legend: — = Unimplemented location, read as '0'. Shaded bits are not used by Compare mode.

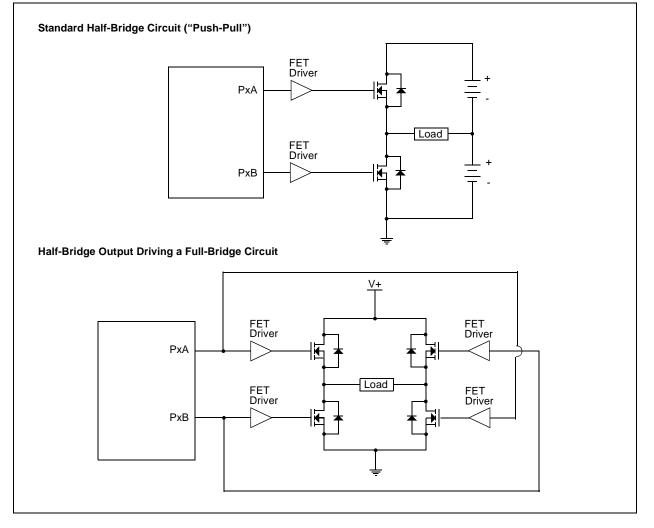
Note 1: These registers/bits are available on PIC18(L)F4XK22 devices.

TABLE 14-6: CONFIGURATION REGISTERS ASSOCIATED WITH COMPARE

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
CONFIG3H	MCLRE	_	P2BMX	T3CMX	HFOFST	CCP3MX	PBADEN	CCP2MX	348


Legend: — = Unimplemented location, read as '0'. Shaded bits are not used by Compare mode.

14.4.1 HALF-BRIDGE MODE


In Half-Bridge mode, two pins are used as outputs to drive push-pull loads. The PWM output signal is output on the CCPx/PxA pin, while the complementary PWM output signal is output on the PxB pin (see Figure 14-9). This mode can be used for half-bridge applications, as shown in Figure 14-9, or for full-bridge applications, where four power switches are being modulated with two PWM signals.

In Half-Bridge mode, the programmable dead-band delay can be used to prevent shoot-through current in halfbridge power devices. The value of the PDC<6:0> bits of the PWMxCON register sets the number of instruction cycles before the output is driven active. If the value is greater than the duty cycle, the corresponding output remains inactive during the entire cycle. See **Section 14.4.5 "Programmable Dead-Band Delay Mode"** for more details of the dead-band delay operations. Since the PxA and PxB outputs are multiplexed with the PORT data latches, the associated TRIS bits must be cleared to configure PxA and PxB as outputs.

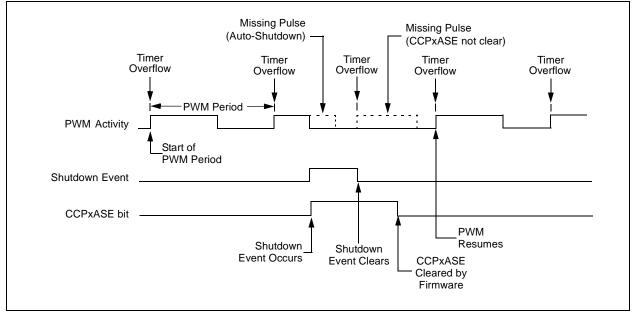
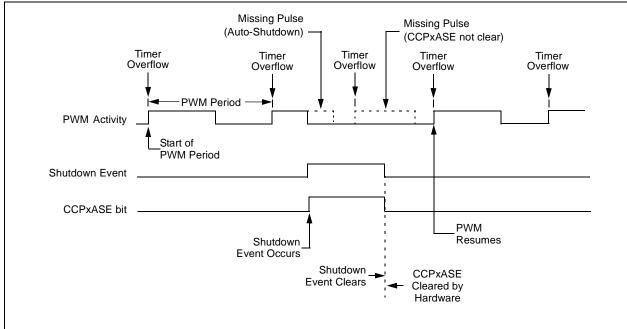
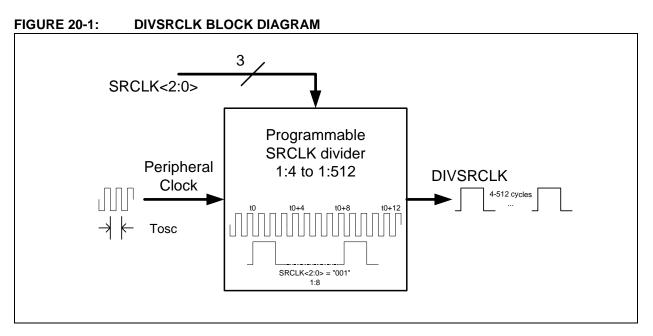

