

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	48MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	35
Program Memory Size	16KB (8K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	768 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 30x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	44-VQFN Exposed Pad
Supplier Device Package	44-QFN (8x8)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18lf44k22-e-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

	Pin N	lumber			Pin	Buffer	
PDIP	TQFP	QFN	UQFN	Pin Name	Туре	Туре	Description
37	14	14	12	RB4/IOC0/T5G/AN11			
				RB4	I/O	TTL	Digital I/O.
				IOC0	I	TTL	Interrupt-on-change pin.
				T5G	I	ST	Timer5 external clock gate input.
				AN11	I	Analog	Analog input 11.
38	15	15	13	RB5/IOC1/P3A/CCP3/T3C	KI/T1G/A	N13	
				RB5	I/O	TTL	Digital I/O.
				IOC1	I	TTL	Interrupt-on-change pin.
				P3A ⁽¹⁾	0	CMOS	Enhanced CCP3 PWM output.
				CCP3 ⁽¹⁾	I/O	ST	Capture 3 input/Compare 3 output/PWM 3 output.
				Т3СКІ ⁽²⁾	I	ST	Timer3 clock input.
				T1G	I	ST	Timer1 external clock gate input.
				AN13	I	Analog	Analog input 13.
39	16	16	14	RB6/IOC2/PGC			
				RB6	I/O	TTL	Digital I/O.
				IOC2	I	TTL	Interrupt-on-change pin.
				PGC	I/O	ST	In-Circuit Debugger and ICSP™ programming
							clock pin.
40	17	17	15	RB7/IOC3/PGD			
				RB7	I/O	TTL	Digital I/O.
				IOC3	I	TTL	Interrupt-on-change pin.
				PGD	I/O	ST	In-Circuit Debugger and ICSP™ programming data pin.
15	32	34	30	RC0/P2B/T3CKI/T3G/T1C	KI/SOSC	0	
				RC0	I/O	ST	Digital I/O.
				P2B ⁽²⁾	0	CMOS	Enhanced CCP1 PWM output.
				Т3СКІ ⁽¹⁾	I	ST	Timer3 clock input.
				T3G	I	ST	Timer3 external clock gate input.
				T1CKI	I	ST	Timer1 clock input.
				SOSCO	0		Secondary oscillator output.
16	35	35	31	RC1/P2A/CCP2/SOSCI			
				RC1	I/O	ST	Digital I/O.
				P2A ⁽¹⁾	0	CMOS	Enhanced CCP2 PWM output.
				CCP2 ⁽¹⁾	I/O	ST	Capture 2 input/Compare 2 output/PWM 2 output.
				SOSCI	I	Analog	Secondary oscillator input.
17	36	36	32	RC2/CTPLS/P1A/CCP1/T	5CKI/AN1	4	
				RC2	I/O	ST	Digital I/O.
				CTPLS	ο		CTMU pulse generator output.
				P1A	0	смоз	Enhanced CCP1 PWM output.
				CCP1	I/O	ST	Capture 1 input/Compare 1 output/PWM 1 output.
				T5CKI	I	ST	Timer5 clock input.
				AN14		Analog	Analog input 14
Logon	а. <u>тт</u> і		I		untible inc		

TABLE 1-3	PIC18(I)F4XK22 PINOUT I/O DESCRIPTIONS ((CONTINUED)	
			/

Legend: IIL = IIL compatible input CMOS = CMOS compatible input or output; SI = Schmitt Trigger input with CMOS levels; I = Input; O = Output; P = Power.

Note 1: Default pin assignment for P2B, T3CKI, CCP3/P3A and CCP2/P2A when Configuration bits PB2MX, T3CMX, CCP3MX and CCP2MX are set.

