

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	64MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	35
Program Memory Size	8KB (4K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 30x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-VQFN Exposed Pad
Supplier Device Package	44-QFN (8x8)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18lf43k22t-i-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.7.1 LFINTOSC

The Low-Frequency Internal Oscillator (LFINTOSC) is a 31.25 kHz internal clock source. The LFINTOSC is not tunable, but is designed to be stable across temperature and voltage. See **Section 27.0 "Electrical Specifications"** for the LFINTOSC accuracy specifications.

The output of the LFINTOSC can be a clock source to the primary clock or the INTOSC clock (see Figure 2-1). The LFINTOSC is also the clock source for the Powerup Timer (PWRT), Watchdog Timer (WDT) and Fail-Safe Clock Monitor (FSCM).

2.7.2 FREQUENCY SELECT BITS (IRCF)

The HFINTOSC (16 MHz) and MFINTOSC (500 MHz) outputs connect to a divide circuit that provides frequencies of 16 MHz to 31.25 kHz. These divide circuit frequencies, along with the 31.25 kHz LFINTOSC output, are multiplexed to provide a single INTOSC clock output (see Figure 2-1). The IRCF<2:0> bits of the OSCCON register, the MFIOSEL bit of the OSCCON2 register and the INTSRC bit of the OSCTUNE register, select the output frequency of the internal oscillators. One of eight frequencies can be selected via software:

- 16 MHz
- 8 MHz
- 4 MHz
- 2 MHz
- 1 MHz (default after Reset)
- 500 kHz (MFINTOSC or HFINTOSC)
- 250 kHz (MFINTOSC or HFINTOSC)
- 31 kHz (LFINTOSC, MFINTOSC or HFINTOSC)

2.7.3 INTOSC FREQUENCY DRIFT

The factory calibrates the internal oscillator block outputs (HFINTOSC/MFINTOSC) for 16 MHz/500 kHz. However, this frequency may drift as VDD or temperature changes. It is possible to adjust the HFINTOSC/MFINTOSC frequency by modifying the value of the TUN<5:0> bits in the OSCTUNE register. This has no effect on the LFINTOSC clock source frequency.

Tuning the HFINTOSC/MFINTOSC source requires knowing when to make the adjustment, in which direction it should be made and, in some cases, how large a change is needed. Three possible compensation techniques are discussed in the following sections. However, other techniques may be used.

2.7.3.1 Compensating with the EUSART

An adjustment may be required when the EUSART begins to generate framing errors or receives data with errors while in Asynchronous mode. Framing errors indicate that the device clock frequency is too high; to adjust for this, decrement the value in OSCTUNE to reduce the clock frequency. On the other hand, errors in data may suggest that the clock speed is too low; to compensate, increment OSCTUNE to increase the clock frequency.

2.7.3.2 Compensating with the Timers

This technique compares device clock speed to some reference clock. Two timers may be used; one timer is clocked by the peripheral clock, while the other is clocked by a fixed reference source, such as the Timer1 oscillator.

Both timers are cleared, but the timer clocked by the reference generates interrupts. When an interrupt occurs, the internally clocked timer is read and both timers are cleared. If the internally clocked timer value is greater than expected, then the internal oscillator block is running too fast. To adjust for this, decrement the OSCTUNE register.

2.7.3.3 Compensating with the CCP Module in Capture Mode

A CCP module can use free running Timer1, Timer3 or Timer5 clocked by the internal oscillator block and an external event with a known period (i.e., AC power frequency). The time of the first event is captured in the CCPRxH:CCPRxL registers and is recorded for use later. When the second event causes a capture, the time of the first event is subtracted from the time of the second event. Since the period of the external event is known, the time difference between events can be calculated.

If the measured time is much greater than the calculated time, the internal oscillator block is running too fast; to compensate, decrement the OSCTUNE register. If the measured time is much less than the calculated time, the internal oscillator block is running too slow; to compensate, increment the OSCTUNE register.

TABLE 4-2: TIME-OUT IN VARIOUS SITUATIONS

Oscillator	Power-up ⁽²⁾ a	nd Brown-out	Exit from
Configuration	PWRTEN = 0	PWRTEN = 1	Power-Managed Mode
HSPLL	66 ms ⁽¹⁾ + 1024 Tosc + 2 ms ⁽²⁾	1024 Tosc + 2 ms ⁽²⁾	1024 Tosc + 2 ms ⁽²⁾
HS, XT, LP	66 ms ⁽¹⁾ + 1024 Tosc	1024 Tosc	1024 Tosc
EC, ECIO	66 ms ⁽¹⁾	_	—
RC, RCIO	66 ms ⁽¹⁾	_	—
INTIO1, INTIO2	66 ms ⁽¹⁾	_	—

Note 1: 66 ms (65.5 ms) is the nominal Power-up Timer (PWRT) delay.2: 2 ms is the nominal time required for the PLL to lock.

FIGURE 4-3: TIME-OUT SEQUENCE ON POWER-UP (MCLR TIED TO VDD, VDD RISE < TPWRT)

