

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	64MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	35
Program Memory Size	8KB (4K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 30x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	40-UFQFN Exposed Pad
Supplier Device Package	40-UQFN (5x5)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18lf43k22-i-mv

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

PIC18(L)F2X/4XK22

TABLE 1-2: PIC18(L)F2XK22 PINOUT I/O DESCRIPTIONS (CONTINUED)

Pin Nu	mber		Dia	D	
PDIP, SOIC	QFN, UQFN	Pin Name	Туре	Туре	Description
13	10	RC2/CTPLS/P1A/CCP1/T5CKI/AN14			
		RC2	I/O	ST	Digital I/O.
		CTPLS	0	—	CTMU pulse generator output.
		P1A	0	CMOS	Enhanced CCP1 PWM output.
		CCP1	I/O	ST	Capture 1 input/Compare 1 output/PWM 1 output.
		T5CKI	I	ST	Timer5 clock input.
		AN14	Ι	Analog	Analog input 14.
14	11	RC3/SCK1/SCL1/AN15			
		RC3	I/O	ST	Digital I/O.
		SCK1	I/O	ST	Synchronous serial clock input/output for SPI mode (MSSP).
		SCL1	I/O	ST	Synchronous serial clock input/output for I ² C mode (MSSP).
		AN15	Ι	Analog	Analog input 15.
15	12	RC4/SDI1/SDA1/AN16			
		RC4	I/O	ST	Digital I/O.
		SDI1	I	ST	SPI data in (MSSP).
		SDA1	I/O	ST	I ² C data I/O (MSSP).
		AN16	Ι	Analog	Analog input 16.
16	13	RC5/SDO1/AN17			
		RC5	I/O	ST	Digital I/O.
		SDO1	0	—	SPI data out (MSSP).
		AN17	Ι	Analog	Analog input 17.
17	14	RC6/P3A/CCP3/TX1/CK1/AN18	•		
		RC6	I/O	ST	Digital I/O.
		P3A ⁽²⁾	0	CMOS	Enhanced CCP3 PWM output.
		CCP3 ⁽²⁾	I/O	ST	Capture 3 input/Compare 3 output/PWM 3 output.
		TX1	0	—	EUSART asynchronous transmit.
		CK1	I/O	ST	EUSART synchronous clock (see related RXx/DTx).
		AN18	Ι	Analog	Analog input 18.
18	15	RC7/P3B/RX1/DT1/AN19	•		
		RC7	I/O	ST	Digital I/O.
		P3B	0	CMOS	Enhanced CCP3 PWM output.
		RX1	I	ST	EUSART asynchronous receive.
		DT1	I/O	ST	EUSART synchronous data (see related TXx/CKx).
		AN19	I	Analog	Analog input 19.
1	26	RE3/VPP/MCLR	T		
		RE3	1	ST	Digital input.
		Vpp	Р		Programming voltage input.
		MCLR	Ι	ST	Active-Low Master Clear (device Reset) input.
Logondu	TT I	TTL compatible input CMOC CMOC		tible incu	t or output CT Cohmitt Trigger input with CMOC loveler

Legend: TTL = TTL compatible input CMOS = CMOS compatible input or output; ST = Schmitt Trigger input with CMOS levels; I = Input; O = Output; P = Power.

Note 1: Default pin assignment for P2B, T3CKI, CCP3 and CCP2 when Configuration bits PB2MX, T3CMX, CCP3MX and CCP2MX are set.

2: Alternate pin assignment for P2B, T3CKI, CCP3 and CCP2 when Configuration bits PB2MX, T3CMX, CCP3MX and CCP2MX are clear.

2.6.1.1 OSCTUNE Register

The HFINTOSC/MFINTOSC oscillator circuits are factory calibrated but can be adjusted in software by writing to the TUN<5:0> bits of the OSCTUNE register (Register 2-3).

The default value of the TUN<5:0> is '000000'. The value is a 6-bit two's complement number.

When the OSCTUNE register is modified, the HFINTOSC/MFINTOSC frequency will begin shifting to the new frequency. Code execution continues during this shift. There is no indication that the shift has occurred.

The TUN<5:0> bits in OSCTUNE do not affect the LFINTOSC frequency. Operation of features that depend on the LFINTOSC clock source frequency, such as the Power-up Timer (PWRT), Watchdog Timer (WDT), Fail-Safe Clock Monitor (FSCM) and peripherals, are *not* affected by the change in frequency.

The OSCTUNE register also implements the INTSRC and PLLEN bits, which control certain features of the internal oscillator block.

The INTSRC bit allows users to select which internal oscillator provides the clock source when the 31.25 kHz frequency option is selected. This is covered in greater detail in **Section 2.2.3 "Low Frequency Selection"**.

