

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

2014110	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	64MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	35
Program Memory Size	8KB (4K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 30x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	40-UFQFN Exposed Pad
Supplier Device Package	40-UQFN (5x5)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18lf43k22t-i-mv

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

	Pin Number PDIP, QFN, SOIC UQFN			Pin	Buffer	
			Pin Name	Туре	Туре	Description
	20	17 VDD		Р	_	Positive supply for logic and I/O pins.
	8, 19	5, 16	Vss	Р	_	Ground reference for logic and I/O pins.

TABLE 1-2: PIC18(L)F2XK22 PINOUT I/O DESCRIPTIONS (CONTINUED)

Legend: TTL = TTL compatible input CMOS = CMOS compatible input or output; ST = Schmitt Trigger input with CMOS levels; I = Input; O = Output; P = Power.

Note 1: Default pin assignment for P2B, T3CKI, CCP3 and CCP2 when Configuration bits PB2MX, T3CMX, CCP3MX and CCP2MX are set.

2: Alternate pin assignment for P2B, T3CKI, CCP3 and CCP2 when Configuration bits PB2MX, T3CMX, CCP3MX and CCP2MX are clear.

TABLE 1-3:	PIC18(L)F4XK22 PINOUT I/O DESCRIPTIONS
------------	--

Pin Number		Din Nama	Pin	Buffer	Description				
PDIP	TQFP	QFN	UQFN	Pin Name	Туре	Туре	Description		
2	19	19	17	RA0/C12IN0-/AN0					
				RA0	I/O	TTL	Digital I/O.		
				C12IN0-	Ι	Analog	Comparators C1 and C2 inverting input.		
				AN0	Ι	Analog	Analog input 0.		
3	20	20	18	RA1/C12IN1-/AN1					
				RA1	I/O	TTL	Digital I/O.		
				C12IN1-	I	Analog	Comparators C1 and C2 inverting input.		
				AN1	I	Analog	Analog input 1.		
4	21	21	19	RA2/C2IN+/AN2/DACOUT	Wref-				
				RA2	I/O	TTL	Digital I/O.		
				C2IN+	I	Analog	Comparator C2 non-inverting input.		
				AN2	I	Analog	Analog input 2.		
				DACOUT	0	Analog	DAC Reference output.		
				VREF-	I	Analog	A/D reference voltage (low) input.		
5	22	22	20	RA3/C1IN+/AN3/VREF+					
				RA3	I/O	TTL	Digital I/O.		
				C1IN+	I	Analog	Comparator C1 non-inverting input.		
				AN3	I	Analog	Analog input 3.		
				VREF+	I	Analog	A/D reference voltage (high) input.		
6	23	23	21	RA4/C1OUT/SRQ/T0CKI					
				RA4	I/O	ST	Digital I/O.		
				C1OUT	0	CMOS	Comparator C1 output.		
				SRQ	0	TTL	SR latch Q output.		
				TOCKI	l atible inc	ST	Timer0 external clock input.		

Legend: TTL = TTL compatible input CMOS = CMOS compatible input or output; ST = Schmitt Trigger input with CMOS levels; I = Input; O = Output; P = Power.

Note 1: Default pin assignment for P2B, T3CKI, CCP3/P3A and CCP2/P2A when Configuration bits PB2MX, T3CMX, CCP3MX and CCP2MX are set.

2: Alternate pin assignment for P2B, T3CKI, CCP3/P3A and CCP2/P2A when Configuration bits PB2MX, T3CMX, CCP3MX and CCP2MX are clear.

2.2 Oscillator Control

The OSCCON, OSCCON2 and OSCTUNE registers (Register 2-1 to Register 2-3) control several aspects of the device clock's operation, both in full-power operation and in power-managed modes.

- Main System Clock Selection (SCS)
- Primary Oscillator Circuit Shutdown (PRISD)
- Secondary Oscillator Enable (SOSCGO)
- Primary Clock Frequency 4x multiplier (PLLEN)
- Internal Frequency selection bits (IRCF, INTSRC)
- Clock Status bits (OSTS, HFIOFS, MFIOFS, LFIOFS. SOSCRUN, PLLRDY)
- Power management selection (IDLEN)

2.2.1 MAIN SYSTEM CLOCK SELECTION

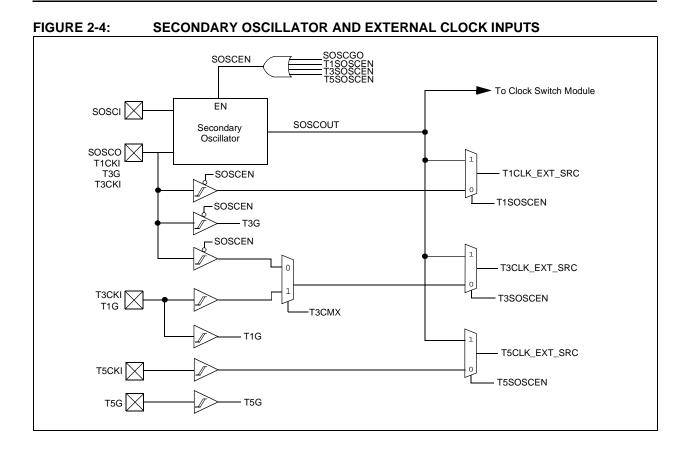
The System Clock Select bits, SCS<1:0>, select the main clock source. The available clock sources are

- Primary clock defined by the FOSC<3:0> bits of CONFIG1H. The primary clock can be the primary oscillator, an external clock, or the internal oscillator block.
- Secondary clock (secondary oscillator)
- Internal oscillator block (HFINTOSC, MFINTOSC and LFINTOSC).

The clock source changes immediately after one or more of the bits is written to, following a brief clock transition interval. The SCS bits are cleared to select the primary clock on all forms of Reset.

2.2.2 INTERNAL FREQUENCY SELECTION

The Internal Oscillator Frequency Select bits (IRCF<2:0>) select the frequency output of the internal oscillator block. The choices are the LFINTOSC source (31.25 kHz), the MFINTOSC source (31.25 kHz, 250 kHz or 500 kHz) and the HFINTOSC source (16 MHz) or one of the frequencies derived from the HFINTOSC postscaler (31.25 kHz to 8 MHz). If the internal oscillator block is supplying the main clock, changing the states of these bits will have an immediate change on the internal oscillator's output. On device Resets, the output frequency of the internal oscillator is set to the default frequency of 1 MHz.