2: Alternate pin assignment for P2B, T3CKI, CCP3/P3A and CCP2/P2A when Configuration bits PB2MX, T3CMX, CCP3MX and CCP2MX are clear.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	<u>Value on</u> POR, BOR
F68h	CCPR2H			Capture/C	ompare/PWM	Register 2, Hiç	gh Byte			xxxx xxxx
F67h	CCPR2L			Capture/C	ompare/PWM	Register 2, Lov	w Byte			xxxx xxxx
F66h	CCP2CON	P2M<	<1:0>	DC2E	3<1:0>		CCP2N	<3:0>		0000 0000
F65h	PWM2CON	P2RSEN				P2DC<6:0>				0000 0000
F64h	ECCP2AS	CCP2ASE		CCP2AS<2:0	>	PSS2A	C<1:0>	PSS2B	D<1:0>	0000 0000
F63h	PSTR2CON	_	_	_	STR2SYNC	STR2D	STR2C	STR2B	STR2A	0 0001
F62h	IOCB	IOCB7	IOCB6	IOCB5	IOCB4	_	_	_	_	1111
F61h	WPUB	WPUB7	WPUB6	WPUB5	WPUB4	WPUB3	WPUB2	WPUB1	WPUB0	1111 1111
Fool	SLRCON ⁽²⁾	—	—	—			SLRC	SLRB	SLRA	111
F60h	SLRCON ⁽¹⁾	—	—	—	SLRE	SLRD	SLRC	SLRB	SLRA	1 1111
F5Fh	CCPR3H			Capture/Compare/PWM Register 3, High Byte		igh Byte			xxxx xxxx	
F5Eh	CCPR3L			Capture/0	Compare/PWN	1 Register 3, L	ow Byte			xxxx xxxx
F5Dh	CCP3CON	P3M<	P3M<1:0> DC3B<1:0> CCP3M<3:0>					0000 0000		
F5Ch	PWM3CON	P3RSEN	P3RSEN P3DC<6:0>					0000 0000		
F5Bh	ECCP3AS	CCP3ASE		CCP3AS<2:0	>	PSS3A	C<1:0>	PSS3B	D<1:0>	0000 0000
F5Ah	PSTR3CON	_	_	_	STR3SYNC	STR3D	STR3C	STR3B	STR3A	0 0001
F59h	CCPR4H			Capture/	Compare/PWN	/I Register 4, H	ligh Byte			xxxx xxxx
F58h	CCPR4L			Capture/	Compare/PWN	/I Register 4, L	.ow Byte			xxxx xxxx
F57h	CCP4CON	_	_	DC4E	8<1:0>		CCP4N	<3:0>		00 0000
F56h	CCPR5H			Capture/	Compare/PWN	/I Register 5, H	ligh Byte			xxxx xxxx
F55h	CCPR5L			Capture/	Compare/PWN	/I Register 5, L	ow Byte			xxxx xxxx
F54h	CCP5CON	_	_	DC5E	8<1:0>		CCP5N	<3:0>		00 0000
F53h	TMR4				Timer4	Register				0000 0000
F52h	PR4				Timer4 Pe	riod Register				1111 1111
F51h	T4CON	_		T4OUT	PS<3:0>		TMR4ON	T4CKP	S<1:0>	-000 0000
F50h	TMR5H		Holding R	egister for the	Most Significa	int Byte of the	16-bit TMR5 R	egister		0000 0000
F4Fh	TMR5L			Least Signifi	icant Byte of th	e 16-bit TMR5	Register			0000 0000
F4Eh	T5CON	TMR5C	S<1:0>	T5CKF	°S<1:0>	T5SOSCEN	T5SYNC	T5RD16	TMR5ON	0000 0000
F4Dh	T5GCON	TMR5GE	T5GPOL	T5GTM	T5GSPM	T <u>5GGO</u> / DONE	T5GVAL	T5GSS	S<1:0>	0000 0x00
F4Ch	TMR6				Timer6 Regist	er				0000 0000
F4Bh	PR6				Timer6 Period	Register				1111 1111
F4Ah	T6CON	_		T6OUT	PS<3:0>		TMR6ON	T6CKP	S<1:0>	-000 0000
F49h	CCPTMRS0	C3TSE	L<1:0>	_	C2TSE	L<1:0>	_	C1TSE	L<1:0>	00-0 0-00
F48h	CCPTMRS1	_	_	_	_	C5TSE	L<1:0>	C4TSE	L<1:0>	0000
F47h	SRCON0	SRLEN		SRCLK<2:0>	,	SRQEN	SRNQEN	SRPS	SRPR	0000 0000
F46h	SRCON1	SRSPE	SRSCKE	SRSC2E	SRSC1E	SRRPE	SRRCKE	SRRC2E	SRRC1E	0000 0000
F45h	CTMUCONH	CTMUEN	_	CTMUSIDL	TGEN	EDGEN	EDGSEQEN	IDISSEN	CTTRIG	0000 0000
F44h	CTMUCONL	EDG2POL	EDG2S	EL<1:0>	EDG1POL	EDG1S	EL<1:0>	EDG2STAT	EDG1STAT	0000 0000
F43h	CTMUICON			ITRI	M<5:0>			IRNG	<1:0>	0000 0000
F42h	VREFCON0	FVREN	FVRST	FVRS	S<1:0>	_	_	_	_	0001
F41h	VREFCON1	DACEN	DACLPS	DACOE	_	DACPS	SS<1:0>	_	DACNSS	000- 00-0
F40h	VREFCON2	_	_	_			DACR<4:0>			0 0000
F3Fh	PMD0	UART2MD	UART1MD	TMR6MD	TMR5MD	TMR4MD	TMR3MD	TMR2MD	TMR1MD	0000 0000
F3Eh	PMD1	MSSP2MD	MSSP1MD	—	CCP5MD	CCP4MD	CCP3MD	CCP2MD	CCP1MD	00-0 0000
F3Dh	PMD2	—	—	—	—	CTMUMD	CMP2MD	CMP1MD	ADCMD	0000
F3Ch	ANSELE ⁽¹⁾	—	—	—	_	_	ANSE2	ANSE1	ANSE0	111
F3Bh	ANSELD ⁽¹⁾	ANSD7	ANSD6	ANSD5	ANSD4	ANSD3	ANSD2	ANSD1	ANSD0	1111 1111