The PLLEN bit controls the operation of the frequency multiplier, PLL, for all primary external clock sources and internal oscillator modes. However, the PLL is intended for operation with clock sources between 4 MHz and 16 MHz. For more details about the function of the PLLEN bit, see **Section 2.8.2 "PLL in HFIN-TOSC Modes"**

2.7 Register Definitions: Oscillator Tuning

REGISTER 2-3: OSCTUNE: OSCILLATOR TUNING REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
INTSRC	PLLEN ⁽¹⁾			TUN	<5:0>		
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7	INTSRC: Internal Oscillator Low-Frequency Source Select bit
	 1 = 31.25 kHz device clock derived from the MFINTOSC or HFINTOSC source 0 = 31.25 kHz device clock derived directly from LFINTOSC internal oscillator
bit 6	PLLEN: Frequency Multiplier 4xPLL for HFINTOSC Enable bit ⁽¹⁾ 1 = PLL enabled 0 = PLL disabled
bit 5-0	<pre>TUN<5:0>: Frequency Tuning bits – use to adjust MFINTOSC and HFINTOSC frequencies 011111 = Maximum frequency 011110 = ••• 000001 = 000000 = Oscillator module (HFINTOSC and MFINTOSC) are running at the factory calibrated frequency. 111111 = ••• 100000 = Minimum frequency</pre>

Note 1: The PLLEN bit is active for all the primary clock sources (internal or external) and is designed to operate with clock frequencies between 4 MHz and 16 MHz.

IRCF<2:0>	INTSRC	MFIOSEL	Selected Oscillator	Selected Oscillator Stable when:
000	0	x	LFINTOSC	LFIOFS = 1
000	1	0	HFINTOSC	HFIOFS = 1
000	1	1	MFINTOSC	MFIOFS = 1
010 or 001	x	0	HFINTOSC	HFIOFS = 1
010 or 001	x	1	MFINTOSC	MFIOFS = 1
011 - 111	x	x	HFINTOSC	HFIOFS = 1

TABLE 3-2: INTERNAL OSCILLATOR FREQUENCY STABILITY BITS

3.5 Exiting Idle and Sleep Modes

An exit from Sleep mode or any of the Idle modes is triggered by any one of the following:

- an interrupt
- a Reset
- a Watchdog Time-out

This section discusses the triggers that cause exits from power-managed modes. The clocking subsystem actions are discussed in each of the power-managed modes (see Section 3.2 "Run Modes", Section 3.3 "Sleep Mode" and Section 3.4 "Idle Modes").

3.5.1 EXIT BY INTERRUPT

Any of the available interrupt sources can cause the device to exit from an Idle mode or the Sleep mode to a Run mode. To enable this functionality, an interrupt source must be enabled by setting its enable bit in one of the INTCON or PIE registers. The exit sequence is initiated when the corresponding interrupt flag bit is set.

The instruction immediately following the SLEEP instruction is executed on all exits by interrupt from Idle or Sleep modes. Code execution then branches to the interrupt vector if the GIE/GIEH bit of the INTCON register is set, otherwise code execution continues without branching (see Section 9.0 "Interrupts").

A fixed delay of interval TCSD following the wake event is required when leaving Sleep and Idle modes. This delay is required for the CPU to prepare for execution. Instruction execution resumes on the first clock cycle following this delay.

3.5.2 EXIT BY WDT TIME-OUT

A WDT time-out will cause different actions depending on which power-managed mode the device is in when the time-out occurs.

If the device is not executing code (all Idle modes and Sleep mode), the time-out will result in an exit from the power-managed mode (see **Section 3.2 "Run Modes"** and **Section 3.3 "Sleep Mode**"). If the device is executing code (all Run modes), the time-out will result in a WDT Reset (see **Section 24.3 "Watchdog Timer (WDT)**").

The WDT timer and postscaler are cleared by any one of the following:

- executing a **SLEEP** instruction
- executing a CLRWDT instruction
- the loss of the currently selected clock source when the Fail-Safe Clock Monitor is enabled
- modifying the IRCF bits in the OSCCON register when the internal oscillator block is the device clock source

3.5.3 EXIT BY RESET

Exiting Sleep and Idle modes by Reset causes code execution to restart at address '0'. See **Section 4.0** "**Reset**" for more details.

The exit delay time from Reset to the start of code execution depends on both the clock sources before and after the wake-up and the type of oscillator.

3.5.4 EXIT WITHOUT AN OSCILLATOR START-UP DELAY

Certain exits from power-managed modes do not invoke the OST at all. There are two cases:

- PRI_IDLE mode, where the primary clock source is not stopped and
- the primary clock source is not any of the LP, XT, HS or HSPLL modes.

In these instances, the primary clock source either does not require an oscillator start-up delay since it is already running (PRI_IDLE), or normally does not require an oscillator start-up delay (RC, EC, INTOSC, and INTOSCIO modes). However, a fixed delay of interval TCsD following the wake event is still required when leaving Sleep and Idle modes to allow the CPU to prepare for execution. Instruction execution resumes on the first clock cycle following this delay.

5.0 MEMORY ORGANIZATION

There are three types of memory in PIC18 Enhanced microcontroller devices:

- Program Memory
- Data RAM
- Data EEPROM

As Harvard architecture devices, the data and program memories use separate buses; this allows for concurrent access of the two memory spaces. The data EEPROM, for practical purposes, can be regarded as a peripheral device, since it is addressed and accessed through a set of control registers.

Additional detailed information on the operation of the Flash program memory is provided in **Section 6.0 "Flash Program Memory"**. Data EEPROM is discussed separately in **Section 7.0 "Data EEPROM Memory"**.