FIGURE 14-8: EXAMPLE OF HALF-BRIDGE PWM OUTPUT

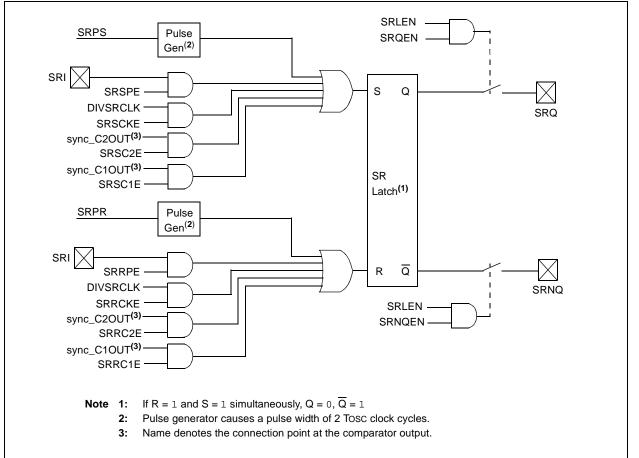
FIGURE 14-9: EXAMPLE OF HALF-BRIDGE APPLICATIONS



14.4.4 AUTO-RESTART MODE

The Enhanced PWM can be configured to automatically restart the PWM signal once the auto-shutdown condition has been removed. Auto-restart is enabled by setting the PxRSEN bit in the PWMxCON register.


If auto-restart is enabled, the CCPxASE bit will remain set as long as the auto-shutdown condition is active. When the auto-shutdown condition is removed, the CCPxASE bit will be cleared via hardware and normal operation will resume.



R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R-0	R-0	R-0
SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D
bit 7							bit
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimple	emented bit, rea	d as '0'	
-n = Value at	POR	'1' = Bit is se	t	'0' = Bit is cl	eared	x = Bit is unkr	nown
bit 7		al Port Enable b					
		port enabled (co port disabled (he		DTx and TXx/0	CKx pins as ser	ial port pins)	
bit 6	RX9: 9-bit F	Receive Enable	bit				
		9-bit reception8-bit reception					
bit 5	SREN: Sing	gle Receive Ena	ble bit				
	Asynchrono	ous mode:					
	Don't care						
		<u>us mode – Maste</u>					
		s single receive es single receive					
		leared after rece		ete.			
	<u>Synchronou</u>	<u>us mode – Slave</u>	<u>)</u>				
	Don't care						
bit 4	CREN: Con	ntinuous Receive	e Enable bit				
	Asynchronc						
	1 = Enable						
	0 = Disable Synchronou						
		s continuous re	ceive until enal	ble bit CREN	is cleared (CRF	N overrides SR	EN)
		es continuous re					,
bit 3	ADDEN: Ad	dress Detect E	nable bit				
	Asynchronc	ous mode 9-bit (<u>RX9 = 1)</u> :				
	0 = Disable	s address detec es address detec ous mode 8-bit (ction, all bytes				
	Don't care						
bit 2	FERR: Frar	ning Error bit					
	1 = Framin 0 = No fran	g error (can be ning error	updated by rea	ading RCREG	x register and re	eceive next valio	l byte)
bit 1	OERR: Ove	errun Error bit					
	1 = Overru 0 = No ove	n error (can be o errun error	cleared by clea	aring bit CREN	1)		
h :+ 0	DYOD . Nint						
bit 0	TAJD. INITI	h bit of Receive	d Data				