TABLE 5-2: REGISTER FILE SUMMARY FOR PIC18(L)F2X/4XK22 DEVICES (CONTINUED)

 $\label{eq:Legend: Legend: Legend: Legend: u = unchanged, --= unimplemented, q = value depends on condition$

Note 1: PIC18(L)F4XK22 devices only.

2: PIC18(L)F2XK22 devices only.

3: PIC18(L)F23/24K22 and PIC18(L)F43/44K22 devices only.

4: PIC18(L)F26K22 and PIC18(L)F46K22 devices only.

EXAMPLE 6-3:	WRITING T	O FLASH PROGRAM M	EMORY
	MOVLW	D'64′	; number of bytes in erase block
	MOVWF	COUNTER	-
	MOVLW	BUFFER_ADDR_HIGH	; point to buffer
	MOVWF	FSROH	
	MOVLW	BUFFER_ADDR_LOW	
	MOVWF	FSROL	
	MOVLW	CODE_ADDR_UPPER	; Load TBLPTR with the base
	MOVWF	TBLPTRU	; address of the memory block
	MOVLW	CODE_ADDR_HIGH	
	MOVWF	TBLPTRH	
	MOVLW	CODE_ADDR_LOW	
DEAD DIOGU	MOVWF	TBLDTRL	
READ_BLOCK	+ * תם זמיד		· road into TADIAT and inc
	IBLRD"+	ייא איז איז איז	; read Into TABLAI, and Inc
	MOVWE	POSTINCO	; store data
	DECESZ	COUNTER	; done?
	BRA	READ BLOCK	; repeat
MODIFY WORD			
	MOVLW	BUFFER ADDR HIGH	; point to buffer
	MOVWF	FSROH	-
	MOVLW	BUFFER_ADDR_LOW	
	MOVWF	FSROL	
	MOVLW	NEW_DATA_LOW	; update buffer word
	MOVWF	POSTINC0	
	MOVLW	NEW_DATA_HIGH	
	MOVWF	INDF0	
ERASE_BLOCK			
	MOVLW	CODE_ADDR_UPPER	; load TBLPTR with the base
	MOVWF	TBLPTRU	; address of the memory block
	MOVLW	CODE_ADDR_HIGH	
	MOVWF'	TBLPTRH	
	MOVLW	CODE_ADDR_LOW	
	MOVWF	IBLPIRL FEGONI FEDOD	: noint to Elach program moments
	BCF	FECON1 CEGS	; access Elash program memory
	BSF	EECON1 WREN	; enable write to memory
	BSF	EECON1, FREE	; enable Erase operation
	BCF	INTCON, GIE	; disable interrupts
	MOVLW	55h	*
Required	MOVWF	EECON2	; write 55h
Sequence	MOVLW	0AAh	
	MOVWF	EECON2	; write OAAh
	BSF	EECON1, WR	; start erase (CPU stall)
	BSF	INTCON, GIE	; re-enable interrupts
	TBLRD*-		; dummy read decrement
	MOVLW	BUFFER_ADDR_HIGH	; point to buffer
	MOVWF	FSROH	
	MOVLW	BUFFER_ADDR_LOW	
	MOVWF	FSROL	
WRITE_BUFFER_BACK	A MOUT W		·
		COINTED COINTED	, number of bytes in notaing register
	MOVWF	COUNTER D/64//DlockSize	: number of resite blocks in 64 butos
	MULIME	COUNTERS	, number of wire blocks in 64 bytes
שפוקב פעקב ה∖ הסו	EGS	COULTERS	
"WTID_DIID_IO_HKI	TVOM	POSTINCO. W	; get low byte of buffer data
	MOVWF	TABLAT	; present data to table latch
	TBLWT+*		; write data, perform a short write
			; to internal TBLWT holding register