5.1 Program Memory Organization

PIC18 microcontrollers implement a 21-bit program counter, which is capable of addressing a 2-Mbyte program memory space. Accessing a location between the upper boundary of the physically implemented memory and the 2-Mbyte address will return all '0's (a NOP instruction).

This family of devices contain the following:

- PIC18(L)F23K22, PIC18(L)F43K22: 8 Kbytes of Flash Memory, up to 4,096 single-word instructions
- PIC18(L)F24K22, PIC18(L)F44K22: 16 Kbytes of Flash Memory, up to 8,192 single-word instructions
- PIC18(L)F25K22, PIC18(L)F45K22: 32 Kbytes of Flash Memory, up to 16,384 single-word instructions
- PIC18(L)F26K22, PIC18(L)F46K22: 64 Kbytes of Flash Memory, up to 37,768 single-word instructions

PIC18 devices have two interrupt vectors. The Reset vector address is at 0000h and the interrupt vector addresses are at 0008h and 0018h.

The program memory map for PIC18(L)F2X/4XK22 devices is shown in Figure 5-1. Memory block details are shown in Figure 20-2.

5.3.3 INSTRUCTIONS IN PROGRAM MEMORY

The program memory is addressed in bytes. Instructions are stored as either two bytes or four bytes in program memory. The Least Significant Byte of an instruction word is always stored in a program memory location with an even address (LSb = 0). To maintain alignment with instruction boundaries, the PC increments in steps of two and the LSb will always read '0' (see Section 5.1.1 "Program Counter").

Figure 5-4 shows an example of how instruction words are stored in the program memory.

The CALL and GOTO instructions have the absolute program memory address embedded into the instruction. Since instructions are always stored on word boundaries, the data contained in the instruction is a word address. The word address is written to PC<20:1>, which accesses the desired byte address in program memory. Instruction #2 in Figure 5-4 shows how the instruction GOTO 0006h is encoded in the program memory. Program branch instructions, which encode a relative address offset, operate in the same manner. The offset value stored in a branch instruction represents the number of single-word instructions that the PC will be offset by. Section 25.0 "Instruction Set Summary" provides further details of the instruction set.

			LSB = 1	LSB = 0	Word Address \downarrow				
	Program N	lemory			000000h				
	Byte Locations \rightarrow				000002h				
					000004h				
					000006h				
Instruction 1:	MOVLW	055h	0Fh	55h	000008h				
Instruction 2:	GOTO	0006h	EFh	03h	00000Ah				
			F0h	00h	00000Ch				
Instruction 3:	MOVFF	123h, 456h	C1h	23h	00000Eh				
			F4h	56h	000010h				
					000012h				
					000014h				

FIGURE 5-4: INSTRUCTIONS IN PROGRAM MEMORY

5.3.4 TWO-WORD INSTRUCTIONS

The standard PIC18 instruction set has four two-word instructions: CALL, MOVFF, GOTO and LSFR. In all cases, the second word of the instruction always has '1111' as its four Most Significant bits; the other 12 bits are literal data, usually a data memory address.

The use of '1111' in the 4 MSbs of an instruction specifies a special form of NOP. If the instruction is executed in proper sequence – immediately after the first word – the data in the second word is accessed and used by the instruction sequence.

If the first word is skipped for some reason and the second word is executed by itself, a NOP is executed instead. This is necessary for cases when the two-word instruction is preceded by a conditional instruction that changes the PC. Example 5-4 shows how this works.

Note:	See Section 5.8 "PIC18 Instruction Execution and the Extended
	Instruction Set" for information on
	two-word instructions in the extended instruction set.

CASE 1:		
Object Code	Source Code	
0110 0110 0000 0000	TSTFSZ REG1	; is RAM location 0?
1100 0001 0010 0011	MOVFF REG1, RE	G2 ; No, skip this word
1111 0100 0101 0110		; Execute this word as a NOP
0010 0100 0000 0000	ADDWF REG3	; continue code
CASE 2:		
Object Code	Source Code	
0110 0110 0000 0000	TSTFSZ REG1	; is RAM location 0?
1100 0001 0010 0011	MOVFF REG1, RE	G2 ; Yes, execute this word
1111 0100 0101 0110		; 2nd word of instruction
0010 0100 0000 0000	ADDWF REG3	; continue code

EXAMPLE 5-4: TWO-WORD INSTRUCTIONS

6.4 Reading the Flash Program Memory

The TBLRD instruction retrieves data from program memory and places it into data RAM. Table reads from program memory are performed one byte at a time.

TBLPTR points to a byte address in program space. Executing TBLRD places the byte pointed to into TABLAT. In addition, TBLPTR can be modified automatically for the next table read operation. The internal program memory is typically organized by words. The Least Significant bit of the address selects between the high and low bytes of the word. Figure 6-4 shows the interface between the internal program memory and the TABLAT.