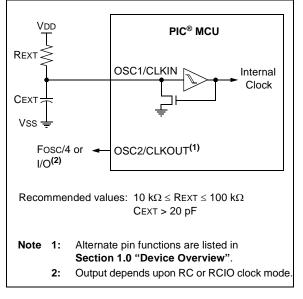

2.2.3 LOW FREQUENCY SELECTION

When a nominal output frequency of 31.25 kHz is selected (IRCF<2:0> = 000), users may choose which internal oscillator acts as the source. This is done with the INTSRC bit of the OSCTUNE register and MFIOSEL bit of the OSCCON2 register. See Figure 2-2 and Register 2-1 for specific 31.25 kHz selection. This option allows users to select a 31.25 kHz clock (MFINTOSC or HFINTOSC) that can be tuned using the TUN<5:0> bits in OSCTUNE register, while maintaining power savings with a very low clock speed. LFINTOSC always remains the clock source for features such as the Watchdog Timer and the Fail-Safe Clock Monitor, regardless of the setting of INTSRC and MFIOSEL bits

This option allows users to select the tunable and more precise HFINTOSC as a clock source, while maintaining power savings with a very low clock speed.

2.2.4 POWER MANAGEMENT

The IDLEN bit of the OSCCON register determines whether the device goes into Sleep mode or one of the Idle modes when the SLEEP instruction is executed.



2.5.4 EXTERNAL RC MODES

The external Resistor-Capacitor (RC) modes support the use of an external RC circuit. This allows the designer maximum flexibility in frequency choice while keeping costs to a minimum when clock accuracy is not required. There are two modes: RC and RCIO.

2.5.4.1 RC Mode

In RC mode, the RC circuit connects to OSC1. OSC2/ CLKOUT outputs the RC oscillator frequency divided by four. This signal may be used to provide a clock for external circuitry, synchronization, calibration, test or other application requirements. Figure 2-8 shows the external RC mode connections.

FIGURE 2-8: EXTERNAL RC MODES

2.5.4.2 RCIO Mode

In RCIO mode, the RC circuit is connected to OSC1. OSC2 becomes a general purpose I/O pin.

The RC oscillator frequency is a function of the supply voltage, the resistor (REXT) and capacitor (CEXT) values and the operating temperature. Other factors affecting the oscillator frequency are:

- input threshold voltage variation
- component tolerances
- · packaging variations in capacitance

The user also needs to take into account variation due to tolerance of external RC components used.

2.6 Internal Clock Modes

The oscillator module has three independent, internal oscillators that can be configured or selected as the system clock source.

- 1. The **HFINTOSC** (High-Frequency Internal Oscillator) is factory calibrated and operates at 16 MHz. The frequency of the HFINTOSC can be user-adjusted via software using the OSCTUNE register (Register 2-3).
- The MFINTOSC (Medium-Frequency Internal Oscillator) is factory calibrated and operates at 500 kHz. The frequency of the MFINTOSC can be user-adjusted via software using the OSCTUNE register (Register 2-3).
- The LFINTOSC (Low-Frequency Internal Oscillator) is factory calibrated and operates at 31.25 kHz. The LFINTOSC cannot be useradjusted, but is designed to be stable over temperature and voltage.

The system clock speed can be selected via software using the Internal Oscillator Frequency select bits IRCF<2:0> of the OSCCON register.

The system clock can be selected between external or internal clock sources via the System Clock Selection (SCS<1:0>) bits of the OSCCON register. See **Section 2.11 "Clock Switching"** for more information.

2.6.1 INTOSC WITH I/O OR CLOCKOUT

Two of the clock modes selectable with the FOSC<3:0> bits of the CONFIG1H Configuration register configure the internal oscillator block as the primary oscillator. Mode selection determines whether the OSC2/ CLKOUT pin will be configured as general purpose I/O or FOSC/4 (CLKOUT). In both modes, the OSC1/CLKIN pin is configured as general purpose I/O. See **Section 24.0 "Special Features of the CPU"** for more information.

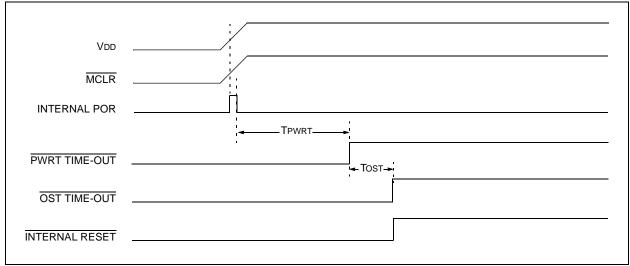
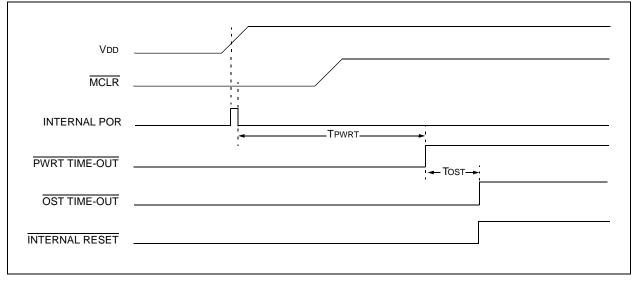

The CLKOUT signal may be used to provide a clock for external circuitry, synchronization, calibration, test or other application requirements.

TABLE 4-2: TIME-OUT IN VARIOUS SITUATIONS


Oscillator	Power-up ⁽²⁾ ar	Power-up ⁽²⁾ and Brown-out					
Configuration	PWRTEN = 0	PWRTEN = 1	Power-Managed Mode				
HSPLL	66 ms ⁽¹⁾ + 1024 Tosc + 2 ms ⁽²⁾	1024 Tosc + 2 ms ⁽²⁾	1024 Tosc + 2 ms ⁽²⁾				
HS, XT, LP	66 ms ⁽¹⁾ + 1024 Tosc	1024 Tosc	1024 Tosc				
EC, ECIO	66 ms ⁽¹⁾	_	—				
RC, RCIO	66 ms ⁽¹⁾	_	—				
INTIO1, INTIO2	66 ms ⁽¹⁾		—				

Note 1: 66 ms (65.5 ms) is the nominal Power-up Timer (PWRT) delay.2: 2 ms is the nominal time required for the PLL to lock.