14.0 CAPTURE/COMPARE/PWM MODULES

The Capture/Compare/PWM module is a peripheral which allows the user to time and control different events, and to generate Pulse-Width Modulation (PWM) signals. In Capture mode, the peripheral allows the timing of the duration of an event. The Compare mode allows the user to trigger an external event when a predetermined amount of time has expired. The PWM mode can generate Pulse-Width Modulated signals of varying frequency and duty cycle.

This family of devices contains three Enhanced Capture/Compare/PWM modules (ECCP1, ECCP2, and ECCP3) and two standard Capture/Compare/PWM modules (CCP4 and CCP5).

The Capture and Compare functions are identical for all CCP/ECCP modules. The difference between CCP and ECCP modules are in the Pulse-Width Modulation (PWM) function. In CCP modules, the standard PWM function is identical. In ECCP modules, the Enhanced PWM function has either full-bridge or half-bridge PWM output. Full-bridge ECCP modules have four available I/O pins while half-bridge ECCP modules and can be configured as standard PWM modules. See Table 14-1 to determine the CCP/ECCP functionality available on each device in this family.

- Note 1: In devices with more than one CCP module, it is very important to pay close attention to the register names used. A number placed after the module acronym is used to distinguish between separate modules. For example, the CCP1CON and CCP2CON control the same operational aspects of two completely different CCP modules.
 - 2: Throughout this section, generic references to a CCP module in any of its operating modes may be interpreted as being equally applicable to ECCP1, ECCP2, ECCP3, CCP4 and CCP5. Register names, module signals, I/O pins, and bit names may use the generic designator 'x' to indicate the use of a numeral to distinguish a particular module, when required.

Device Name	ECCP1	ECCP2	ECCP3	CCP4	CCP5
PIC18(L)F23K22 PIC18(L)F24K22 PIC18(L)F25K22 PIC18(L)F25K22 PIC18(L)F26K22	Enhanced PWM Full-Bridge	Enhanced PWM Half-Bridge	Enhanced PWM Half-Bridge	Standard PWM	Standard PWM (Special Event Trigger)
PIC18(L)F43K22 PIC18(L)F44K22 PIC18(L)F45K22 PIC18(L)F46K22	Enhanced PWM Full-Bridge	Enhanced PWM Full-Bridge	Enhanced PWM Half-Bridge	Standard PWM	Standard PWM (Special Event Trigger)

14.4.2.1 Direction Change in Full-Bridge Mode

In the Full-Bridge mode, the PxM1 bit in the CCPxCON register allows users to control the forward/reverse direction. When the application firmware changes this direction control bit, the module will change to the new direction on the next PWM cycle.