FIGURE 6-4: READS FROM FLASH PROGRAM MEMORY

EXAMPLE 6-1: READING A FLASH PROGRAM MEMORY WORD

	MOVLW	CODE_ADDR_UPPER	;	Load TBLPTR with the base
	MOVWF	TBLPTRU	;	address of the word
	MOVLW	CODE_ADDR_HIGH		
	MOVWF	TBLPTRH		
	MOVLW	CODE_ADDR_LOW		
	MOVWF	TBLPTRL		
READ_WORD				
	TBLRD*+		;	read into TABLAT and increment
	MOVF	TABLAT, W	;	get data
	MOVWF	WORD_EVEN		
	TBLRD*+		;	read into TABLAT and increment
	MOVFW	TABLAT, W	;	get data
	MOVF	WORD_ODD		

					<u> </u>			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
OSCFIE	C1IE	C2IE	EEIE	BCL1IE	HLVDIE	TMR3IE	CCP2IE	
bit 7							bit 0	
Legend:								
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, rea	d as '0'		
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unk	nown	
bit 7	OSCFIE: Osc 1 = Enabled	cillator Fail Inte	rrupt Enable I	oit				
bit 6	t 6 C1IE: Comparator C1 Interrupt Enable bit 1 = Enabled 0 = Disabled							
bit 5	C2IE: Compa 1 = Enabled 0 = Disabled	arator C2 Intern	upt Enable bit	t				
bit 4	EEIE: Data E 1 = Enabled 0 = Disabled	EPROM/Flash	Write Operat	ion Interrupt Er	nable bit			
bit 3	 BCL1IE: MSSP1 Bus Collision Interrupt Enable bit 1 = Enabled 0 = Disabled 							
bit 2	t 2 HLVDIE: Low-Voltage Detect Interrupt Enable bit 1 = Enabled 0 = Disabled							
bit 1	TMR3IE: TMR3 Overflow Interrupt Enable bit 1 = Enabled 0 = Disabled							
bit 0	 0 = Disabled CCP2IE: CCP2 Interrupt Enable bit 1 = Enabled 0 = Disabled 							

REGISTER 9-10: PIE2: PERIPHERAL INTERRUPT ENABLE (FLAG) REGISTER 2

Pin Name	Function	TRIS Setting	ANSEL setting	Pin Type	Buffer Type	Description
RD6/P1C/TX2/CK2/	RD6	0	0	0	DIG	LATD<6> data output; not affected by analog input.
AN26		1	0	Ι	ST	PORTD<6> data input; disabled when analog input enabled.
	P1C	0	0	0	DIG	Enhanced CCP1 PWM output 3.
	TX2	1	0	0	DIG	EUSART asynchronous transmit data output.
	CK2	1	0	0	DIG	EUSART synchronous serial clock output.
		1	0	Ι	ST	EUSART synchronous serial clock input.
	AN26	1	1	-	AN	Analog input 26.
RD7/P1D/RX2/DT2/	RD7	0	0	0	DIG	LATD<7> data output; not affected by analog input.
AN27		1	0	I	ST	PORTD<7> data input; disabled when analog input enabled.
	P1D	0	0	0	DIG	Enhanced CCP1 PWM output 4.
	RX2	1	0	Ι	ST	EUSART asynchronous receive data in.
	DT2	1	0	0	DIG	EUSART synchronous serial data output.
		1	0	I	ST	EUSART synchronous serial data input.
	AN27	1	1	I	AN	Analog input 27.

TABLE 10-11: PORTD I/O SUMMARY (CONTINUED)

Legend:AN = Analog input or output; TTL = TTL compatible input; HV = High Voltage; OD = Open Drain; XTAL = Crystal; CMOS =
CMOS compatible input or output; ST = Schmitt Trigger input with CMOS levels; I^2C = Schmitt Trigger input with I^2C .

Note 1: Default pin assignment for P2B, T3CKI, CCP3 and CCP2 when Configuration bits PB2MX, T3CMX, CCP3MX and CCP2MX are set.

PIC18(L)F2X/4XK22

FIGURE 15-9:	SPI N	IODE W	/AVEFO	RM (SL	AVE MC	DE WIT	HCKE	= 0)			
	\ \										
- 80%) ((367 - 2 - 0%) - 0)	2 2 2 2										· · · ·
- 80%x - (389° = 0, - (389° = 0)	·										3
980908-00 SURPARATE VIREA	•		2 2 2 2 4	2 5 5 5 7	4 6 5 6 	· · · · · · · · · · · · · · · · · · · ·	2 2 2 2 2 2	· · · ·	<pre><</pre>		• • • • •
- 555%)×		1. 232. 7 			1933 4. 	X 88.3	7. 398. 2.	/		68 0 Ma	· · · · · · · · · · · · · · · · · · ·
		- 1997 - 1995 - 7 - 1996 - 1997				, ""///// . 4, .				//// -3	· ·
- 1920-1925 - 3557255 - 1936/1925			2		(·	2		5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		
- Fileg - SSP2SR & - SSF2SDF	•	· · ·	2 2 2 2	 2 2 2	\$ 5 5 5 • • • • • • • • • • • • • • • • •	· · · ·	2		6 6 5 6 5 5 5	: //p.	
Varias Codiscon detection activa									. ,		~~

FIGURE 15-10: SPI MODE WAVEFORM (SLAVE MODE WITH CKE = 1)