FIGURE 4-3: TIME-OUT SEQUENCE ON POWER-UP (MCLR TIED TO VDD, VDD RISE < TPWRT)

FIGURE 4-4: TIME-OUT SEQUENCE ON POWER-UP (MCLR NOT TIED TO VDD): CASE 1

	00111										
Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page		
CONFIG2L				BORV	<1:0>	BOREI	N<1:0>	PWRTEN	346		
CONFIG2H	_	-		WDPS	6<3:0>		WDTE	N<1:0>	347		
CONFIG3H	MCLRE	—	P2BMX	T3CMX	HFOFST	CCP3MX	PBADEN	CCP2MX	348		
CONFIG4L	DEBUG	XINST				LVP		STRVEN	349		

TABLE 4-5: CONFIGURATION REGISTERS ASSOCIATED WITH RESETS

Legend: — = unimplemented locations, read as '0'. Shaded bits are not used for Resets.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	<u>Value c</u> POR, BO	
FFFh	TOSU	—	— — Top-of-Stack, Upper Byte (TOS<20:16>)								000
FFEh	TOSH			Тор	-of-Stack, High	Byte (TOS<15	5:8>)			0000 00	000
FFDh	TOSL		Top-of-Stack, Low Byte (TOS<7:0>)								
FFCh	STKPTR	STKFUL	STKUNF	_		ç	STKPTR<4:0>			00-00	000
FFBh	PCLATU	_	_	_		Holding F	Register for PC	<20:16>		0 00	000
FFAh	PCLATH		•	ŀ	Holding Regist	er for PC<15:8	>			0000 00	000
FF9h	PCL				Holding Regis	ter for PC<7:0>	•			0000 00	000
FF8h	TBLPTRU	_	_	Pi	rogram Memor	y Table Pointer	Upper Byte(T	BLPTR<21:16	6>)	00 00	000
FF7h	TBLPTRH		F	Program Memo	ory Table Point	ter High Byte(T	BLPTR<15:8>)		0000 00	000
FF6h	TBLPTRL		Р	rogram Memo	ory Table Point	er Low Byte(TE	3LPTR<7:0>)			0000 00	000
FF5h	TABLAT				Program Men	ory Table Latc	h			0000 00	000
FF4h	PRODH				Product Regis	ter, High Byte				XXXX XX	xxx
FF3h	PRODL				Product Regis	ster, Low Byte				XXXX XX	xxx
FF2h	INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INTOIE	RBIE	TMR0IF	INT0IF	RBIF	0000 00	00x
FF1h	INTCON2	RBPU	INTEDG0	INTEDG1	INTEDG2	_	TMR0IP	_	RBIP	1111 -1	1-1
FF0h	INTCON3	INT2IP	INT1IP	_	INT2IE	INT1IE	_	INT2IF	INT1IF	11-0 0-	-00
FEFh	INDF0	Uses cont	ents of FSR0	to address da	ta memorv – v	alue of FSR0 r	ot changed (no	ot a physical r	egister)		
FEEh	POSTINCO					alue of FSR0 p	. .		• ,		
FEDh	POSTDEC0				,	alue of FSR0 p		· · · ·	0 /		
FECh	PREINC0				,	alue of FSR0 p		· · · ·	0 /		
FEBh	PLUSW0					ie of FSR0 pre			v ,		
FEAh	FSR0H	_	_	_	_	Indirect Dat	a Memory Add	ress Pointer 0), High Byte	00	000
FE9h	FSR0L	In	direct Data Me	emory Addres	s Pointer 0, Lo	w Byte				XXXX XX	xxx
FE8h	WREG			1	Working Regis	ter				XXXX XX	xxx
FE7h	INDF1	Uses cor	ntents of FSR1	to address d	ata memory -	value of FSR1	not changed (i	not a physical	reaister)		
FE6h	POSTINC1					value of FSR1	0 (• <i>i</i>		
FE5h	POSTDEC1					value of FSR1					
FE4h	PREINC1					value of FSR1					
FE3h	PLUSW1				memory – val	ue of FSR1 pre					
FE2h	FSR1H	_	_	—	_	Indirect Dat	a Memory Add	ress Pointer 1	, High Byte	00	000
FE1h	FSR1L		•	Indirect Data I	Memory Addre	ss Pointer 1, L	ow Byte			XXXX XX	xxx
FE0h	BSR	—	—	—	—		Bank Selec	t Register		00	000
FDFh	INDF2	Uses co	ntents of FSR	2 to address of	ata memory -	value of FSR2	not changed (not a physical	l register)		
FDEh	POSTINC2	Uses co	ntents of FSR	2 to address d	lata memory –	value of FSR2	post-incremer	ited (not a phy	/sical register)		
FDDh	POSTDEC2	Uses co	ntents of FSR2	2 to address d	ata memory –	value of FSR2	post-decreme	nted (not a ph	vsical register)	
FDCh	PREINC2					- value of FSR2					
FDBh	PLUSW2				memory – val	ue of FSR2 pre 2 offset by W			, s		
FDAh	FSR2H	_							00	000	
FD9h	FSR2L			ndirect Data N	lemory Addres	s Pointer 2, Lo	w Byte			XXXX XX	xxx
FD8h	STATUS	N OV Z DC C							x xx		
FD7h	TMR0H									0000 00	
FD6h	TMR0L									xxxx xx	
FD5h	TOCON	TMR0ON	T08BIT	TOCS	TOSE	PSA		T0PS<2:0>		1111 11	
FD3h	OSCCON	IDLEN	100011	IRCF<2:0>	1002	OSTS	HFIOFS		<1:0>	0011 q	
FD2h	OSCCON2	PLLRDY	SOSCRUN		MFIOSEL	SOSCGO	PRISD	MFIOFS	LFIOFS	00-0 01	
Legend:						nds on conditio				00.000	-70

TABLE 5-2: REGISTER FILE SUMMARY FOR PIC18(L)F2X/4XK22 DEVICES

Note 1: PIC18(L)F4XK22 devices only.

2: PIC18(L)F2XK22 devices only.

3: PIC18(L)F23/24K22 and PIC18(L)F43/44K22 devices only.

4: PIC18(L)F26K22 and PIC18(L)F46K22 devices only.

8.0 8 x 8 HARDWARE MULTIPLIER

8.1 Introduction

All PIC18 devices include an 8 x 8 hardware multiplier as part of the ALU. The multiplier performs an unsigned operation and yields a 16-bit result that is stored in the product register pair, PRODH:PRODL. The multiplier's operation does not affect any flags in the STATUS register.

Making multiplication a hardware operation allows it to be completed in a single instruction cycle. This has the advantages of higher computational throughput and reduced code size for multiplication algorithms and allows the PIC18 devices to be used in many applications previously reserved for digital signal processors. A comparison of various hardware and software multiply operations, along with the savings in memory and execution time, is shown in Table 8-1.

8.2 Operation

Example 8-1 shows the instruction sequence for an 8 x 8 unsigned multiplication. Only one instruction is required when one of the arguments is already loaded in the WREG register.

Example 8-2 shows the sequence to do an 8 x 8 signed multiplication. To account for the sign bits of the arguments, each argument's Most Significant bit (MSb) is tested and the appropriate subtractions are done.