A direction change is initiated in software by changing the PxM1 bit of the CCPxCON register. The following sequence occurs four Timer cycles prior to the end of the current PWM period:

- The modulated outputs (PxB and PxD) are placed in their inactive state.
- The associated unmodulated outputs (PxA and PxC) are switched to drive in the opposite direction.
- PWM modulation resumes at the beginning of the next period.

See Figure 14-12 for an illustration of this sequence.

The Full-Bridge mode does not provide dead-band delay. As one output is modulated at a time, dead-band delay is generally not required. There is a situation where dead-band delay is required.

This situation occurs when both of the following conditions are true:

- 1. The direction of the PWM output changes when the duty cycle of the output is at or near 100%.
- 2. The turn off time of the power switch, including the power device and driver circuit, is greater than the turn on time.

Figure 14-13 shows an example of the PWM direction changing from forward to reverse, at a near 100% duty cycle. In this example, at time t1, the output PxA and PxD become inactive, while output PxC becomes active. Since the turn off time of the power devices is longer than the turn on time, a shoot-through current will flow through power devices QC and QD (see Figure 14-10) for the duration of 't'. The same phenomenon will occur to power devices QA and QB for PWM direction change from reverse to forward.

If changing PWM direction at high duty cycle is required for an application, two possible solutions for eliminating the shoot-through current are:

- 1. Reduce PWM duty cycle for one PWM period before changing directions.
- 2. Use switch drivers that can drive the switches off faster than they can drive them on.

Other options to prevent shoot-through current may exist.

FIGURE 14-12: EXAMPLE OF PWM DIRECTION CHANGE

Note 1: The direction bit PxM1 of the CCPxCON register is written any time during the PWM cycle.

2: When changing directions, the PxA and PxC signals switch before the end of the current PWM cycle. The modulated PxB and PxD signals are inactive at this time. The length of this time is (TimerX Prescale)/Fosc, where TimerX is Timer2, Timer4 or Timer6.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CCPxASE		CCPxAS<2:0>		PSSxA	C<1:0>	PSSxB	D<1:0>
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimplen	nented bit, read	d as '0'	
u = Bit is unch	anged	x = Bit is unkr	iown	-n/n = Value a	at POR and BC	R/Value at all o	other Resets
'1' = Bit is set		'0' = Bit is clea	ared				
bit 7	CCPxASE: if PxRSEN = 1 = An Auto CCPx of 0 = CCPx of if PxRSEN = 1 = An Auto CCPx of 0 = CCPx of 0 = CCPx of	CCPx Auto-shut = 1; -shutdown event utputs in shutdow utputs are opera = 0; -shutdown event utputs in shutdow utputs are opera	down Event \$ t occurred; C0 wn state ting t occurred; bit wn state ting	Status bit CPxASE bit will t must be cleare	automatically o d in software to	elear when eve o restart PWM;	nt goes away;
bit 6-4	0 = CCPx outputs are operating bit 6-4 CCPxAS<2:0>: CCPx Auto-Shutdown Source Select bits ⁽¹⁾ 000 = Auto-shutdown is disabled 001 = Comparator C1 (async_C10UT) – output high will cause shutdown event 010 = Comparator C2 (async_C2OUT) – output high will cause shutdown event 011 = Either Comparator C1 or C2 – output high will cause shutdown event 100 = FLT0 pin – low level will cause shutdown event 101 = FLT0 pin – low level or Comparator C1 (async_C10UT) – high level will cause shutdown event 101 = FLT0 pin – low level or Comparator C2 (async_C20UT) – high level will cause shutdown event 100 = FLT0 pin – low level or Comparator C2 (async_C20UT) – high level will cause shutdown event						
bit 3-2	PSSxAC<1 : 00 = Drive p 01 = Drive p 1x = Pins P	: 0>: Pins PxA ar bins PxA and Px0 bins PxA and Px0 xA and PxC tri-s	d PxC Shutd C to '0' C to '1' tate	own State Contr	ol bits		
bit 1-0	PSSxBD<1 : 00 = Drive p 01 = Drive p 1x = Pins P	: 0>: Pins PxB an bins PxB and PxI bins PxB and PxI xB and PxD tri-s	d PxD Shutdo D to '0' D to '1' tate	own State Contr	ol bits		
Note 1: If C er1	1SYNC or C2	2SYNC bits in the	e CM2CON1	register are ena	bled, the shutd	own will be de	ayed by Tim-