								/			
SSx Nex Optional										/	
SCKx (CKP = <u>0</u> CKE = 1)	, , , , ,										
SCKx (CKP = 1 CKE = 1)	; ; ; ;										
Write to SSPxBUF	 	1 1 1 1 1	1 1 1 1	 	 	 	1 1 1 1	 			
SDOx	<u> </u>	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0		
SDIx ———		bit 7	\bigcirc		\sim		\rightarrow	\sim	bit 0	, , , , ,	
Input Sample	1 1 1 1	1	1	1	1	1	1	1	1		
SSPxIF Interrupt Flag	1 1 1 1 1			, , , , ,	 	, , , , ,	1 1 1 1 1	 			
SSPxSR to SSPxBUF	1 1 1 1 1	1 1 1 1 1		 	1 1 1 1	 	, , , ,	1 1 1 1		×	
Wille Collesion detection solity	1	•			•		•				

FIGURE 15-31: STOP CONDITION RECEIVE OR TRANSMIT MODE

15.6.10 SLEEP OPERATION

While in Sleep mode, the I²C slave module can receive addresses or data and when an address match or complete byte transfer occurs, wake the processor from Sleep (if the MSSPx interrupt is enabled).

15.6.11 EFFECTS OF A RESET

A Reset disables the MSSPx module and terminates the current transfer.

15.6.12 MULTI-MASTER MODE

In Multi-Master mode, the interrupt generation on the detection of the Start and Stop conditions allows the determination of when the bus is free. The Stop (P) and Start (S) bits are cleared from a Reset or when the MSSPx module is disabled. Control of the I²C bus may be taken when the P bit of the SSPxSTAT register is set, or the bus is Idle, with both the S and P bits clear. When the bus is busy, enabling the SSPx interrupt will generate the interrupt when the Stop condition occurs.

In multi-master operation, the SDAx line must be monitored for arbitration to see if the signal level is the expected output level. This check is performed by hardware with the result placed in the BCLxIF bit.

The states where arbitration can be lost are:

- Address Transfer
- Data Transfer
- A Start Condition
- A Repeated Start Condition
- An Acknowledge Condition

16.1.1.5 TSR Status

The TRMT bit of the TXSTAx register indicates the status of the TSR register. This is a read-only bit. The TRMT bit is set when the TSR register is empty and is cleared when a character is transferred to the TSR register from the TXREGx. The TRMT bit remains clear until all bits have been shifted out of the TSR register. No interrupt logic is tied to this bit, so the user needs to poll this bit to determine the TSR status.

Note: The TSR register is not mapped in data memory, so it is not available to the user.

16.1.1.6 Transmitting 9-Bit Characters

The EUSART supports 9-bit character transmissions. When the TX9 bit of the TXSTAx register is set the EUSART will shift nine bits out for each character transmitted. The TX9D bit of the TXSTAx register is the ninth, and Most Significant, data bit. When transmitting 9-bit data, the TX9D data bit must be written before writing the eight Least Significant bits into the TXREGx. All nine bits of data will be transferred to the TSR shift register immediately after the TXREGx is written.

A special 9-bit Address mode is available for use with multiple receivers. See **Section 16.1.2.8** "Address **Detection**" for more information on the Address mode.

16.1.1.7 Asynchronous Transmission Setup:

- Initialize the SPBRGHx:SPBRGx register pair and the BRGH and BRG16 bits to achieve the desired baud rate (see Section 16.4 "EUSART Baud Rate Generator (BRG)").
- 2. Set the RXx/DTx and TXx/CKx TRIS controls to '1'.
- 3. Enable the asynchronous serial port by clearing the SYNC bit and setting the SPEN bit.
- 4. If 9-bit transmission is desired, set the TX9 control bit. A set ninth data bit will indicate that the eight Least Significant data bits are an address when the receiver is set for address detection.
- 5. Set the CKTXP control bit if inverted transmit data polarity is desired.
- Enable the transmission by setting the TXEN control bit. This will cause the TXxIF interrupt bit to be set.
- 7. If interrupts are desired, set the TXxIE interrupt enable bit. An interrupt will occur immediately provided that the GIE/GIEH and PEIE/GIEL bits of the INTCON register are also set.
- 8. If 9-bit transmission is selected, the ninth bit should be loaded into the TX9D data bit.
- 9. Load 8-bit data into the TXREGx register. This will start the transmission.

FIGURE 16-3: ASYNCHRONOUS TRANSMISSION

PIC18(L)F2X/4XK22

FIGURE 17-6: ADC TRANSFER FUNCTION

19.4 Measuring Capacitance with the CTMU

There are two separate methods of measuring capacitance with the CTMU. The first is the absolute method, in which the actual capacitance value is desired. The second is the relative method, in which the actual capacitance is not needed, rather an indication of a change in capacitance is required.