EXAMPLE 8-1: 8 x 8 UNSIGNED MULTIPLY ROUTINE

MULWF ARG2 ; ARG1 * ARG2 -> ; PRODH:PRODL	MOVF	ARG1,	W	;					
; PRODH:PRODL	MULWF	ARG2		;	ARG1	*	ARG2	->	
				;	PRODE	I:1	PRODL		

EXAMPLE 8-2: 8 x 8 SIGNED MULTIPLY

MOVF	ARG1, W		
MULWF	ARG2	;	ARG1 * ARG2 ->
		;	PRODH:PRODL
BTFSC	ARG2, SB	;	Test Sign Bit
SUBWF	PRODH, F	;	PRODH = PRODH
		;	- ARG1
MOVF	ARG2, W		
BTFSC	ARG1, SB	;	Test Sign Bit
SUBWF	PRODH, F	;	PRODH = PRODH
		;	- ARG2

		Program	Cycles	Time					
Routine	Multiply Method	Memory (Words)	(Max)	@ 64 MHz	@ 40 MHz	@ 10 MHz	@ 4 MHz		
Q v Q unoignod	Without hardware multiply	13	69	4.3 μs	6.9 μs	27.6 μs	69 μs		
8 x 8 unsigned	Hardware multiply	1	1	62.5 ns	100 ns	400 ns	1 μs		
Q v Q aignad	Without hardware multiply	33	91	5.7 μs	9.1 μs	36.4 μs	91 μs		
8 x 8 signed	Hardware multiply	6	6	375 ns	600 ns	2.4 μs	6 μs		
16 x 16 uppigpod	Without hardware multiply	21	242	15.1 μs	24.2 μs	96.8 μs	242 μs		
16 x 16 unsigned	Hardware multiply	28	28	1.8 μs	2.8 μs	11.2 μs	28 μs		
16 x 16 signed	Without hardware multiply	52	254	15.9 μs	25.4 μs	102.6 μs	254 μs		
16 x 16 signed	Hardware multiply	35	40	2.5 μs	4.0 μs	16.0 μs	40 μs		

TABLE 8-1: PERFORMANCE COMPARISON FOR VARIOUS MULTIPLY OPERATIONS

TABLE 10-1: PORTA I/O SUMMARY

Pin Name	Function	TRIS Setting	ANSEL Setting	Pin Type	Buffer Type	Description			
RA0/C12IN0-/AN0	RA0	0	0	0	DIG	LATA<0> data output; not affected by analog input.			
		1	0	Ι	TTL	PORTA<0> data input; disabled when analog input enabled.			
	C12IN0-	1	1	Ι	AN	Comparators C1 and C2 inverting input.			
	AN0	1	1	I	AN	Analog input 0.			
RA1/C12IN1-/AN1	RA1	0	0	0	DIG	LATA<1> data output; not affected by analog input.			
		1	0	I	TTL	PORTA<1> data input; disabled when analog input enabled.			
	C12IN1-	1	1	I	AN	Comparators C1 and C2 inverting input.			
	AN1	1	1	I	AN	Analog input 1.			
RA2/C2IN+/AN2/ DACOUT/VREF-	RA2	0	0	0	DIG	LATA<2> data output; not affected by analog input; disabled when DACOUT enabled.			
		1	0	Ι	TTL	PORTA<2> data input; disabled when analog input enabled; disabled when DACOUT enabled.			
	C2IN+	1	1	Ι	AN	Comparator C2 non-inverting input.			
	AN2	1	1	Ι	AN	Analog output 2.			
	DACOUT	x	1	0	AN	DAC Reference output.			
	VREF-	1	1	Ι	AN	A/D reference voltage (low) input.			
RA3/C1IN+/AN3/	RA3	0		0	DIG	LATA<3> data output; not affected by analog input.			
VREF+		1	0	I	TTL	PORTA<3> data input; disabled when analog input enabled.			
	C1IN+	1	1	I	AN	Comparator C1 non-inverting input.			
	AN3	1	1	I	AN	Analog input 3.			
	VREF+	1	1	I	AN	A/D reference voltage (high) input.			
RA4/CCP5/C1OUT/	RA4	0	—	0	DIG	LATA<4> data output.			
SRQ/T0CKI		1	_	I	ST	PORTA<4> data input; default configuration on POR.			
	CCP5	0	_	0	DIG	CCP5 Compare output/PWM output, takes priority over RA4 output			
		1	—	Ι	ST	Capture 5 input/Compare 5 output/ PWM 5 output.			
	C1OUT	0	_	0	DIG	Comparator C1 output.			
	SRQ	0	_	0	DIG	SR latch Q output; take priority over CCP 5 output.			
	TOCKI	1	_	I	ST	Timer0 external clock input.			
RA5/C2OUT/SRNQ/	RA5	0	0	0	DIG	LATA<5> data output; not affected by analog input.			
SS1/ HLVDIN/AN4		1	0	I	TTL	PORTA<5> data input; disabled when analog input enabled.			
HLVDIN/AN4	C2OUT	0	0	0	DIG	Comparator C2 output.			
	SRNQ	0	0	0	DIG	SR latch \overline{Q} output.			
	SS1	1	0	I	TTL	SPI slave select input (MSSP1).			
	HLVDIN	1	1	I	AN	High/Low-Voltage Detect input.			
	AN4	1	1	1	AN	A/D input 4.			
RA6/CLKO/OSC2	RA6	0	_	0	DIG	LATA<6> data output; enabled in INTOSC modes when CLKO is no enabled.			
		1	—	Ι	TTL	PORTA<6> data input; enabled in INTOSC modes when CLKO is not enabled.			
	CLKO	x	—	0	DIG	In RC mode, OSC2 pin outputs CLKOUT which has 1/4 the fre- quency of OSC1 and denotes the instruction cycle rate.			
	OSC2	x	_	0	XTAL	Oscillator crystal output; connects to crystal or resonator in Crystal Oscillator mode.			
RA7/CLKI/OSC1	RA7	0	_	0	DIG	LATA<7> data output; disabled in external oscillator modes.			
		1	—	Ι	TTL	PORTA<7> data input; disabled in external oscillator modes.			
	CLKI	x	—	I	AN	External clock source input; always associated with pin function OSC1.			
	OSC1	x		Ι	XTAL	Oscillator crystal input or external clock source input ST buffer wher configured in RC mode; CMOS otherwise.			

Legend: AN = Analog input or output; TTL = TTL compatible input; HV = High Voltage; OD = Open Drain; XTAL = Crystal; CMOS = CMOS compatible input or output; ST = Schmitt Trigger input with CMOS levels; I²C = Schmitt Trigger input with I²C.