REGISTER 14-5: ECCPxAS: CCPX AUTO-SHUTDOWN CONTROL REGISTER

FIGURE 15-7: SPI DAISY-CHAIN CONNECTION

FIGURE 15-8: SLAVE SELECT SYNCHRONOUS WAVEFORM

15.5.4 SLAVE MODE 10-BIT ADDRESS RECEPTION

This section describes a standard sequence of events for the MSSPx module configured as an I^2C slave in 10-bit Addressing mode (Figure 15-20) and is used as a visual reference for this description.

This is a step by step process of what must be done by slave software to accomplish I^2C communication.

- 1. Bus starts Idle.
- Master sends Start condition; S bit of SSPxSTAT is set; SSPxIF is set if interrupt on Start detect is enabled.
- 3. Master sends matching high address with R/\overline{W} bit clear; UA bit of the SSPxSTAT register is set.
- 4. Slave sends ACK and SSPxIF is set.
- 5. Software clears the SSPxIF bit.
- 6. Software reads received address from SSPxBUF clearing the BF flag.
- 7. Slave loads low address into SSPxADD, releasing SCLx.
- 8. Master sends matching low address byte to the slave; UA bit is set.

Note: Updates to the SSPxADD register are not allowed until after the ACK sequence.

9. Slave sends ACK and SSPxIF is set.

Note: If the low address does not match, SSPxIF and UA are still set so that the slave software can set SSPxADD back to the high address. BF is not set because there is no match. CKP is unaffected.

- 10. Slave clears SSPxIF.
- 11. Slave reads the received matching address from SSPxBUF clearing BF.
- 12. Slave loads high address into SSPxADD.
- 13. Master clocks a <u>data</u> byte to the slave and clocks out the slaves <u>ACK</u> on the 9th SCLx pulse; SSPxIF is set.
- 14. If SEN bit of SSPxCON2 is set, CKP is cleared by hardware and the clock is stretched.
- 15. Slave clears SSPxIF.
- 16. Slave reads the received byte from SSPxBUF clearing BF.
- 17. If SEN is set the slave sets CKP to release the SCLx.
- 18. Steps 13-17 repeat for each received byte.
- 19. Master sends Stop to end the transmission.

15.5.5 10-BIT ADDRESSING WITH ADDRESS OR DATA HOLD

Reception using 10-bit addressing with AHEN or DHEN set is the same as with 7-bit modes. The only difference is the need to update the SSPxADD register using the UA bit. All functionality, specifically when the CKP bit is cleared and SCLx line is held low are the same. Figure 15-21 can be used as a reference of a slave in 10-bit addressing with AHEN set.

Figure 15-22 shows a standard waveform for a slave transmitter in 10-bit Addressing mode.

19.6 Creating a Delay with the CTMU Module

A unique feature on board the CTMU module is its ability to generate system clock independent output pulses based on an external capacitor value. This is accomplished using the internal comparator voltage reference module, Comparator 2 input pin and an external capacitor. The pulse is output onto the CTPLS pin. To enable this mode, set the TGEN bit.

See Figure 19-4 for an example circuit. *C*PULSE is chosen by the user to determine the output pulse width on CTPLS. The pulse width is calculated by T = (CPULSE/I)*V, where *I* is known from the current source measurement step (Section 19.3.1 "Current Source Calibration") and *V* is the internal reference voltage (CVREF).

An example use of this feature is for interfacing with variable capacitive-based sensors, such as a humidity sensor. As the humidity varies, the pulse width output on CTPLS will vary. The CTPLS output pin can be connected to an input capture pin and the varying pulse width is measured to determine the humidity in the application.

Follow these steps to use this feature:

- 1. Initialize Comparator 2.
- 2. Initialize the comparator voltage reference.
- 3. Initialize the CTMU and enable time delay generation by setting the TGEN bit.
- 4. Set EDG1STAT.
- 5. When CPULSE charges to the value of the voltage reference trip point, an output pulse is generated on CTPLS.