19.4.1 ABSOLUTE CAPACITANCE MEASUREMENT

For absolute capacitance measurements, both the current and capacitance calibration steps found in **Section 19.3 "Calibrating the CTMU Module"** should be followed. Capacitance measurements are then performed using the following steps:

- 1. Initialize the A/D Converter.
- 2. Initialize the CTMU.
- 3. Set EDG1STAT.
- 4. Wait for a fixed delay, *T*.
- 5. Clear EDG1STAT.
- 6. Perform an A/D conversion.
- 7. Calculate the total capacitance, CTOTAL = (I * T)/V, where *I* is known from the current source measurement step (see **Section 19.3.1 "Current Source Calibration"**), *T* is a fixed delay and *V* is measured by performing an A/D conversion.
- 8. Subtract the stray and A/D capacitance (*C*OFFSET from **Section 19.3.2** "**Capacitance Calibration**") from *CTOTAL* to determine the measured capacitance.

19.4.2 RELATIVE CHARGE MEASUREMENT

An application may not require precise capacitance measurements. For example, when detecting a valid press of a capacitance-based switch, detecting a relative change of capacitance is of interest. In this type of application, when the switch is open (or not touched), the total capacitance is the capacitance of the combination of the board traces, the A/D Converter, etc. A larger voltage will be measured by the A/D Converter. When the switch is closed (or is touched), the total capacitance is larger due to the addition of the capacitances, and a smaller voltage will be measured by the A/D Converter.

Detecting capacitance changes is easily accomplished with the CTMU using these steps:

- 1. Initialize the A/D Converter and the CTMU.
- 2. Set EDG1STAT.
- 3. Wait for a fixed delay.
- 4. Clear EDG1STAT.
- 5. Perform an A/D conversion.

The voltage measured by performing the A/D conversion is an indication of the relative capacitance. Note that in this case, no calibration of the current source or circuit capacitance measurement is needed. See Example 19-4 for a sample software routine for a capacitive touch switch.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0					
		ITRIM	1<5:0>			IRNG	i<1:0>					
bit 7							bit 0					
Legend:												
R = Reada	ble bit	W = Writable	bit	U = Unimplen	nented bit, read	d as '0'						
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown					
bit 7-2	ITRIM<5:0	-: Current Source	e Trim bits									
	011111 = 	011111 = Maximum positive change from nominal current										
	011110	011110										
	•											
	•	•										
	000001 =	000001 = Minimum positive change from nominal current										
	1 = 000000	000000 = Nominal current output specified by IRNG<1:0>										
	111111 = 	111111 = Minimum negative change from nominal current										
	•											
	•											
	•											
	100001 =	Maximum negativ	e change fror	n nominal currer	nt							
bit 1-0	IRNG<1:0>	IRNG<1:0>: Current Source Range Select bits (see Table 27-4)										
	11 = 100 ×	$11 = 100 \times Base current$										
	$10 = 10 \times E$	Base current										
	01 = Base	current level										
	00 = Curre	nt source disable	b									

REGISTER 19-3: CTMUICON: CTMU CURRENT CONTROL REGISTER

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on Page
CTMUCONH	CTMUEN	_	CTMUSIDL	TGEN	EDGEN	EDGSEQEN	IDISSEN	CTTRIG	323
CTMUCONL	EDG2POL	DG2POL EDG2SEL<1:0> EDG1POL EDG1SEL<1:0>					EDG2STAT	EDG1STAT	324
CTMUICON			ITRI	M<5:0>			IRNG	325	
IPR3	SSP2IP	BCL2IP	RC2IP	TX2IP	CTMUIP	TMR5GIP	TMR3GIP	TMR1GIP	123
PIE3	SSP2IE	BCL2IE	RC2IE	TX2IE	CTMUIE	CTMUIE TMR5GIE		TMR1GIE	119
PIR3	SSP2IF	BCL2IF	RC2IF	TX2IF	CTMUIF TMR5GIF		TMR3GIF	TMR1GIF	114
PMD2	—		—	-	CTMUMD	CMP2MD	CMP1MD	ADCMD	54

Legend: — = unimplemented, read as '0'. Shaded bits are not used during CTMU operation.

23.3 HLVD Setup

To set up the HLVD module:

- 1. Select the desired HLVD trip point by writing the value to the HLVDL<3:0> bits.
- 2. Set the VDIRMAG bit to detect high voltage (VDIRMAG = 1) or low voltage (VDIRMAG = 0).
- 3. Enable the HLVD module by setting the HLVDEN bit.
- 4. Clear the HLVD interrupt flag (PIR2<2>), which may have been set from a previous interrupt.
- If interrupts are desired, enable the HLVD interrupt by setting the HLVDIE and GIE/GIEH bits (PIE2<2> and INTCON<7>, respectively).

An interrupt will not be generated until the IRVST bit is set.

Note: Before changing any module settings (VDIRMAG, HLVDL<3:0>), first disable the module (HLVDEN = 0), make the changes and re-enable the module. This prevents the generation of false HLVD events.

23.4 Current Consumption

When the module is enabled, the HLVD comparator and voltage divider are enabled and consume static current. The total current consumption, when enabled, is specified in **Section 27.0** "**Electrical Specifications**". Depending on the application, the HLVD module does not need to operate constantly. To reduce current requirements, the HLVD circuitry may only need to be enabled for short periods where the voltage is checked. After such a check, the module could be disabled.