TABLE 10-8: PORTC I/O SUMMARY

Pin Name	Function	TRIS Setting	ANSEL setting	Pin Type	Buffer Type	Description
RC0/P2B/T3CKI/T3G/	RC0	0	_	0	DIG	LATC<0> data output; not affected by analog input.
T1CKI/SOSCO		1	_	I	ST	PORTC<0> data input; disabled when analog input enabled.
	P2B ⁽²⁾	0		0	DIG	Enhanced CCP2 PWM output 2.
	T3CKI ⁽¹⁾	1	_	I	ST	Timer3 clock input.
	T3G	1		I	ST	Timer3 external clock gate input.
	T1CKI	1		I	ST	Timer1 clock input.
	SOSCO	x		0	XTAL	Secondary oscillator output.
RC1/P2A/CCP2/SOSCI	RC1	0		0	DIG	LATC<1> data output; not affected by analog input.
		1	_	I	ST	PORTC<1> data input; disabled when analog input enabled.
	P2A	0		0	DIG	Enhanced CCP2 PWM output 1.
	CCP2 ⁽¹⁾	0		0	DIG	Compare 2 output/PWM 2 output.
		1		I	ST	Capture 2 input.
	SOSCI	х		I	XTAL	Secondary oscillator input.
RC2/CTPLS/P1A/	RC2	0	0	0	DIG	LATC<2> data output; not affected by analog input.
CCP1/T5CKI/AN14		1	0	I	ST	PORTC<2> data input; disabled when analog input enabled.
	CTPLS	0	0	0	DIG	CTMU pulse generator output.
	P1A	0	0	0	DIG	Enhanced CCP1 PWM output 1.
	CCP1	0	0	0	DIG	Compare 1 output/PWM 1 output.
		1	0	I	ST	Capture 1 input.
	T5CKI	1	0	I	ST	Timer5 clock input.
	AN14	1	1	I	AN	Analog input 14.
RC3/SCK1/SCL1/AN15	RC3	0	0	0	DIG	LATC<3> data output; not affected by analog input.
		1	0	I	ST	PORTC<3> data input; disabled when analog input enabled.
	SCK1	0	0	0	DIG	MSSP1 SPI Clock output.
		1	0	I	ST	MSSP1 SPI Clock input.
	SCL1	0	0	0	DIG	MSSP1 I ² C Clock output.
		1	0	I	l ² C	MSSP1 I ² C Clock input.
	AN15	1	1	I	AN	Analog input 15.
RC4/SDI1/SDA1/AN16	RC4	0	0	0	DIG	LATC<4> data output; not affected by analog input.
		1	0	I	ST	PORTC<4> data input; disabled when analog input enabled.
	SDI1	1	0	I	ST	MSSP1 SPI data input.
	SDA1	0	0	0	DIG	MSSP1 I ² C data output.
		1	0	Ι	l ² C	MSSP1 I ² C data input.
	AN16	1	1	I	AN	Analog input 16.

Legend: AN = Analog input or output; TTL = TTL compatible input; $HV = High Voltage; OD = Open Drain; XTAL = Crystal; CMOS = CMOS compatible input or output; ST = Schmitt Trigger input with CMOS levels; <math>I^2C = Schmitt Trigger input with I^2C$.

Note 1: Default pin assignment for P2B, T3CKI, CCP3 and CCP2 when Configuration bits PB2MX, T3CMX, CCP3MX and CCP2MX are set.

2: Alternate pin assignment for P2B, T3CKI, CCP3 and CCP2 when Configuration bits PB2MX, T3CMX, CCP3MX and CCP2MX are clear.

3: Function on PORTD and PORTE for PIC18(L)F4XK22 devices.

12.1 Timer1/3/5 Operation

The Timer1/3/5 module is a 16-bit incrementing counter which is accessed through the TMRxH:TMRxL register pair. Writes to TMRxH or TMRxL directly update the counter.

When used with an internal clock source, the module is a timer and increments on every instruction cycle. When used with an external clock source, the module can be used as either a timer or counter and increments on every selected edge of the external source.

Timer1/3/5 is enabled by configuring the TMRxON and TMRxGE bits in the TxCON and TxGCON registers, respectively. Table 12-1 displays the Timer1/3/5 enable selections.

TABLE 12-1:TIMER1/3/5 ENABLESELECTIONS

TMRXON	TMRxGE	Timer1/3/5 Operation
0	0	Off
0	1	Off
1	0	Always On
1	1	Count Enabled

12.2 Clock Source Selection

The TMRxCS<1:0> and TxSOSCEN bits of the TxCON register are used to select the clock source for Timer1/3/5. The dedicated Secondary Oscillator circuit can be used as the clock source for Timer1, Timer3 and Timer5, simultaneously. Any of the TxSOSCEN bits will enable the Secondary Oscillator circuit and select it as the clock source for that particular timer. Table 12-2 displays the clock source selections.

12.2.1 INTERNAL CLOCK SOURCE

When the internal clock source is selected the TMRxH:TMRxL register pair will increment on multiples of Fosc as determined by the Timer1/3/5 prescaler.

When the Fosc internal clock source is selected, the Timer1/3/5 register value will increment by four counts every instruction clock cycle. Due to this condition, a 2 LSB error in resolution will occur when reading the Timer1/3/5 value. To utilize the full resolution of Timer1/3/5, an asynchronous input signal must be used to gate the Timer1/3/5 clock input.

The following asynchronous sources may be used:

- Asynchronous event on the TxG pin to Timer1/3/5 Gate
- C1 or C2 comparator input to Timer1/3/5 Gate

12.2.2 EXTERNAL CLOCK SOURCE

When the external clock source is selected, the Timer1/3/5 module may work as a timer or a counter.

When enabled to count, Timer1/3/5 is incremented on the rising edge of the external clock input of the TxCKI pin. This external clock source can be synchronized to the microcontroller system clock or it can run asynchronously.

When used as a timer with a clock oscillator, an external 32.768 kHz crystal can be used in conjunction with the dedicated secondary internal oscillator circuit.

In Counter mode, a falling edge must be
registered by the counter prior to the first
incrementing rising edge after any one or
more of the following conditions:

- Timer1/3/5 enabled after POR
- Write to TMRxH or TMRxL
- Timer1/3/5 is disabled
- Timer1/3/5 is disabled (TMRxON = 0) when TxCKI is high then Timer1/3/5 is enabled (TMRxON=1) when TxCKI is low.