FIGURE 19-4: TYPICAL CONNECTIONS AND INTERNAL CONFIGURATION FOR PULSE DELAY GENERATION

19.7 Operation During Sleep/Idle Modes

19.7.1 SLEEP MODE AND DEEP SLEEP MODES

When the device enters any Sleep mode, the CTMU module current source is always disabled. If the CTMU is performing an operation that depends on the current source when Sleep mode is invoked, the operation may not terminate correctly. Capacitance and time measurements may return erroneous values.

19.7.2 IDLE MODE

The behavior of the CTMU in Idle mode is determined by the CTMUSIDL bit (CTMUCONH<5>). If CTMUSIDL is cleared, the module will continue to operate in Idle mode. If CTMUSIDL is set, the module's current source is disabled when the device enters Idle mode. If the module is performing an operation when Idle mode is invoked, in this case, the results will be similar to those with Sleep mode.

19.8 CTMU Peripheral Module Disable (PMD)

When this peripheral is not used, the Peripheral Module Disable bit can be set to disconnect all clock sources to the module, reducing power consumption to an absolute minimum. See **Section 3.6** "**Selective Peripheral Module Control**".

21.0 FIXED VOLTAGE REFERENCE (FVR)

The Fixed Voltage Reference, or FVR, is a stable voltage reference, independent of VDD, with 1.024V, 2.048V or 4.096V selectable output levels. The output of the FVR can be configured to supply a reference voltage to the following:

- ADC input channel
- · ADC positive reference
- · Comparator positive input
- Digital-to-Analog Converter (DAC)

The FVR can be enabled by setting the FVREN bit of the VREFCON0 register.

21.1 Independent Gain Amplifiers

The output of the FVR supplied to the ADC, Comparators and DAC is routed through an independent programmable gain amplifier. The amplifier can be configured to amplify the 1.024V reference voltage by 1x, 2x or 4x, to produce the three possible voltage levels.

The FVRS<1:0> bits of the VREFCON0 register are used to enable and configure the gain amplifier settings for the reference supplied to the DAC and Comparator modules. When the ADC module is configured to use the FVR output, (FVR BUF2) the reference is buffered through an additional unity gain amplifier. This buffer is disabled if the ADC is not configured to use the FVR.

For specific use of the FVR, refer to the specific module sections: Section 17.0 "Analog-to-Digital Converter (ADC) Module", Section 22.0 "Digital-to-Analog Converter (DAC) Module" and Section 18.0 "Comparator Module".

21.2 FVR Stabilization Period

When the Fixed Voltage Reference module is enabled, it requires time for the reference and amplifier circuits to stabilize. Once the circuits stabilize and are ready for use, the FVRST bit of the VREFCON0 register will be set. See Table 27-3 for the minimum delay requirement.

23.6 Applications

In many applications, it is desirable to detect a drop below, or rise above, a particular voltage threshold. For example, the HLVD module could be periodically enabled to detect Universal Serial Bus (USB) attach or detach. This assumes the device is powered by a lower voltage source than the USB when detached. An attach would indicate a high-voltage detect from, for example, 3.3V to 5V (the voltage on USB) and vice versa for a detach. This feature could save a design a few extra components and an attach signal (input pin).

For general battery applications, Figure 23-4 shows a possible voltage curve. Over time, the device voltage decreases. When the device voltage reaches voltage VA, the HLVD logic generates an interrupt at time, TA. The interrupt could cause the execution of an ISR, which would allow the application to perform "house-keeping tasks" and a controlled shutdown before the device voltage exits the valid operating range at TB. This would give the application a time window, represented by the difference between TA and TB, to safely exit.