FIGURE 4-4: TIME-OUT SEQUENCE ON POWER-UP (MCLR NOT TIED TO VDD): CASE 1

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	<u>Value on</u> POR, BOR
FD1h	WDTCON	_	_	_	_	_	_	_	SWDTEN	0
FD0h	RCON	IPEN	SBOREN	_	RI	TO PD POR BOR				01-1 1100
FCFh	TMR1H		Holding R	egister for the	Most Significa	Int Byte of the 16-bit TMR1 Register				xxxx xxxx
FCEh	TMR1L			Least Signifi	icant Byte of th	e 16-bit TMR1	Register			xxxx xxxx
FCDh	T1CON	TMR1C	S<1:0>	T1CKF	PS<1:0>	T1SOSCEN	T1SYNC	T1RD16	TMR10N	0000 0000
FCCh	T1GCON	TMR1GE	T1GPOL	T1GTM	T1GSPM	T <u>1GGO</u> / DONE	T1GVAL	T1GSS	S<1:0>	0000 xx00
FCBh	SSP1CON3	ACKTIM	PCIE	SCIE	BOEN	SDAHT	SBCDE	AHEN	DHEN	0000 0000
FCAh	SSP1MSK			:	SSP1 MASK R	legister bits				1111 1111
FC9h	SSP1BUF			SSP1	Receive Buffer	/Transmit Reg	ister			XXXX XXXX
FC8h	SSP1ADD	SSP1 /	Address Regis	ster in I ² C Slav	ve Mode. SSP	1 Baud Rate R	eload Register	in I ² C Master	Mode	0000 0000
FC7h	SSP1STAT	SMP	CKE	D/A	Р	S	R/W	UA	BF	0000 0000
FC6h	SSP1CON1	WCOL	SSPOV	SSPEN	CKP		SSPM	<3:0>		0000 0000
FC5h	SSP1CON2	GCEN	ACKSTAT	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	0000 0000
FC4h	ADRESH				A/D Result,	High Byte				XXXX XXXX
FC3h	ADRESL				A/D Result,	Low Byte		-	-	xxxx xxxx
FC2h	ADCON0	_			CHS<4:0>	-		GO/DONE	ADON	00 0000
FC1h	ADCON1	TRIGSEL	_	_	_	PVCF	G<1:0>	NVCF	G<1:0>	0 0000
FC0h	ADCON2	ADFM	-		ACQT<2:0>			ADCS<2:0>		0-00 0000
FBFh	CCPR1H			Captur	e/Compare/PV	VM Register 1,	High Byte			xxxx xxxx
FBEh	CCPR1L			Captur	e/Compare/PV	VM Register 1,	Low Byte			xxxx xxxx
FBDh	CCP1CON	P1M<	:1:0>	DC1E	8<1:0>		CCP1N	l<3:0>		0000 0000
FBCh	TMR2				Timer2 F	Register				0000 0000
FBBh	PR2				Timer2 Peri	od Register		-		1111 1111
FBAh	T2CON	_		T2OUT	PS<3:0>	-	TMR2ON	T2CKP	S<1:0>	-000 0000
FB9h	PSTR1CON	_	-	-	STR1SYNC	STR1D	STR1C	STR1B	STR1A	0 0001
FB8h	BAUDCON1	ABDOVF	RCIDL	DTRXP	CKTXP	BRG16	-	WUE	ABDEN	0100 0-00
FB7h	PWM1CON	P1RSEN				P1DC<6:0>				0000 0000
FB6h	ECCP1AS	CCP1ASE		CCP1AS<2:0:	>	PSS1A	C<1:0>	PSS1B	D<1:0>	0000 0000
FB4h	T3GCON	TMR3GE	T3GPOL	T3GTM	T3GSPM	T <u>3GGO</u> / DONE	T3GVAL	T3GSS	S<1:0>	00x0 0x00
FB3h	TMR3H		Holding R	egister for the	Most Significa	ant Byte of the	16-bit TMR3 R	egister		xxxx xxxx
FB2h	TMR3L			Least Signifi	cant Byte of th	e 16-bit TMR3	Register	r	r	xxxx xxxx
FB1h	T3CON	TMR3C	S<1:0>	T3CKF	°S<1:0>	T3SOSCEN	T3SYNC	T3RD16	TMR3ON	0000 0000
FB0h	SPBRGH1			EUSAR	T1 Baud Rate	Generator, Hig	h Byte			0000 0000
FAFh	SPBRG1			EUSAR	T1 Baud Rate	Generator, Lov	w Byte			0000 0000
FAEh	RCREG1			EUSAR	T1 Receive Re	egister				0000 0000
FADh	TXREG1			EUSAR	T1 Transmit R	egister		n	n	0000 0000
FACh	TXSTA1	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	0000 0010
FABh	RCSTA1	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	0000 000x
FAAh	EEADRH ⁽⁵⁾	_	_	_	_	_	_	EEAD	R<9:8>	00
FA9h	EEADR				EEAD	R<7:0>				0000 0000
FA8h	EEDATA				EEPROM Da	ita Register				0000 0000
FA7h	EECON2			EEPROM Co	ontrol Register	2 (not a physic	cal register)	1	1	00
FA6h	EECON1	EEPGD	CFGS	_	FREE	WRERR	WREN	WR	RD	xx-0 x000
FA5h	IPR3	SSP2IP	BCL2IP	RC2IP	TX2IP	CTMUIP	TMR5GIP	TMR3GIP	TMR1GIP	0000 0000
FA4h	PIR3	SSP2IF	BCL2IF	RC2IF	TX2IF	CTMUIF	TMR5GIF	TMR3GIF	TMR1GIF	0000 0000
FA3h	PIE3	SSP2IE	BCL2IE	RC2IE	TX2IE	CTMUIE	TMR5GIE	TMR3GIE	TMR1GIE	0000 0000

TABLE 5-2: REGISTER FILE SUMMARY FOR PIC18(L)F2X/4XK22 DEVICES (CONTINUED)

Legend: \mathbf{x} = unknown, \mathbf{u} = unchanged, — = unimplemented, \mathbf{q} = value depends on condition

PIC18(L)F4XK22 devices only. Note 1:

PIC18(L)F2XK22 devices only. 2:

PIC18(L)F23/24K22 and PIC18(L)F43/44K22 devices only. PIC18(L)F26K22 and PIC18(L)F46K22 devices only. 3:

4:

DS40001412G-page 80

6.4 Reading the Flash Program Memory

The TBLRD instruction retrieves data from program memory and places it into data RAM. Table reads from program memory are performed one byte at a time.