REGISTER 16-2: RCSTAX: RECEIVE STATUS AND CONTROL REGISTER

	IN 24-5. 0014						
R/P-1	R/P-0	U-0	U-0	U-0	R/P-1	U-0	R/P-1
DEBUG	(2) XINST	_	_	_	LVP(1)		STVREN
bit 7							bit 0
Legend:							
R = Reada	ble bit	P = Programm	able bit	U = Unimpleme	ented bit, read as	s 'O'	
-n = Value	when device is unproo	grammed		x = Bit is unkno	own		
bit 7	DEBUG: Backo	ground Debugge	r Enable bit ⁽²⁾				
					s general purpose I to In-Circuit Deb		
bit 6	-	ed Instruction Se				0	
	1 = Instruction	set extension ar	d Indexed Addre	ssing mode ena	bled		
	0 = Instruction	set extension ar	d Indexed Addre	essing mode disa	bled (Legacy mo	ode)	
bit 5-3	Unimplemente	ed: Read as '0'					
bit 2	LVP: Single-Su	pply ICSP Enab	le bit				
	0 1	ply ICSP enable					
	0 = Single-Sup	ply ICSP disable	d				
bit 1	Unimplemente	ed: Read as '0'					
bit 0	STVREN: Stac	k Full/Underflow	Reset Enable bi	t			
		nderflow will cau					
		nderflow will not					
Note 1:	Can only be changed	, , ,	0 0				_
2:	The DEBUG bit is manormal device opera	-		•	Is including debu	ggers and prog	rammers. For

REGISTER 24-5: CONFIG4L: CONFIGURATION REGISTER 4 LOW

REGISTER 24-6: CONFIG5L: CONFIGURATION REGISTER 5 LOW

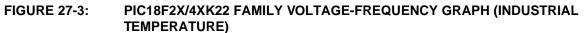
U-0	U-0	U-0	U-0	R/C-1	R/C-1	R/C-1	R/C-1
—	—	—	—	CP3 ⁽¹⁾	CP2 ⁽¹⁾	CP1	CP0
bit 7							bit 0

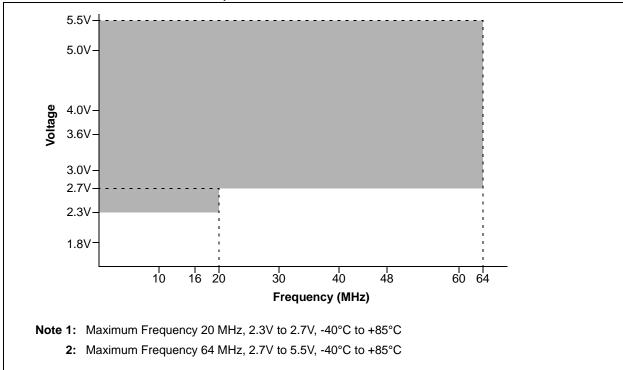
l	Legend:	
F	R = Readable bit	U = Unimplemented bit, read as '0'
-	n = Value when device is unprogrammed	C = Clearable only bit

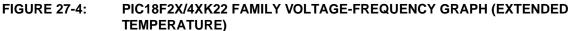
bit 7-4	Unimplemented: Read as '0'
bit 3	CP3: Code Protection bit ⁽¹⁾
	 Block 3 not code-protected Block 3 code-protected
bit 2	CP2: Code Protection bit ⁽¹⁾
	1 = Block 2 not code-protected
	0 = Block 2 code-protected
bit 1	CP1: Code Protection bit
	1 = Block 1 not code-protected
	0 = Block 1 code-protected
bit 0	CP0: Code Protection bit
	1 = Block 0 not code-protected
	0 = Block 0 code-protected

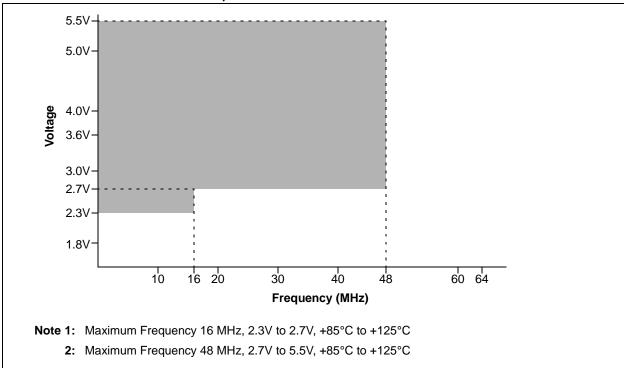
Note 1: Available on PIC18(L)FX5K22 and PIC18(L)FX6K22 devices.