TMRxCS1	TMRxCS0	TxSOSCEN	Clock Source
0	1	х	System Clock (FOSC)
0	0	х	Instruction Clock (Fosc/4)
1	0	0	External Clocking on TxCKI Pin
1	0	1	Osc.Circuit On SOSCI/SOSCO Pins

TABLE 12-2: CLOCK SOURCE SELECTIONS

14.2.4 SPECIAL EVENT TRIGGER

When Special Event Trigger mode is selected (CCPxM<3:0> = 1011), and a match of the TMRxH:TMRxL and the CCPRxH:CCPRxL registers occurs, all CCPx and ECCPx modules will immediately:

- Set the CCP interrupt flag bit CCPxIF
- CCP5 will start an ADC conversion, if the ADC is enabled

On the next TimerX rising clock edge:

• A Reset of TimerX register pair occurs – TMRxH:TMRxL = 0x0000,

This Special Event Trigger mode does not:

- Assert control over the CCPx or ECCPx pins.
- Set the TMRxIF interrupt bit when the TMRxH:TMRxL register pair is reset. (TMRxIF gets set on a TimerX overflow.)

If the value of the CCPRxH:CCPRxL registers are modified when a match occurs, the user should be aware that the automatic reset of TimerX occurs on the next rising edge of the clock. Therefore, modifying the CCPRxH:CCPRxL registers before this reset occurs will allow the TimerX to continue without being reset, inadvertently resulting in the next event being advanced or delayed.

The Special Event Trigger mode allows the CCPRxH:CCPRxL register pair to effectively provide a 16-bit programmable period register for TimerX.

Register Bit 4 Name Bit 7 Bit 6 Bit 5 Bit 3 Bit 2 Bit 1 Bit 0 on Page CCP1CON P1M<1:0> DC1B<1.0>CCP1M<3:0> 198 P2M<1:0> CCP2CON DC2B<1.0> CCP2M<3:0> 198 CCP3CON P3M<1:0> DC3B<1:0> CCP3M<3:0> 198 CCP4CON DC4B<1:0> CCP4M<3:0> 198 CCP5CON CCP5M<3:0> DC5B<1:0> 198 CCPR1H Capture/Compare/PWM Register 1 High Byte (MSB) CCPR1L Capture/Compare/PWM Register 1 Low Byte (LSB) CCPR2H Capture/Compare/PWM Register 2 High Byte (MSB) ____ CCPR2L Capture/Compare/PWM Register 2 Low Byte (LSB) _ CCPR3H Capture/Compare/PWM Register 3 High Byte (MSB) _ CCPR3L Capture/Compare/PWM Register 3 Low Byte (LSB) CCPR4H Capture/Compare/PWM Register 4 High Byte (MSB) ____ CCPR4L Capture/Compare/PWM Register 4 Low Byte (LSB) CCPR5H Capture/Compare/PWM Register 5 High Byte (MSB) ____ CCPR5L Capture/Compare/PWM Register 5 Low Byte (LSB) CCPTMRS0 C3TSEL<1:0> C2TSEL<1:0> C1TSEL<1:0> _____ 201 CCPTMRS1 C5TSEL<1:0> C4TSEL<1:0> 201 INTCON RBIE TMR0IF **INTOIF GIE/GIEH** PEIE/GIEL TMR0IE **INTOIE** RBIF 109 IPR1 ADIP RC1IP TX1IP SSP1IP CCP1IP TMR2IP TMR1IP 121

TABLE 14-5: REGISTERS ASSOCIATED WITH COMPARE

Legend: — = Unimplemented location, read as '0'. Shaded bits are not used by Compare mode.

Note 1: These registers/bits are available on PIC18(L)F4XK22 devices.

14.2.5 COMPARE DURING SLEEP

The Compare mode is dependent upon the system clock (Fosc) for proper operation. Since Fosc is shut down during Sleep mode, the Compare mode will not function properly during Sleep.

15.2.4 SPI SLAVE MODE

In Slave mode, the data is transmitted and received as external clock pulses appear on SCKx. When the last bit is latched, the SSPxIF interrupt flag bit is set.

Before enabling the module in SPI Slave mode, the clock line must match the proper Idle state. The clock line can be observed by reading the SCKx pin. The Idle state is determined by the CKP bit of the SSPxCON1 register.

While in Slave mode, the external clock is supplied by the external clock source on the SCKx pin. This external clock must meet the minimum high and low times as specified in the electrical specifications.

While in Sleep mode, the slave can transmit/receive data. The shift register is clocked from the SCKx pin input and when a byte is received, the device will generate an interrupt. If enabled, the device will wake up from Sleep.

15.2.4.1 Daisy-Chain Configuration

The SPI bus can sometimes be connected in a daisychain configuration. The first slave output is connected to the second slave input, the second slave output is connected to the third slave input, and so on. The final slave output is connected to the master input. Each slave sends out, during a second group of clock pulses, an exact copy of what was received during the first group of clock pulses. The whole chain acts as one large communication shift register. The daisychain feature only requires a single Slave Select line from the master device.

Figure 15-7 shows the block diagram of a typical daisy-chain connection when operating in SPI Mode.

In a daisy-chain configuration, only the most recent byte on the bus is required by the slave. Setting the BOEN bit of the SSPxCON3 register will enable writes to the SSPxBUF register, even if the previous byte has not been read. This allows the software to ignore data that may not apply to it.

15.2.5 SLAVE SELECT SYNCHRONIZATION

The Slave Select can also be used to synchronize communication. The Slave Select line is held high until the master device is ready to communicate. When the Slave Select line is pulled low, the slave knows that a new transmission is starting.

If the slave fails to receive the communication properly, it will be reset at the end of the transmission, when the Slave Select line returns to a high state. The slave is then ready to receive a new transmission when the Slave Select line is pulled low again. If the Slave Select line is not used, there is a risk that the slave will eventually become out of sync with the master. If the slave misses a bit, it will always be one bit off in future transmissions. Use of the Slave Select line allows the slave and master to align themselves at the beginning of each transmission (Figure 15-8).

The \overline{SSx} pin allows a Synchronous Slave mode. The SPI must be in Slave mode with \overline{SSx} pin control enabled (SSPxCON1<3:0> = 0100).

When the \overline{SSx} pin is low, transmission and reception are enabled and the SDOx pin is driven.

When the \overline{SSx} pin goes high, the SDOx pin is no longer driven, even if in the middle of a transmitted byte and becomes a floating output. External pull-up/pull-down resistors may be desirable depending on the application.

- Note 1: When the SPI is in Slave mode with SSx pin control enabled (SSPxCON1<3:0> = 0100), the SPI module will reset if the SSx pin is set to VDD.
 - 2: When the SPI is used in Slave mode with CKE set; the user must enable SSx pin control.
 - **3:** While operated in SPI Slave mode the SMP bit of the SSPxSTAT register must remain clear.