TBLPTR points to a byte address in program space. Executing TBLRD places the byte pointed to into TABLAT. In addition, TBLPTR can be modified automatically for the next table read operation. The internal program memory is typically organized by words. The Least Significant bit of the address selects between the high and low bytes of the word. Figure 6-4 shows the interface between the internal program memory and the TABLAT.

FIGURE 6-4: READS FROM FLASH PROGRAM MEMORY

EXAMPLE 6-1: READING A FLASH PROGRAM MEMORY WORD

	MOVLW	CODE_ADDR_UPPER	;	Load TBLPTR with the base
	MOVWF	TBLPTRU	;	address of the word
	MOVLW	CODE_ADDR_HIGH		
	MOVWF	TBLPTRH		
	MOVLW	CODE_ADDR_LOW		
	MOVWF	TBLPTRL		
READ_WORD				
	TBLRD*+		;	read into TABLAT and increment
	MOVF	TABLAT, W	;	get data
	MOVWF	WORD_EVEN		
	TBLRD*+		;	read into TABLAT and increment
	MOVFW	TABLAT, W	;	get data
	MOVF	WORD_ODD		

TABLE 10-1: PORTA I/O SUMMARY

Pin Name	Function	TRIS Setting	ANSEL Setting	Pin Type	Buffer Type	Description
RA0/C12IN0-/AN0	RA0	0	0	0	DIG	LATA<0> data output; not affected by analog input.
		1	0	I	TTL	PORTA<0> data input; disabled when analog input enabled.
	C12IN0-	1	1	I	AN	Comparators C1 and C2 inverting input.
	AN0	1	1	I	AN	Analog input 0.
RA1/C12IN1-/AN1	RA1	0	0	0	DIG	LATA<1> data output; not affected by analog input.
		1	0	I	TTL	PORTA<1> data input; disabled when analog input enabled.
	C12IN1-	1	1	I	AN	Comparators C1 and C2 inverting input.
	AN1	1	1	I	AN	Analog input 1.
RA2/C2IN+/AN2/ DACOUT/VREF-	RA2	0	0	0	DIG	LATA<2> data output; not affected by analog input; disabled when DACOUT enabled.
		1	0	I	TTL	PORTA<2> data input; disabled when analog input enabled; disabled when DACOUT enabled.
	C2IN+	1	1	I	AN	Comparator C2 non-inverting input.
	AN2	1	1	I	AN	Analog output 2.
	DACOUT	x	1	0	AN	DAC Reference output.
	VREF-	1	1	I	AN	A/D reference voltage (low) input.
RA3/C1IN+/AN3/	RA3	0		0	DIG	LATA<3> data output; not affected by analog input.
VREF+		1	0	I	TTL	PORTA<3> data input; disabled when analog input enabled.
	C1IN+	1	1	I	AN	Comparator C1 non-inverting input.
	AN3	1	1	I	AN	Analog input 3.
	VREF+	1	1	I	AN	A/D reference voltage (high) input.
RA4/CCP5/C1OUT/	RA4	0	—	0	DIG	LATA<4> data output.
SKQ/TUCKI		1	—	I	ST	PORTA<4> data input; default configuration on POR.
	CCP5	0	—	0	DIG	CCP5 Compare output/PWM output, takes priority over RA4 output.
		1	—	I	ST	Capture 5 input/Compare 5 output/ PWM 5 output.
	C1OUT	0	—	0	DIG	Comparator C1 output.
	SRQ	0	—	0	DIG	SR latch Q output; take priority over CCP 5 output.
	TOCKI	1		I	ST	Timer0 external clock input.
RA5/C2OUT/SRNQ/	RA5	0	0	0	DIG	LATA<5> data output; not affected by analog input.
SS1/ HLVDIN/AN4		1	0	I	TTL	PORTA<5> data input; disabled when analog input enabled.
	C2OUT	0	0	0	DIG	Comparator C2 output.
	SRNQ	0	0	0	DIG	SR latch \overline{Q} output.
	SS1	1	0	I	TTL	SPI slave select input (MSSP1).
	HLVDIN	1	1	I	AN	High/Low-Voltage Detect input.
	AN4	1	1	I	AN	A/D input 4.
RA6/CLKO/OSC2	RA6	0	—	0	DIG	LATA<6> data output; enabled in INTOSC modes when CLKO is not enabled.
		1	—	I	TTL	PORTA<6> data input; enabled in INTOSC modes when CLKO is not enabled.
	CLKO	х	—	0	DIG	In RC mode, OSC2 pin outputs CLKOUT which has 1/4 the fre- quency of OSC1 and denotes the instruction cycle rate.
	OSC2	x	—	0	XTAL	Oscillator crystal output; connects to crystal or resonator in Crystal Oscillator mode.
RA7/CLKI/OSC1	RA7	0	—	0	DIG	LATA<7> data output; disabled in external oscillator modes.
		1	-	I	TTL	PORTA<7> data input; disabled in external oscillator modes.
	CLKI	x	_	I	AN	External clock source input; always associated with pin function OSC1.
	OSC1	x	—	I	XTAL	Oscillator crystal input or external clock source input ST buffer when configured in RC mode; CMOS otherwise.

Legend: AN = Analog input or output; TTL = TTL compatible input; HV = High Voltage; OD = Open Drain; XTAL = Crystal; CMOS = CMOS compatible input or output; ST = Schmitt Trigger input with CMOS levels; I²C = Schmitt Trigger input with I²C.