.


BTFSC	Bit Test Fil	le, Skip if Cle	ear	BTFSS	Bit Test File	e, Skip if Se	t
Syntax:	BTFSC f, b	{,a}		Syntax:	BTFSS f, b {	{,a}	
Operands:	$\begin{array}{l} 0 \leq f \leq 255 \\ 0 \leq b \leq 7 \\ a \in [0,1] \end{array}$			Operands:	$0 \le f \le 255$ $0 \le b < 7$ $a \in [0,1]$		
Operation:	skip if (f)	= 0		Operation:	skip if (f)	= 1	
Status Affected:	None			Status Affected:	None		
Encoding:	1011	bbba ff	ff ffff	Encoding:	1010	bbba fff	f ffff
Description:	instruction is the next instru- current instru- and a NOP is this a 2-cycle If 'a' is '0', th 'a' is '1', the GPR bank. If 'a' is '0' an set is enable Indexed Liter mode where See Section Bit-Oriented	gister 'f' is '0', t skipped. If bit ruction fetched uction executio s executed inst e instruction. e Access Bank BSR is used to d the extended d, this instructi ral Offset Addrever f \leq 95 (5FH 25.2.3 "Byte- 1 Instructions et Mode " for do	 'b' is '0', then during the n is discarded ead, making is selected. If b select the d instruction on operates in essing n). Oriented and in Indexed 	Description:	instruction is the next instru- current instru and a NOP is this a 2-cycle If 'a' is '0', the 'a' is '1', the E GPR bank. If 'a' is '0' and set is enabled in Indexed Lit mode wheney See Section Bit-Oriented	ister 'f' is '1', t skipped. If bit uction fetched ction execution executed instr- instruction. Access Bank 3SR is used to the extended d, this instructi- teral Offset Ad ver f \leq 95 (5Fh 25.2.3 "Byte- Instructions t Mode" for de	b' is '1', then during the is discarded ead, making is selected. If select the instruction on operates dressing). Oriented and in Indexed
Words:	1			Words:	1		
Cycles:	•	cles if skip and 2-word instruc		Cycles:		les if skip and 2-word instruc	
Q Cycle Activity:				Q Cycle Activity:			
Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4
Decode	Read	Process	No	Decode	Read	Process	No
If akin:	register 'f'	Data	operation		register 'f'	Data	operation
If skip:	02	02	04	If skip:	02	02	04
Q1 No	Q2 No	Q3 No	Q4 No	Q1 No	Q2 No	Q3 No	Q4 No
operation	operation	operation	operation	operation	operation	operation	operation
If skip and followed	by 2-word inst	truction:		If skip and followe	d by 2-word in	struction:	<u> </u>
Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4
No	No	No	No	No	No	No	No
operation	operation	operation	operation	operation	operation	operation	operation
No operation	No operation	No operation	No operation	No	No	No operation	No
operation	operation	operation	operation	operation	operation	operation	operation
Example: Before Instruct PC After Instruction If FLAG< PC If FLAG< PC	FALSE : TRUE : ion = add h > = 0; = add > = 1;	rfsc flag ress (HERE) ress (TRUE) ress (False)	, 1, 0	Example: Before Instruc PC After Instructi If FLAG- PC If FLAG- PC	FALSE : TRUE : ction = add on <1> = 0; = add <1> = 1;		