23.5 HLVD Start-up Time

The internal reference voltage of the HLVD module, specified in **Section 27.0 "Electrical Specifications**", may be used by other internal circuitry, such as the programmable Brown-out Reset. If the HLVD or other circuits using the voltage reference are disabled to lower the device's current consumption, the reference voltage circuit will require time to become stable before a low or high-voltage condition can be reliably detected. This start-up time, TIRVST, is an interval that is independent of device clock speed.

The HLVD interrupt flag is not enabled until TIRVST has expired and a stable reference voltage is reached. For this reason, brief excursions beyond the set point may not be detected during this interval (see Figure 23-2 or Figure 23-3).

R/C-1	R/C-1	R-1	U-0	U-0	U-0	U-0	U-0		
WRTD	WRTB	WRTC ⁽¹⁾	—	—	—	—	—		
bit 7							bit 0		
Legend:									
R = Readal	ble bit			U = Unimpler	mented bit, read	d as '0'			
-n = Value v	when device is un	programmed		C = Clearable	e only bit				
bit 7	bit 7 WRTD: Data EEPROM Write Protection bit 1 = Data EEPROM not write-protected 0 = Data EEPROM write-protected								
bit 6	WRTB: Boot 1 = Boot Bloc 0 = Boot Bloc	Block Write Presk k not write-pro k write-protect	otection bit tected ed						
bit 5 WRTC: Configuration Register Write Protection bit ⁽¹⁾ 1 = Configuration registers not write-protected 0 = Configuration registers write-protected									
bit 4-0	Unimplemen	ted: Read as '	0'						
Note 1:	This bit is read-only	y in normal exe	cution mode; it	can be written	only in Program	n mode.			

REGISTER 24-9: CONFIG6H: CONFIGURATION REGISTER 6 HIGH

REGISTER 24-10: CONFIG7L: CONFIGURATION REGISTER 7 LOW

U-0	U-0	U-0	U-0	R/C-1	R/C-1	R/C-1	R/C-1
—	—	—	_	EBTR3 ⁽¹⁾	EBTR2 ⁽¹⁾	EBTR1	EBTR0
bit 7							bit 0

Legend:	
R = Readable bit	U = Unimplemented bit, read as '0'
-n = Value when device is unprogrammed	C = Clearable only bit

bit 7-4	Unimplemented: Read as '0'
bit 3	EBTR3: Table Read Protection bit ⁽¹⁾
	 1 = Block 3 not protected from table reads executed in other blocks 0 = Block 3 protected from table reads executed in other blocks
bit 2	EBTR2: Table Read Protection bit ⁽¹⁾
	 1 = Block 2 not protected from table reads executed in other blocks 0 = Block 2 protected from table reads executed in other blocks
bit 1	EBTR1: Table Read Protection bit
	 1 = Block 1 not protected from table reads executed in other blocks 0 = Block 1 protected from table reads executed in other blocks
bit 0	EBTR0: Table Read Protection bit
	 1 = Block 0 not protected from table reads executed in other blocks 0 = Block 0 protected from table reads executed in other blocks
Note 1.	Available on PIC18/I)EX5K22 and PIC18/I)EX6K22s devices

Note 1: Available on PIC18(L)FX5K22 and PIC18(L)FX6K22s devices.

24.3 Watchdog Timer (WDT)

For PIC18(L)F2X/4XK22 devices, the WDT is driven by the LFINTOSC source. When the WDT is enabled, the clock source is also enabled. The nominal WDT period is 4 ms and has the same stability as the LFINTOSC oscillator.

The 4 ms period of the WDT is multiplied by a 16-bit postscaler. Any output of the WDT postscaler is selected by a multiplexer, controlled by bits in Configuration Register 2H. Available periods range from 4 ms to 131.072 seconds (2.18 minutes). The WDT and postscaler are cleared when any of the following events occur: a SLEEP or CLRWDT instruction is executed, the IRCF bits of the OSCCON register are changed or a clock failure has occurred.

- Note 1: The CLRWDT and SLEEP instructions clear the WDT and postscaler counts when executed.
 - 2: Changing the setting of the IRCF bits of the OSCCON register clears the WDT and postscaler counts.
 - **3:** When a CLRWDT instruction is executed, the postscaler count will be cleared.

FIGURE 24-1: WDT BLOCK DIAGRAM

27.9 Memory Programming Requirements

DC CH	ARACTE	RISTICS	Standard Operating Conditions (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +125^{\circ}C$						
Param No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions		
		Internal Program Memory Programming Specifications ⁽¹⁾							
D170	Vpp	Voltage on MCLR/VPP pin	8		9	V	(Note 3), (Note 4)		
D171	IDDP	Supply Current during Programming	—	—	10	mA			
		Data EEPROM Memory							
D172	Ed	Byte Endurance	100K		—	E/W	-40°C to +85°C		
D173	Vdrw	VDD for Read/Write	VDDMIN	—	VDDMAX	V	Using EECON to read/ write		
D175	TDEW	Erase/Write Cycle Time	—	3	4	ms			
D176	TRETD	Characteristic Retention	—	40	—	Year	Provided no other specifications are violated		
D177	TREF	Number of Total Erase/Write Cycles before Refresh ⁽²⁾	1M	10M	—	E/W	-40°C to +85°C		
		Program Flash Memory							
D178	Εр	Cell Endurance	10K		—	E/W	-40°C to +85°C (Note 5)		
D179	Vpr	VDD for Read	VDDMIN		VDDMAX	V			
D181	Viw	VDD for Row Erase or Write	2.2		VDDMAX	V	PIC18LF24K22		
D182	Viw		VDDMIN	—	VDDMAX	V	PIC18(L)F26K22		
D183	Tiw	Self-timed Write Cycle Time	—	2	-	ms			
D184	TRETD	Characteristic Retention	—	40	—	Year	Provided no other specifications are violated		

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: These specifications are for programming the on-chip program memory through the use of table write instructions.