Pin Name	Function	TRIS Setting	ANSEL setting	Pin Type	Buffer Type	Description
RC5/SDO1/AN17	RC5	0	0	0	DIG	LATC<5> data output; not affected by analog input.
		1	0	I	ST	PORTC<5> data input; disabled when analog input enabled.
	SDO1	0	0	0	DIG	MSSP1 SPI data output.
	AN17	1	1	I	AN	Analog input 17.
RC6/P3A/CCP3/TX1/	RC6	0	0	0	DIG	LATC<6> data output; not affected by analog input.
CK1/AN18		1	0	Ι	ST	PORTC<6> data input; disabled when analog input enabled.
	P3A ^{(2), (3)}	0	0	0	CMOS	Enhanced CCP3 PWM output 1.
	CCP3 ^{(2), (3)}	0	0	0	DIG	Compare 3 output/PWM 3 output.
		1	0	I	ST	Capture 3 input.
	TX1	1	0	0	DIG	EUSART asynchronous transmit data output.
	CK1	1	0	0	DIG	EUSART synchronous serial clock output.
		1	0	I	ST	EUSART synchronous serial clock input.
	AN18	1	1	I	AN	Analog input 18.
RC7/P3B/RX1/DT1/	RC7	0	0	0	DIG	LATC<7> data output; not affected by analog input.
AN19		1	0	Ι	ST	PORTC<7> data input; disabled when analog input enabled.
	P3B	0	0	0	CMOS	Enhanced CCP3 PWM output 2.
	RX1	1	0	I	ST	EUSART asynchronous receive data in.
	DT1	1	0	0	DIG	EUSART synchronous serial data output.
		1	0	I	ST	EUSART synchronous serial data input.
	AN19	1	1	I	AN	Analog input 19.

TABLE 10-8: PORTC I/O SUMMARY (CONTINUED)

Legend:AN = Analog input or output; TTL = TTL compatible input; HV = High Voltage; OD = Open Drain; XTAL = Crystal; CMOS =
CMOS compatible input or output; ST = Schmitt Trigger input with CMOS levels; I^2C = Schmitt Trigger input with I^2C .

Note 1: Default pin assignment for P2B, T3CKI, CCP3 and CCP2 when Configuration bits PB2MX, T3CMX, CCP3MX and CCP2MX are set.

2: Alternate pin assignment for P2B, T3CKI, CCP3 and CCP2 when Configuration bits PB2MX, T3CMX, CCP3MX and CCP2MX are clear.

3: Function on PORTD and PORTE for PIC18FXXK22 devices.

10.5 PORTD Registers

Note:	PORTD is only available on 40-pin and
	44-pin devices.

PORTD is an 8-bit wide, bidirectional port. The corresponding data direction register is TRISD. Setting a TRISD bit (= 1) will make the corresponding PORTD pin an input (i.e., disable the output driver). Clearing a TRISD bit (= 0) will make the corresponding PORTD pin an output (i.e., enable the output driver and put the contents of the output latch on the selected pin).

The Data Latch register (LATD) is also memory mapped. Read-modify-write operations on the LATD register read and write the latched output value for PORTD.

All pins on PORTD are implemented with Schmitt Trigger input buffers. Each pin is individually configurable as an input or output.

All of the PORTD pins are multiplexed with analog and digital peripheral modules. See Table 10-11.

Note: On a Power-on Reset, these pins are configured as analog inputs.

EXAMPLE 10-4: INITIALIZING PORTD

MOVLB	0xF	; Set BSR for banked SFRs
CLRF	PORTD	; Initialize PORTD by
		; clearing output
		; data latches
CLRF	LATD	; Alternate method
		; to clear output
		; data latches
MOVLW	0CFh	; Value used to
		; initialize data
		; direction
MOVWF	TRISD	; Set RD<3:0> as inputs
		; RD<5:4> as outputs
		; RD<7:6> as inputs
MOVLW	30h	; Value used to
		; enable digital inputs
MOVWF	ANSELD	; RD<3:0> dig input enable
		; RC<7:6> dig input enable
1		

10.5.1 PORTD OUTPUT PRIORITY

Each PORTD pin is multiplexed with other functions. The pins, their combined functions and their output priorities are briefly described here. For additional information, refer to the appropriate section in this data sheet.

When multiple outputs are enabled, the actual pin control goes to the peripheral with the higher priority. Table 10-4 lists the PORTD pin functions from the highest to the lowest priority.

Analog input functions, such as ADC, comparator and SR latch inputs, are not shown in the priority lists.

These inputs are active when the I/O pin is set for Analog mode using the ANSELx registers. Digital output functions may control the pin when it is in Analog mode with the priority shown below.

14.4.6 PWM STEERING MODE

In Single Output mode, PWM steering allows any of the PWM pins to be the modulated signal. Additionally, the same PWM signal can be simultaneously available on multiple pins.

Once the Single Output mode is selected (CCPxM<3:2> = 11 and PxM<1:0> = 00 of the CCPxCON register), the user firmware can bring out the same PWM signal to one, two, three or four output pins by setting the appropriate Steering Enable bits (STRxA, STRxB, STRxC and/or STRxD) of the PSTRxCON register, as shown in Table 14-13.

Note:	The associated TRIS bits must be set to
	output ('0') to enable the pin output driver
	in order to see the PWM signal on the pin.

While the PWM Steering mode is active, CCPxM<1:0> bits of the CCPxCON register select the PWM output polarity for the PxD, PxC, PxB and PxA pins.

The PWM auto-shutdown operation also applies to PWM Steering mode as described in **Section 14.4.3 "Enhanced PWM Auto-shutdown Mode"**. An autoshutdown event will only affect pins that have PWM outputs enabled.

FIGURE 14-18: SIMPLIFIED STEERING BLOCK DIAGRAM

14.4.6.1 Steering Synchronization

The STRxSYNC bit of the PSTRxCON register gives the user two selections of when the steering event will happen. When the STRxSYNC bit is '0', the steering event will happen at the end of the instruction that writes to the PSTRxCON register. In this case, the output signal at the PxA, PxB, PxC and PxD pins may be an incomplete PWM waveform. This operation is useful when the user firmware needs to immediately remove a PWM signal from the pin.