RRNCF	Rotate F	light f (N	lo Car	ry)
Syntax:	RRNCF	f {,d {,a}}		
Operands:	0 ≤ f ≤ 255 d ∈ [0,1] a ∈ [0,1]	5		
Operation:	$(f < n >) \rightarrow (f < 0 >) \rightarrow (f <$		l>,	
Status Affected:	N, Z			
Encoding:	0100	00da	fff	f ffff
Description:	one bit to is placed ba lf 'a' is '0', selected (value. If 'a selected a lf 'a' is '0' set is ena in Indexed mode whe Section 2 Bit-Orien	the right. I in W. If 'd' ck in regis the Accea default), o a' is '1', the as per the and the ea bled, this i d Literal O enever $f \leq$ 5.2.3 "By	If 'd' is ' is '1', t ster 'f' (d ss Banl vverridir en the b BSR va xtended instruct ffset Ac 95 (5FI te-Orie actions	k will be ng the BSR bank will be alue. d instruction ion operates ddressing h). See ented and in Indexed
		► re	egister f	i
Words:	1	► re	egister f	
Words: Cycles:	1 1	► re	egister f	
		► <u>re</u>	egister f	
Cycles:			-	Q4
Cycles: Q Cycle Activity:	1 Q2 Read	Qa	3 ess	Q4 Write to
Cycles: Q Cycle Activity: Q1	1 Q2	Q	3 ess	 Q4
Cycles: Q Cycle Activity: Q1	1 Q2 Read	Qa	ess a	Q4 Write to
Cycles: Q Cycle Activity: Q1 Decode	1 Q2 Read register 'f' RRNCF tion = 1101	Q3 Proce Dat REG, 1, 0111	ess a	Q4 Write to
Cycles: Q Cycle Activity: Q1 Decode Example 1: Before Instruct REG After Instruction REG	1 Q2 Read register 'f' RRNCF tion = 1101 on = 1110	Q3 Proce Dat REG, 1, 0111 1011	ess a	Q4 Write to
Cycles: Q Cycle Activity: Q1 Decode Example 1: Before Instructor REG After Instruction REG Example 2:	1 Q2 Read register 'f' RRNCF tion = 1101 on = 1110 RRNCF	Q3 Proce Dat REG, 1, 0111 1011	ess a	Q4 Write to
Cycles: Q Cycle Activity: Q1 Decode Example 1: Before Instruct REG After Instruction REG	1 Q2 Read register 'f' RRNCF tion = 1101 on = 1110 RRNCF	Q3 Proce Dat REG, 1, 0111 1011	ess a	Q4 Write to
Cycles: Q Cycle Activity: Q1 Decode Example 1: Before Instruction REG After Instruction REG Example 2: Before Instruction	1 Q2 Read register 'f' RRNCF tion = 1101 m RRNCF tion = ? = 1101	Q3 Proce Dat REG, 1, 0111 1011 REG, 0,	ess a	Q4 Write to


SETF	Set f							
Syntax:	SETF f{,	a}						
Operands:	0 ≤ f ≤ 255 a ∈ [0,1]							
Operation:	$FFh\tof$	$FFh \rightarrow f$						
Status Affected:	None							
Encoding:	0110	100a	ffff	ffff				
	If 'a' is '0', ' If 'a' is '1', ' GPR bank. If 'a' is '0' a set is enab in Indexed mode when Section 25 Bit-Oriente	are set to FFh. If 'a' is '0', the Access Bank is selected. If 'a' is '1', the BSR is used to select the GPR bank. If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever f ≤ 95 (5Fh). See Section 25.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed Literal Offset Mode" for details.						
Words:	1							
Cycles:	1							
Q Cycle Activity:								
Q1	Q2	Q3	3	Q4				
Decode	Read register 'f'	Proce Dat		Write gister 'f'				
Example: Before Instruc			B, 1					
REG After Instructio	= 54	۱h						


= FFh

REG

27.3	DC Characteristics:	RC Run Supply Current	, PIC18(L)F2X/4XK22 (Continued)
------	---------------------	------------------------------	---------------------------------