When the SPI module resets, the bit counter is forced to '0'. This can be done by either forcing the SSx pin to a high level or clearing the SSPxEN bit.

23.7 Operation During Sleep

When enabled, the HLVD circuitry continues to operate during Sleep. If the device voltage crosses the trip point, the HLVDIF bit will be set and the device will wake-up from Sleep. Device execution will continue from the interrupt vector address if interrupts have been globally enabled.

23.8 Effects of a Reset

A device Reset forces all registers to their Reset state. This forces the HLVD module to be turned off.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on page
HLVDCON	VDIRMAG	BGVST	IRVST	HLVDEN		HLVDI	_<3:0>		337
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	109
IPR2	OSCFIP	C1IP	C2IP	EEIP	BCL1IP	HLVDIP	TMR3IP	CCP2IP	122
PIE2	OSCFIE	C1IE	C2IE	EEIE	BCL1IE	HLVDIE	TMR3IE	CCP2IE	118
PIR2	OSCFIF	C1IF	C2IF	EEIF	BCL1IF	HLVDIF	TMR3IF	CCP2IF	113
TRISA	TRISA7	TRISA6	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	151

TABLE 23-1: REGISTERS ASSOCIATED WITH HIGH/LOW-VOLTAGE DETECT MODULE

Legend: — = unimplemented locations, read as '0'. Shaded bits are unused by the HLVD module.

DEV<10:3>	DEV<2:0>	Part Number
	000	PIC18F46K22
0101 0100	001	PIC18LF46K22
0101 0100	010	PIC18F26K22
	011	PIC18LF26K22
	000	PIC18F45K22
0101 0101	001	PIC18LF45K22
	010	PIC18F25K22
	011	PIC18LF25K22
	000	PIC18F44K22
0101 0110	001	PIC18LF44K22
0101 0110	010	PIC18F24K22
	011	PIC18LF24K22
	000	PIC18F43K22
0101 0111	001	PIC18LF43K22
0101 0111	010	PIC18F23K22
	011	PIC18LF23K22

TABLE 24-2: DEVICE ID TABLE FOR THE PIC18(L)F2X/4XK22 FAMILY

PIC18(L)F2X/4XK22

CPFSGT	Compare	f with W, sk	ip if f > W				
Syntax:	CPFSGT	f {,a}					
Operands:	0 ≤ f ≤ 255	() - y					
oporaliaol	a ∈ [0,1]						
Operation:	(f) – (W),						
	skip if (f) > (
	(unsigned c	omparison)					
Status Affected:	None	None					
Encoding:	0110	010a fff	f fff				
Description:	Compares t	he contents of	data memory				
		o the contents					
	1 0	an unsigned s					
		nts of 'f' are gre					
		WREG, then t s discarded ar					
		stead, making					
	2-cycle inst						
	lf 'a' is '0', tl	he Access Bar	nk is selected.				
	,	he BSR is used	d to select the				
	GPR bank.	nd the extende	dinstruction				
		ed, this instruc					
		_iteral Offset A	•				
		ever f ≤ 95 (5F					
		.2.3 "Byte-Ori					
		Bit-Oriented Instructions in Indexed					
	Literal Offset Mode" for details.						
Words:	1						
Cycles:	1(2)		l felleure d				
	•	cles if skip and 2-word instrue					
Q Cycle Activity:	by a						
Q1	Q2	Q3	Q4				
Decode	Read	Process	No				
Decoud	register 'f'	Data	operation				
lf skip:	0						
Q1	Q2	Q3	Q4				
No	No	No	No				
operation	operation	operation	operation				
If skip and followed							
Q1	Q2	Q3	Q4				
No	No	No	No				
operation No	operation No	operation No	operation No				
operation	operation	operation	operation				
Example:	HERE	CPFSGT RE	G, 0				
	NGREATER	:					
	GREATER	:					
Before Instruc							
PC		dress (HERE))				
W	= ?						
After Instruction							
If REG	> W;						
PC If REG	= Ad	dress (GREAT	LEK)				

CPFSLT	Compare	f with W, s	
Syntax:	CPFSLT f	{,a}	
Operands:	0 ≤ f ≤ 255 a ∈ [0,1]		
Operation:	(f) – (W), skip if (f) < ((unsigned c	· ·	
Status Affected:	None	. ,	
Encoding:	0110	000a ff	ff ffff
Description:	location 'f' t performing If the conten contents of instruction i executed in 2-cycle instr If 'a' is '0', tl	o the content an unsigned nts of 'f' are le W, then the f s discarded a stead, makin ruction. ne Access Ba	subtraction. ess than the etched and a NOP is
Words:	1		
Cycles:		ycles if skip a a 2-word inst	
Q Cycle Activity:			
Q1	Q2	Q3	Q4
Decode	Read register 'f'	Process Data	No operation
If skip:	register i	Dala	operation
Q1	Q2	Q3	Q4
No	No	No	No
operation	operation	operation	operation
If skip and followed	d by 2-word in	struction:	
Q1	Q2	Q3	Q4
No	No	No	No
operation	operation	operation	operation
No	No	No	No
	operation		
operation	HERE (NLESS	operation	operation
		CPFSLT REG	• •
	NLESS LESS	CPFSLT REG	• •
Example:	NLESS == LESS == tion	CPFSLT REG	, 1
Example: Before Instruc PC	NLESS = LESS = tion = Ad = ?	CPFSLT REG	, 1
Example: Before Instruc PC W After Instructic If REG	NLESS : LESS : tion = Ad = ? on < W;	CPFSLT REG	, 1 E)
Example: Before Instruc PC W After Instructic If REG PC	NLESS : LESS : tion = Ad = ? on < W; = Ad	CPFSLT REG	, 1 E)
Example: Before Instruc PC W After Instructic If REG	NLESS : LESS : tion = Ad = ? on < W; = Ad ≥ W;	CPFSLT REG	, 1 E) S)

If REG

PC

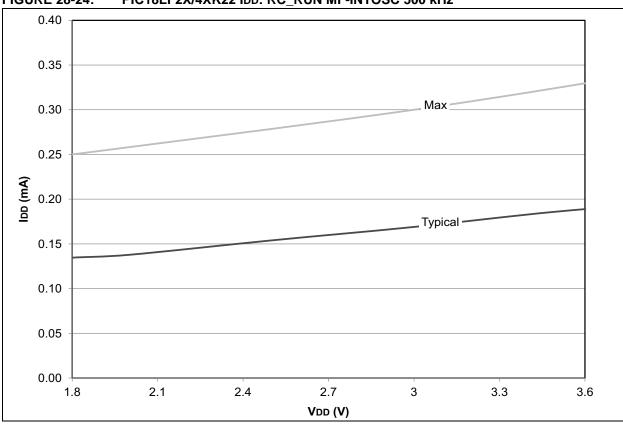
≤ W;