When the STRxSYNC bit is '1', the effective steering update will happen at the beginning of the next PWM period. In this case, steering on/off the PWM output will always produce a complete PWM waveform.

Figures 14-19 and 14-20 illustrate the timing diagrams of the PWM steering depending on the STRxSYNC setting.

R/x-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
PxM	<1:0>	DCxl	3<1:0>		CCPxN	/<3:0>	
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable b	bit	U = Unimpler	mented bit, rea	id as '0'	
u = Bit is unch	nanged	x = Bit is unkn	own	-n/n = Value a	at POR and B	OR/Value at al	l other Reset
'1' = Bit is set		'0' = Bit is clea	ired				
bit 7-6	PxM<1:0>: E If C xx = PxA as	nhanced PWM CPxM<3:2> = signed as Capt	Output Config 00,01,10: ure/Compare ii	uration bits (Capture/Comp nput; PxB, PxC,	are modes) PxD assigned	as port pins	
	If C If C 0x = Single o 1x = Half-Bri	CCP Modules CPxM<3:2> = output; PxA mo idge output; Px	11: (PWM moc dulated; PxB a A, PxB modula	les) ssigned as port ted with dead-ba	pin and control		
	Full-Bridge Ed If C 00 = Single d 01 = Full-Bri 10 = Half-Bri pins 11 = Full-Brid	CCP Modules ⁽¹ CPxM<3:2> = output; PxA mo dge output forw idge output; Px dge output; Px): 11: (PWM mood dulated; PxB, I vard; PxD modul A, PxB modulaterse; PxB modulaterse; PxB modulaterse	les) PxC, PxD assigr ulated; PxA activ ated with dead-l ulated; PxC activ	ned as port pin ve; PxB, PxC ii band control; F ve; PxA, PxD ii	s nactive PxC, PxD assi nactive	igned as port
bit 5-4	DCxB<1:0>:	PWM Duty Cyc	le Least Signif	icant bits			
	<u>Capture mode</u> Unused	<u>e:</u>					
	<u>Compare mod</u> Unused	<u>de:</u>					
	<u>PWM mode:</u> These bits are	e the two LSbs	of the PWM du	uty cycle. The ei	ght MSbs are f	ound in CCPF	RxL.
Note 1: Se	e Table 14-1 to	determine full-b	ridge and half-	bridge ECCPs f	or the device b	eing used.	

REGISTER 14-2: CCPxCON: ENHANCED CCPx CONTROL REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R-0	R-0	R-0
SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D
bit 7	L			•	•		bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 7	SPEN: Serial	Port Enable bit	t				
	1 = Serial po	rt enabled (con	figures RXx/	DTx and TXx/C	Kx pins as seria	al port pins)	
hit C		n disabled (nei	a in Reset)				
DILO		bit recontion	IL				
	0 = Selects 8	B-bit reception					
bit 5	SREN: Single	e Receive Enab	le bit				
	Asynchronou	<u>s mode</u> :					
	Don't care						
	<u>Synchronous</u>	mode - Master	<u>r</u> :				
	1 = Enables	single receive					
	This bit is clea	ared after receive	otion is comp	lete.			
	Synchronous	<u>mode – Slave</u>					
	Don't care						
bit 4	CREN: Contir	nuous Receive	Enable bit				
	Asynchronous	<u>s mode</u> :					
	1 = Enables	receiver					
	0 = Disables	receiver					
	1 = Enables	continuous rece	eive until ena	ble bit CREN is	s cleared (CREN	l overrides SRI	EN)
	0 = Disables	continuous rec	eive				,
bit 3	ADDEN: Add	ress Detect En	able bit				
	Asynchronous	<u>s mode 9-bit (R</u>	<u>X9 = 1)</u> :				
	1 = Enables	address detecti	ion, enable ir	nterrupt and loa	d the receive bu	uffer when RSR	<8> is set
	0 = Disables	address detect	tion, all bytes $X = 0$	are received a	nd ninth bit can	be used as par	rity bit
	Don't care		<u> X3 = 0]</u> .				
bit 2	FERR: Frami	na Error bit					
	1 = Framing	error (can be u	pdated by re	ading RCREGx	register and re	ceive next valio	l bvte)
	0 = No framin	ng error	, , , .	3	- 3		- ,
bit 1	OERR: Overr	un Error bit					
	1 = Overrun	error (can be cl	eared by cle	aring bit CREN)		
	0 = No overr	un error	_				
bit 0	RX9D: Ninth	bit of Received	Data			<i>.</i> .	
	This can be a	ddress/data bit	or a parity b	it and must be o	calculated by us	er firmware.	

REGISTER 16-2: RCSTAX: RECEIVE STATUS AND CONTROL REGISTER

16.5.2 SYNCHRONOUS SLAVE MODE

The following bits are used to configure the EUSART for Synchronous slave operation:

- SYNC = 1
- CSRC = 0
- SREN = 0 (for transmit); SREN = 1 (for receive)
- CREN = 0 (for transmit); CREN = 1 (for receive)
- SPEN = 1

Setting the SYNC bit of the TXSTAx register configures the device for synchronous operation. Clearing the CSRC bit of the TXSTAx register configures the device as a slave. Clearing the SREN and CREN bits of the RCSTAx register ensures that the device is in the Transmit mode, otherwise the device will be configured to receive. Setting the SPEN bit of the RCSTAx register enables the EUSART. If the RXx/DTx or TXx/CKx pins are shared with an analog peripheral the analog I/O functions must be disabled by clearing the corresponding ANSEL bits.

RXx/DTx and TXx/CKx pin output drivers must be disabled by setting the corresponding TRIS bits.