PIC18LF2X/4XK22Standard Operating Conditions (unless otherwise stated Operating temperature $-40^{\circ}C \le TA \le +125^{\circ}C$						ed)		
PIC18F2	2X/4XK22	Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +125^{\circ}C$						
Param No.	Device Characteristics	Тур	Max	Units	Conditions			
D030		0.35	0.50	mA	-40°C to +125°C	VDD = 1.8V	Fosc = 1 MHz	
D031		0.45	0.65	mA	-40°C to +125°C	VDD = 3.0V	(RC_RUN mode, HFINTOSC source)	
D032		0.40	0.60	mA	-40°C to +125°C	VDD = 2.3V	Fosc = 1 MHz (RC_RUN mode, HFINTOSC source)	
D033		0.50	0.65	mA	-40°C to +125°C	VDD = 3.0V		
D034		0.55	0.75	mA	-40°C to +125°C	VDD = 5.0V		
D035		1.3	2.0	mA	-40°C to +125°C	VDD = 1.8V	Fosc = 16 MHz	
D036		2.2	3.0	mA	-40°C to +125°C	VDD = 3.0V	(RC_RUN mode, HFINTOSC source)	
D037		1.7	2.0	mA	-40°C to +125°C	VDD = 2.3V	Fosc = 16 MHz	
D038		2.2	3.0	mA	-40°C to +125°C	VDD = 3.0V	(RC_RUN mode, HFINTOSC	
D039		2.5	3.5	mA	-40°C to +125°C	VDD = 5.0V	source)	
D041		6.2	8.5	mA	-40°C to +125°C	VDD = 3.0V	Fosc = 64 MHz (RC_RUN mode, HFINTOSC + PLL source)	
D043		6.2	8.5	mA	-40°C to +125°C	VDD = 3.0V	Fosc = 64 MHz	
D044		6.8	9.5	mA	-40°C to +125°C	VDD = 5.0V	(RC_RUN mode, HFINTOSC + PLL source)	

Note 1: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on the current consumption.

Test condition: All Peripheral Module Control bits in PMD0, PMD1 and PMD2 set to '1'.

2: The test conditions for all IDD measurements in active operation mode are:

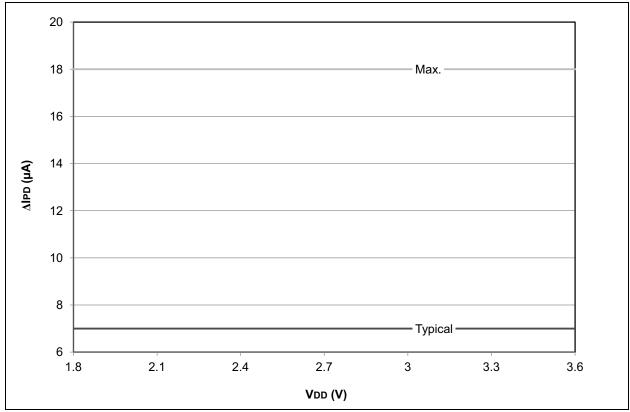
All I/O pins set as outputs driven to Vss;

 $\overline{MCLR} = VDD;$

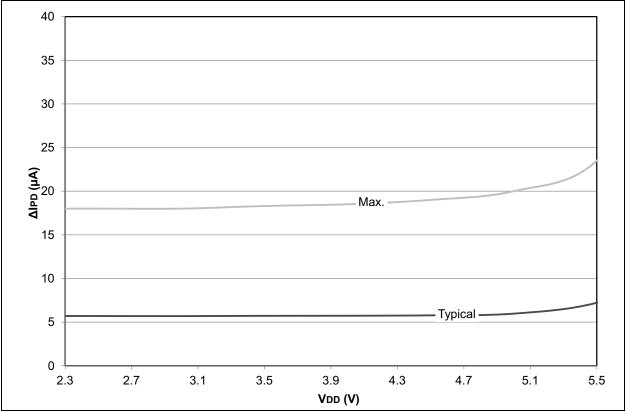
OSC1 = external square wave, from rail-to-rail (PRI_RUN and PRI_IDLE only).