2: Refer to Section 7.8 "Using the Data EEPROM" for a more detailed discussion on data EEPROM endurance.

3: Required only if single-supply programming is disabled.

4: The MPLAB ICD 2 does not support variable VPP output. Circuitry to limit the MPLAB ICD 2 VPP voltage must be placed between the MPLAB ICD 2 and target system when programming or debugging with the MPLAB ICD 2.

5: Self-write and Block Erase.

27.10 Analog Characteristics

TABLE 27-1:	COMPARATOR SPECIFICATIONS

Operating Conditions: 1.8V < VDD < 5.5V, -40°C < TA < +125°C (unless otherwise stated)									
Param No.	Sym	Characteristics	Min	Тур	Мах	Units	Comments		
CM01	VIOFF	Input Offset Voltage	_	3	40	mV	High-Power mode VREF = VDD/2		
			—	4	60	mV	Low-Power mode VREF = VDD/2		
CM02	VICM	Input Common-mode Voltage	Vss	_	Vdd	V			
CM04*	TRESP	Response Time ⁽¹⁾	—	200	400	ns	High-Power mode		
			—	600	3500	ns	Low-Power mode		
CM05*	TMC20V	Comparator Mode Change to Output Valid	_	_	10	μS			

These parameters are characterized but not tested. *

Note 1: Response time measured with one comparator input at VDD/2, while the other input transitions from Vss to VDD.

TABLE 27-2: DIGITAL-TO-ANALOG CONVERTER (DAC) SPECIFICATIONS

Operating Conditions: 2.0V < VDD < 5.5V, -40°C < TA < +125°C (unless otherwise stated)						
Sym	Characteristics	Min	Тур	Мах	Units	Comments
CLSB	Step Size ⁽²⁾	—	Vdd/32	—	V	
CACC	Absolute Accuracy	-	—	± 1/2	LSb	$\Delta V \text{SRC} \ge 2.0 V$
CR	Unit Resistor Value (R)	_	5k		Ω	
CST	Settling Time ⁽¹⁾	_	_	10	μs	
VSRC+	DAC Positive Reference	VSRC-+2	—	Vdd	V	
VSRC-	DAC Negative Reference	Vss	—	VSRC+ -2	V	
∆VSRC	DAC Reference Range (VsRc+ - VsRc-)	2	_	Vdd	V	
	Sym CLSB CACC CR CST VSRC+ ΔVSRC	SymCharacteristicsSymCharacteristicsCLSBStep Size(2)CACCAbsolute AccuracyCRUnit Resistor Value (R)CSTSettling Time(1)VSRC+DAC Positive ReferenceVSRC-DAC Negative ReferenceΔVSRCDAC Reference Range (VSRC+ - VSRC-)	SymCharacteristicsMinCLSBStep Size(2)—CACCAbsolute Accuracy—CRUnit Resistor Value (R)—CSTSettling Time(1)—VSRC+DAC Positive ReferenceVSRC- +2VSRCDAC Reference Range (VSRC+ - VSRC-)2	SymCharacteristicsMinTypCLSBStep Size(2)—VDD/32CACCAbsolute Accuracy——CRUnit Resistor Value (R)—5kCSTSettling Time(1)——VSRC+DAC Positive ReferenceVSRC-+2—VSRC-DAC Reference Range2—ΔVSRCDAC Reference Range2—	SymCharacteristicsMinTypMaxCLSBStep Size ⁽²⁾ — $VDD/32$ —CACCAbsolute Accuracy— $ \pm 1/2$ CRUnit Resistor Value (R)— $5k$ —CSTSettling Time ⁽¹⁾ —10VSRC+DAC Positive ReferenceVSRC-+2—VDDVSRCDAC Reference Range2—VDD Δ VSRCDAC Reference Range2—VDD	SymCharacteristicsMinTypMaxUnitsCLSBStep Size ⁽²⁾ — \vee DD/32— \vee CACCAbsolute Accuracy— $ \pm$ 1/2LSbCRUnit Resistor Value (R)— $5k$ — Ω CSTSettling Time ⁽¹⁾ ——10 μ sVSRC+DAC Positive ReferenceVSRC-+2—VDDV Δ VSRCDAC Reference Range (VSRC+ VSRC-)2—VDDV

These parameters are characterized but not tested.

Note 1: Settling time measured while CVRR = 1 and CVR3:CVR0 transitions from '0000' to '1111'.

2: See Section 22.0 "Digital-to-Analog Converter (DAC) Module" for more information.