16.5.2.1 EUSART Synchronous Slave Transmit

The operation of the Synchronous Master and Slave modes are identical (see Section 16.5.1.3 "Synchronous Master Transmission"), except in the case of the Sleep mode.

If two words are written to the TXREGx and then the SLEEP instruction is executed, the following will occur:

- 1. The first character will immediately transfer to the TSR register and transmit.
- 2. The second word will remain in TXREGx register.
- 3. The TXxIF bit will not be set.
- After the first character has been shifted out of TSR, the TXREGx register will transfer the second character to the TSR and the TXxIF bit will now be set.
- 5. If the PEIE/GIEL and TXxIE bits are set, the interrupt will wake the device from Sleep and execute the next instruction. If the GIE/GIEH bit is also set, the program will call the Interrupt Service Routine.
- 16.5.2.2 Synchronous Slave Transmission Setup:
- 1. Set the SYNC and SPEN bits and clear the CSRC bit.
- 2. Set the RXx/DTx and TXx/CKx TRIS controls to '1'.
- 3. Clear the CREN and SREN bits.
- 4. If using interrupts, ensure that the GIE/GIEH and PEIE/GIEL bits of the INTCON register are set and set the TXxIE bit.
- 5. If 9-bit transmission is desired, set the TX9 bit.
- 6. Enable transmission by setting the TXEN bit.
- 7. If 9-bit transmission is selected, insert the Most Significant bit into the TX9D bit.
- 8. Start transmission by writing the Least Significant eight bits to the TXREGx register.

19.1 CTMU Operation

The CTMU works by using a fixed current source to charge a circuit. The type of circuit depends on the type of measurement being made. In the case of charge measurement, the current is fixed, and the amount of time the current is applied to the circuit is fixed. The amount of voltage read by the A/D is then a measurement of the capacitance of the circuit. In the case of time measurement, the current, as well as the capacitance of the circuit, is fixed. In this case, the voltage read by the A/D is then representative of the amount of time elapsed from the time the current source starts and stops charging the circuit.

If the CTMU is being used as a time delay, both capacitance and current source are fixed, as well as the voltage supplied to the comparator circuit. The delay of a signal is determined by the amount of time it takes the voltage to charge to the comparator threshold voltage.

19.1.1 THEORY OF OPERATION

The operation of the CTMU is based on the equation for charge:

$$I = C \cdot \frac{dV}{dT}$$

More simply, the amount of charge measured in coulombs in a circuit is defined as current in amperes (*I*) multiplied by the amount of time in seconds that the current flows (t). Charge is also defined as the capacitance in farads (C) multiplied by the voltage of the circuit (V). It follows that:

$$I \cdot t = C \cdot V.$$

The CTMU module provides a constant, known current source. The A/D Converter is used to measure (V) in the equation, leaving two unknowns: capacitance (C) and time (t). The above equation can be used to calculate capacitance or time, by either the relationship using the known fixed capacitance of the circuit:

$$t = (C \cdot V) / I$$

or by:

$$C = (I \cdot t) / V$$

using a fixed time that the current source is applied to the circuit.

19.1.2 CURRENT SOURCE

At the heart of the CTMU is a precision current source, designed to provide a constant reference for measurements. The level of current is user-selectable across three ranges, with the ability to trim the output. The current range is selected by the IRNG<1:0> bits (CTMUICON<1:0>), with a value of '00' representing the lowest range.

Current trim is provided by the ITRIM<5:0> bits (CTMUICON<7:2>). Note that half of the range adjusts the current source positively and the other half reduces the current source. A value of '000000' is the neutral position (no change). A value of '100000' is the maximum negative adjustment, and '011111' is the maximum positive adjustment.

19.1.3 EDGE SELECTION AND CONTROL

CTMU measurements are controlled by edge events occurring on the module's two input channels. Each channel, referred to as Edge 1 and Edge 2, can be configured to receive input pulses from one of the edge input pins (CTED1 and CTED2) or ECCPx Special Event Triggers. The input channels are level-sensitive, responding to the instantaneous level on the channel rather than a transition between levels. The inputs are selected using the EDG1SEL and EDG2SEL bit pairs (CTMUCONL<3:2 and 6:5>).

In addition to source, each channel can be configured for event polarity using the EDGE2POL and EDGE1POL bits (CTMUCONL<7,4>). The input channels can also be filtered for an edge event sequence (Edge 1 occurring before Edge 2) by setting the EDGSEQEN bit (CTMUCONH<2>).

19.1.4 EDGE STATUS

The CTMUCONL register also contains two Status bits: EDG2STAT and EDG1STAT (CTMUCONL<1:0>). Their primary function is to show if an edge response has occurred on the corresponding channel. The CTMU automatically sets a particular bit when an edge response is detected on its channel. The level-sensitive nature of the input channels also means that the Status bits become set immediately if the channel's configuration is changed and is the same as the channel's current state.