= Address (NGREATER)

PIC18LF2X/4XK22		Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +125^{\circ}C$							
PIC18F2X/4XK22		Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +125^{\circ}C$							
Param No.	Device Characteristics	Тур	Max	Units	Conditions				
D055		0.25	0.40	mA	-40°C to +125°C	Vdd = 1.8V	Fosc = 1 MHz		
D056		0.35	0.50	mA	-40°C to +125°C	VDD = 3.0V	(RC_IDLE mode, HFINTOSC source)		
D057		0.30	0.45	mA	-40°C to +125°C	VDD = 2.3V	Fosc = 1 MHz		
D058		0.40	0.50	mA	-40°C to +125°C	VDD = 3.0V	(RC_IDLE mode, HFINTOSC source)		
D059		0.45	0.60	mA	-40°C to +125°C	VDD = 5.0V			
D060		0.50	0.7	mA	-40°C to +125°C	VDD = 1.8V	Fosc = 16 MHz		
D061		0.80	1.1	mA	-40°C to +125°C	VDD = 3.0V	(RC_IDLE mode, HFINTOSC source)		
D062		0.65	1.0	mA	-40°C to +125°C	VDD = 2.3V	Fosc = 16 MHz		
D063		0.80	1.1	mA	-40°C to +125°C	VDD = 3.0V	(RC_IDLE mode, HFINTOSC source)		
D064		0.95	1.2	mA	-40°C to +125°C	VDD = 5.0V			
D066		2.5	3.5	mA	-40°C to +125°C	VDD = 3.0V	Fosc = 64 MHz (RC_IDLE mode, HFINTOSC + PLL source)		
D068		2.5	3.5	mA	-40°C to +125°C	VDD = 3.0V	Fosc = 64 MHz		
D069		3.0	4.5	mA	-40°C to +125°C	VDD = 5.0V	(RC_IDLE mode, HFINTOSC + PLL source)		

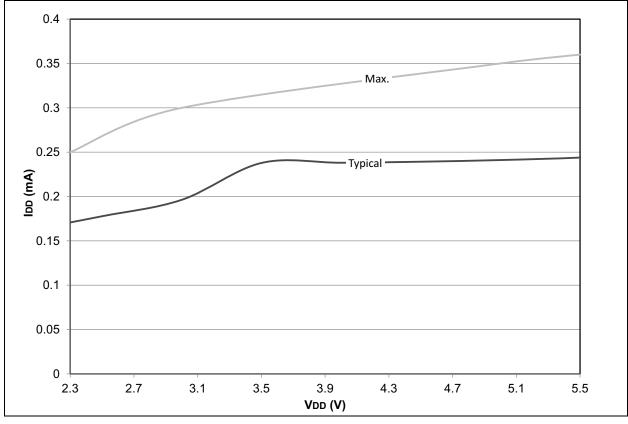
27.4 DC Characteristics: RC Idle Supply Current, PIC18(L)F2X/4XK22 (Continued)

Note 1: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on the current consumption.

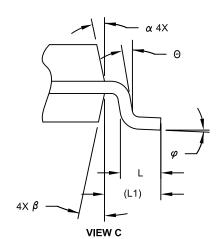

Test condition: All Peripheral Module Control bits in PMD0, PMD1 and PMD2 set to '1'.

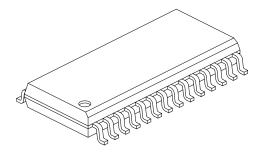
2: The test conditions for all IDD measurements in active operation mode are:

All I/O pins set as outputs driven to Vss;


OSC1 = external square wave, from rail-to-rail (PRI_RUN and PRI_IDLE only).

PIC18(L)F2X/4XK22

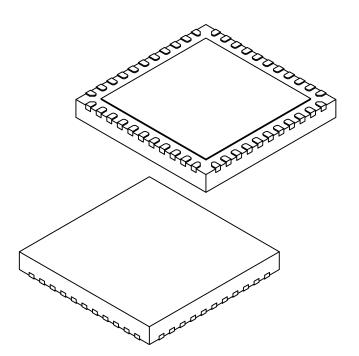

FIGURE 28-24: PIC18LF2X/4XK22 IDD: RC_RUN MF-INTOSC 500 kHz



28-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS					
Dimension	Limits	MIN	NOM	MAX		
Number of Pins	N		28			
Pitch	е		1.27 BSC			
Overall Height	A	I	-	2.65		
Molded Package Thickness	A2	2.05	-	-		
Standoff §	A1	0.10	-	0.30		
Overall Width	E	10.30 BSC				
Molded Package Width	E1	7.50 BSC				
Overall Length	D	17.90 BSC				
Chamfer (Optional)	h	0.25	-	0.75		
Foot Length	L	0.40	-	1.27		
Footprint	L1		1.40 REF			
Lead Angle	Θ	0°	-	-		
Foot Angle	φ	0°	-	8°		
Lead Thickness	С	0.18	-	0.33		
Lead Width	b	0.31	-	0.51		
Mold Draft Angle Top	α	5°	-	15°		
Mold Draft Angle Bottom	β	5°	-	15°		


Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. § Significant Characteristic
- 3. Dimension D does not include mold flash, protrusions or gate burrs, which shall not exceed 0.15 mm per end. Dimension E1 does not include interlead flash or protrusion, which shall not exceed 0.25 mm per side.
- Dimensioning and tolerancing per ASME Y14.5M BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only.
- 5. Datums A & B to be determined at Datum H.

Microchip Technology Drawing C04-052C Sheet 2 of 2

44-Lead Plastic Quad Flat, No Lead Package (ML) - 8x8 mm Body [QFN or VQFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units			MILLIMETERS			
Dimension	Limits	MIN	NOM	MAX			
Number of Pins	N	44					
Pitch	е		0.65 BSC				
Overall Height	Α	0.80	0.90	1.00			
Standoff	A1	0.00	0.02	0.05			
Terminal Thickness	A3	0.20 REF					
Overall Width	E	8.00 BSC					
Exposed Pad Width	E2	6.25	6.45	6.60			
Overall Length	D	8.00 BSC					
Exposed Pad Length	D2	6.25	6.45	6.60			
Terminal Width	b	0.20	0.30	0.35			
Terminal Length	L	0.30	0.40	0.50			
Terminal-to-Exposed-Pad	K	0.20	-	-			

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. Package is saw singulated
- 3. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-103D Sheet 2 of 2