DC CHARACTERISTICS		Standard Operating Conditions (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +125^{\circ}C$							
Param No.	Symbol	Characteristic	Min	Тур†	Max	Units	Conditions		
	VIL	Input Low Voltage					·		
		I/O PORT:							
D140		with TTL buffer		_	0.8	V	$4.5V \leq V\text{DD} \leq 5.5V$		
D140A				_	0.15 Vdd	V	$1.8V \leq V\text{DD} \leq 4.5V$		
D141		with Schmitt Trigger buffer	—	_	0.2 Vdd	V	$2.0V \leq V\text{DD} \leq 5.5V$		
		with I ² C levels	_	_	0.3 Vdd	V			
		with SMBus levels	_	_	0.8	V	$2.7V \le V\text{DD} \le 5.5V$		
D142		MCLR, OSC1 (RC mode) ⁽¹⁾	—	_	0.2 Vdd	V			
D142A		OSC1 (HS mode)		_	0.3 Vdd	V			
	Vih	Input High Voltage							
		I/O ports:		_	_				
D147		with TTL buffer	2.0	_	_	V	$4.5V \leq V\text{DD} \leq 5.5V$		
D147A			0.25 VDD+ 0.8	—	—	V	$1.8V \leq V\text{DD} \leq 4.5V$		
D148		with Schmitt Trigger buffer	0.8 Vdd	—	—	V	$2.0V \le V\text{DD} \le 5.5V$		
		with I ² C levels	0.7 Vdd	_	_	V			
		with SMBus levels	2.1	_	_	V	$2.7V \le V\text{DD} \le 5.5V$		
D149		MCLR	0.8 Vdd	_	—	V			
D150A		OSC1 (HS mode)	0.7 Vdd	_	—	V			
D150B		OSC1 (RC mode) ⁽¹⁾	0.9 Vdd	_	_	V			
	lı∟	Input Leakage I/O and MCLR ^{(2),(3)}					VSS \leq VPIN \leq VDD, Pin at high-impedance		
D155		I/O ports and MCLR	 	0.1 0.7 4 35	50 100 200 1000	nA nA nA nA	≤ +25°C ⁽⁴⁾ +60°C +85°C +125°C		
	IPU	Weak Pull-up Current ⁽⁴⁾							
D158	IPURB	PORTB weak pull-up current	25 25	85 130	200 300	μA μA	VDD = 3.3V, VPIN = VSS VDD = 5.0V, VPIN = VSS		

27.8 DC Characteristics: Input/Output Characteristics, PIC18(L)F2X/4XK22


Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the PIC[®] device be driven with an external clock while in RC mode.

2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.


3: Negative current is defined as current sourced by the pin.

4: Parameter is characterized but not tested.

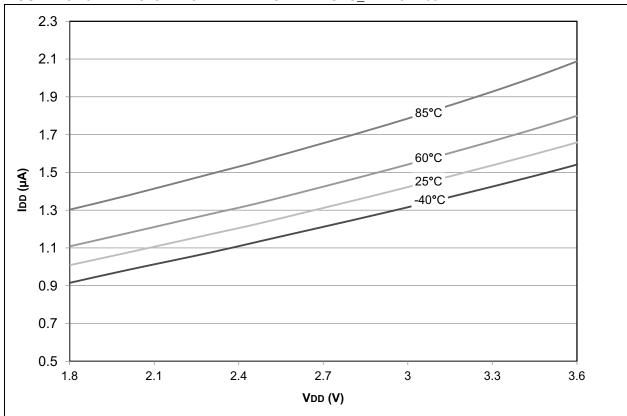
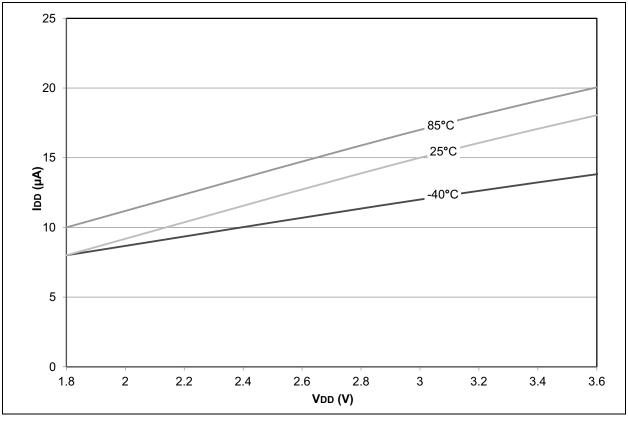



FIGURE 28-76: PIC18LF2X/4XK22 TYPICAL IDD: SEC_IDLE 32.768 kHz

FIGURE 28-77: PIC18LF2X/4XK22 MAXIMUM IDD: SEC_IDLE 32.768 kHz