FIGURE 25-1: GENERAL FORMAT FOR INSTRUCTIONS

15 10 9 8 7 0	
OPCODE d a f (FILE #)	ADDWF MYREG, W, B
$ d = 0 \ \text{for result destination to be WREG register} $ $ d = 1 \ \text{for result destination to be file register (f)} $ $ a = 0 \ \text{to force Access Bank} $ $ a = 1 \ \text{for BSR to select bank} $ f = 8 -bit file register address	
Byte to Byte move operations (2-word)	
15 12 11 0	
OPCODE f (Source FILE #)	MOVFF MYREG1, MYREG2
15 12 11 0	
1111 f (Destination FILE #)	
f = 12-bit file register address	
Bit-oriented file register operations	
15 12 11 9 8 7 0	
OPCODE b (BIT #) a f (FILE #)	BSF MYREG, bit, B
b = 3-bit position of bit in file reaister (f)	
a = 0 to force Access Bank	
$a = \perp$ for BSR to select bank f = 8-bit file register address	
Literal operations	
Literal operations	MONTER 755
Literal operations 15 8 7 0 OPCODE k (literal)	MOVLW 7Fh
Literal operations 15 8 7 0 OPCODE k (literal) k = 8-bit immediate value	MOVLW 7Fh
Literal operations 15 8 7 0 OPCODE k (literal) k = 8-bit immediate value Control operations	MOVLW 7Fh
Literal operations 15 8 7 0 OPCODE k (literal) k = 8-bit immediate value Control operations CALL, GOTO and Branch operations	MOVLW 7Fh
Literal operations 15 8 7 0 OPCODE k (literal) k k k = 8-bit immediate value k k k Control operations CALL, GOTO and Branch operations 0 15 8 7 0	MOVLW 7Fh
Literal operations 15 8 7 0 OPCODE k (literal) k k k = 8-bit immediate value k k k Control operations CALL, GOTO and Branch operations 15 8 7 0 OPCODE n<7:0> (literal) N	MOVLW 7Fh GOTO Label
Literal operations 15 8 7 0 OPCODE k (literal) k = 8-bit immediate value Control operations CALL, GOTO and Branch operations 15 8 7 0 OPCODE n<7:0> (literal) 15 12 11 0	MOVLW 7Fh GOTO Label
Literal operations 15 8 7 0 OPCODE k (literal) k = 8-bit immediate value Control operations Control operations 15 8 7 0 OPCODE n<7:0> (literal) 15 12 11 0 1111 n<19:8> (literal) 1111 1111 1111	MOVLW 7Fh GOTO Label
Literal operations 15 8 7 0 OPCODE k (literal) k = 8-bit immediate value Control operations CALL, GOTO and Branch operations 15 8 7 0 OPCODE n<7:0> (literal) 15 12 11 0 15 12 11 0 1111 n<19:8> (literal) n = 20-bit immediate value	MOVLW 7Fh GOTO Label
Literal operations 15 8 7 0 OPCODE k (literal) k = 8-bit immediate value Control operations Call, GOTO and Branch operations 15 8 7 0 OPCODE n<7:0> (literal) 1 15 12 11 0 1111 n<19:8> (literal) 1 n = 20-bit immediate value 15 8 7 0	MOVLW 7Fh GOTO Label
Literal operations15870OPCODEk (literal)k = 8-bit immediate valueControl operationsCALL, GOTO and Branch operations15870 15 1211015121101111n<19:8> (literal)n = 20-bit immediate value15870OPCODESn<7:0> (literal)	MOVLW 7Fh GOTO Label CALL MYFUNC
Literal operations15870OPCODEk (literal)k = 8-bit immediate valueControl operationsCALL, GOTO and Branch operations15870OPCODE $n<7:0>$ (literal)15121101111 $n<19:8>$ (literal)n = 20-bit immediate value15870OPCODES $n<7:0>$ (literal)1512110	MOVLW 7Fh GOTO Label CALL MYFUNC
Literal operations15870OPCODEk (literal)k = 8-bit immediate valueControl operationsCALL, GOTO and Branch operations15870OPCODE $n<7:0>$ (literal)15121101111 $n<19:8>$ (literal)n = 20-bit immediate value15870OPCODES $n<7:0>$ (literal)15121101512110151211015121101111 $n<19:8>$ (literal)1	MOVLW 7Fh GOTO Label CALL MYFUNC
Literal operations15870OPCODEk (literal)k = 8-bit immediate valueControl operationsCALL, GOTO and Branch operations15870 $0PCODE$ n<7:0> (literal)15121101111n<19:8> (literal)n = 20-bit immediate value15870 $0PCODE$ Sn<7:0> (literal)15121101512110 15 870 S Fast bit $N = 19:8>$ (literal)	MOVLW 7Fh GOTO Label CALL MYFUNC
Literal operations 15 870 $OPCODE$ k (literal)k = 8-bit immediate valueControl operationsCALL, GOTO and Branch operations 15 870 $OPCODE$ n<7:0> (literal)15121101111n<19:8> (literal)n = 20-bit immediate value 15 870 $OPCODE$ Sn<7:0> (literal)15121101512110 15 12110 15 12110 1111 n<19:8> (literal)S = Fast bit	MOVLW 7Fh GOTO Label CALL MYFUNC
Literal operations 15 8 7 0 OPCODE k (literal) k = 8-bit immediate value Control operations Control operations CALL, GOTO and Branch operations DPCODE n <7:0> (literal) 15 12 11 0 1111 n <7:0> (literal) 15 12 11 0 15 12 11 0 15 12 11 0 15 12 11 0 15 12 11 0 1111 n <19:8> (literal) 1 15 11 10 0 15 11 10 0 15 11 10 0	MOVLW 7Fh GOTO Label CALL MYFUNC
Literal operations15870OPCODEk (literal)k = 8-bit immediate valueControl operationsCALL, GOTO and Branch operations15870OPCODE $n<7:0>$ (literal)15121101111 $n<19:8>$ (literal)n = 20-bit immediate value15870OPCODES $n<7:0>$ (literal)151211015121101111 $n<19:8>$ (literal)SS = Fast bit1511100PCODE $n<10:0>$ (literal)0	MOVLW 7Fh GOTO Label CALL MYFUNC BRA MYFUNC
Literal operations15870OPCODEk (literal)k = 8-bit immediate valueControl operationsCALL, GOTO and Branch operations15870OPCODE $n<7:0>$ (literal)15121101111 $n<19:8>$ (literal)n = 20-bit immediate value15870OPCODES $n<7:0>$ (literal)151211015121101512110S = Fast bit1511101511100OPCODE $n<10:0>$ (literal)1	MOVLW 7Fh GOTO Label CALL MYFUNC
Literal operations15870OPCODEk (literal)k = 8-bit immediate valueControl operationsCALL, GOTO and Branch operations15870OPCODEn<7:0> (literal)15121101111n<19:8> (literal)n = 20-bit immediate value15870OPCODESn<7:0> (literal)151211015121101512110151211015121101512110151211015111000PCODEn<10:0> (literal)1158700PCODEn<7:0> (literal)	MOVLW 7Fh GOTO Label CALL MYFUNC BRA MYFUNC BC MYFUNC

MO	/LW	Move lite	eral to W	1			
Syntax:		MOVLW	MOVLW k				
Operands:		$0 \le k \le 25$	$0 \le k \le 255$				
Operation:		$k\toW$	$k \rightarrow W$				
Status Affected:		None	None				
Encoding:		0000	1110	kkkł	ç	kkkk	
Description:		The 8-bit literal 'k' is loaded into W.					
Words:		1					
Cycles:		1					
Q Cycle Activity:							
	Q1	Q2	Q3 Process Data		Q4		
	Decode	Read literal 'k'			Write to W		
Exan	nple:	MOVLW	5Ah				

After Instruction

W = 5Ah

MOVWF Move W to f					
Synta	ax:	MOVWF	f {,a}		
Oper	ands:	0 ≤ f ≤ 255 a ∈ [0,1]			
Oper	ation:	$(W)\tof$			
Statu	is Affected:	None			
Enco	oding:	0110	111a	ffff	ffff
Description: Move data from W to register 'f'. Location 'f' can be anywhere in the 256-byte bank. If 'a' is '0', the Access Bank is select If 'a' is '1', the BSR is used to select GPR bank. If 'a' is '0' and the extended instruct set is enabled, this instruction opera in Indexed Literal Offset Addressing mode whenever f ≤ 95 (5Fh). See Section 25.2.3 "Byte-Oriented and Bit-Oriented Instructions in Index Literal Offset Mode" for details.				T. in the selected. select the astruction operates essing See ed and Indexed ails.	
Words:		1			
Cycles:		1			
QC	ycle Activity:				
	Q1	Q2	Q3		Q4
	Decode	Read	Proces	ss	Write
		register 'f'	Data	i re	egister 'f'

Example: MOVWF REG, 0

Before Instruction

W REG After Instruct	= = ion	4Fh FFh
W	=	4Fh
REG	=	4Fh

DS40001412G-page 386

RET	FIE	Return from Interrupt				
Syntax:		RETFIE {	RETFIE {s}			
Operands:		$s \in \left[0,1\right]$	s ∈ [0,1]			
Oper	ation:	$(TOS) \rightarrow F$ $1 \rightarrow GIE/G$ if s = 1 $(WS) \rightarrow W$ (STATUSS) $(BSRS) \rightarrow$ PCLATU, I	$\begin{array}{l} (\text{TOS}) \rightarrow \text{PC}, \\ 1 \rightarrow \text{GIE/GIEH or PEIE/GIEL}, \\ \text{if s = 1} \\ (\text{WS}) \rightarrow \text{W}, \\ (\text{STATUSS}) \rightarrow \text{Status}, \\ (\text{BSRS}) \rightarrow \text{BSR}, \\ \text{PCLATU, PCLATH are unchanged}. \end{array}$			
Status Affected:		GIE/GIEH,	GIE/GIEH, PEIE/GIEL.			
Enco	ding:	0000	0000	0001	000s	
Description:		Return from and Top-of the PC. Int setting eith global inte contents o STATUSS their corres STATUS a of these ret	Return from interrupt. Stack is popped and Top-of-Stack (TOS) is loaded into the PC. Interrupts are enabled by setting either the high or low priority global interrupt enable bit. If 's' = 1, the contents of the shadow registers, WS, STATUSS and BSRS, are loaded into their corresponding registers, W, STATUS and BSR. If 's' = 0, no update of these registers occurs (default).			
Words:		1				
Cycles:		2				
Q Cycle Activity:						
	Q1	Q2	Q3	}	Q4	
	Decode	No operation	No opera	tion s	POP PC from stack Set GIEH or GIEL	
	No	No	No)	No	
	operation	operation	opera	tion	operation	
Example:		RETFIE	RETFIE 1			
After Interrupt PC = TOS W = WS BSR = BSRS Status = STATUSS GIF/GIFH PFIF/GIFI = 1						

Syntax:		RETLW k				
Operands:		$0 \le k \le 255$				
Operation:		$k \rightarrow W$, (TOS) \rightarrow PC, PCLATU, PCLATH are unchanged				
Statu	is Affected:	None				
Enco	oding:	0000	0000 1100 kkkk kk			
Description:		W is loaded with the 8-bit literal 'k'. The program counter is loaded from the top of the stack (the return address). The high address latch (PCLATH) remains unchanged.				
Word	ls:	1				
Cycle	es:	2				
QC	ycle Activity:					
	Q1	Q2	Q3		Q4	
	Decode	Read literal 'k'	Proce Data	ess P a fro W	OP PC om stack, rite to W	
	No	No	No		No	
	operation	operation	operat	tion o	peration	
Exan	n <mark>ple</mark> : CALL TABLE	; W contai	ins tab	le		
		; offset value				
		; W now has				
:		/ Labie va	irue			
TABI	ĿE					
	ADDWF PCL	; W = offset				
	RETLW k0	; Begin table				
	RETLW kl	;				
:						

W = 07h After Instruction

W = value of kn

FIGURE 28-27: PIC18LF2X/4XK22 MAXIMUM IDD: RC_RUN HF-INTOSC

© 2010-2016 Microchip Technology Inc.

FIGURE 28-73: PIC18LF2X/4XK22 MAXIMUM IDD: SEC_RUN 32.768 kHz

40-Lead UQFN (5x5x0.5 mm)