DEV<10:3>	DEV<2:0>	Part Number
	000	PIC18F46K22
0101 0100	001	PIC18LF46K22
0101 0100	010	PIC18F26K22
	011	PIC18LF26K22
	000	PIC18F45K22
0101 0101	001	PIC18LF45K22
	010	PIC18F25K22
	011	PIC18LF25K22
	000	PIC18F44K22
0101 0110	001	PIC18LF44K22
0101 0110	010	PIC18F24K22
	011	PIC18LF24K22
	000	PIC18F43K22
0101 0111	001	PIC18LF43K22
0101 0111	010	PIC18F23K22
	011	PIC18LF23K22

TABLE 24-2: DEVICE ID TABLE FOR THE PIC18(L)F2X/4XK22 FAMILY

Mnemonic, Operands				16-Bit Instruction Word				Status	
		Description	Cycles	MSb			LSb	Affected	Notes
LITERAL	OPERAT	IONS							
ADDLW	k	Add literal and WREG	1	0000	1111	kkkk	kkkk	C, DC, Z, OV, N	
ANDLW	k	AND literal with WREG	1	0000	1011	kkkk	kkkk	Z, N	
IORLW	k	Inclusive OR literal with WREG	1	0000	1001	kkkk	kkkk	Z, N	
LFSR	f, k	Move literal (12-bit) 2nd word	2	1110	1110	00ff	kkkk	None	
		to FSR(f) 1st word		1111	0000	kkkk	kkkk		
MOVLB	k	Move literal to BSR<3:0>	1	0000	0001	0000	kkkk	None	
MOVLW	k	Move literal to WREG	1	0000	1110	kkkk	kkkk	None	
MULLW	k	Multiply literal with WREG	1	0000	1101	kkkk	kkkk	None	
RETLW	k	Return with literal in WREG	2	0000	1100	kkkk	kkkk	None	
SUBLW	k	Subtract WREG from literal	1	0000	1000	kkkk	kkkk	C, DC, Z, OV, N	
XORLW	k	Exclusive OR literal with WREG	1	0000	1010	kkkk	kkkk	Z, N	
DATA MEN	IORY ↔	PROGRAM MEMORY OPERATION	IS						
TBLRD*		Table Read	2	0000	0000	0000	1000	None	
TBLRD*+		Table Read with post-increment		0000	0000	0000	1001	None	
TBLRD*-		Table Read with post-decrement		0000	0000	0000	1010	None	
TBLRD+*		Table Read with pre-increment		0000	0000	0000	1011	None	
TBLWT*		Table Write	2	0000	0000	0000	1100	None	
TBLWT*+		Table Write with post-increment		0000	0000	0000	1101	None	
TBLWT*-		Table Write with post-decrement		0000	0000	0000	1110	None	
TBLWT+*		Table Write with pre-increment		0000	0000	0000	1111	None	

TABLE 25-2: PIC18(L)F2X/4XK22 INSTRUCTION SET (CONTINUED)

Note 1: When a PORT register is modified as a function of itself (e.g., MOVF PORTB, 1, 0), the value used will be that value present on the pins themselves. For example, if the data latch is '1' for a pin configured as input and is driven low by an external device, the data will be written back with a '0'.

2: If this instruction is executed on the TMR0 register (and where applicable, 'd' = 1), the prescaler will be cleared if assigned.

3: If Program Counter (PC) is modified or a conditional test is true, the instruction requires two cycles. The second cycle is executed as a NOP.

4: Some instructions are two-word instructions. The second word of these instructions will be executed as a NOP unless the first word of the instruction retrieves the information embedded in these 16 bits. This ensures that all program memory locations have a valid instruction.

RLNCF	Rotate Le	eft f (No Car	ry)			
Syntax:	RLNCF	f {,d {,a}}				
Operands:	$0 \le f \le 255$ $d \in [0,1]$ $a \in [0,1]$					
Operation:	$(f < n >) \rightarrow d$ $(f < 7 >) \rightarrow d$	est <n +="" 1="">, est<0></n>				
Status Affected:	N, Z					
Encoding:	0100	01da ffi	ff ffff			
Description:	Ine conter one bit to th is placed in stored back If 'a' is '0', t If 'a' is '1', t GPR bank. If 'a' is '0' a set is enab in Indexed mode when Section 25 Bit-Oriente Literal Off	The contents of register 'f' are rotated one bit to the left. If 'd' is '0', the result is placed in W. If 'd' is '1', the result is stored back in register 'f' (default). If 'a' is '0', the Access Bank is selected. If 'a' is '1', the BSR is used to select the GPR bank. If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever $f \le 95$ (5Fh). See Section 25.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed Literal Offset Mode" for details.				
	-	register f	_			
Words:	1					
Cycles:	1					
Q Cycle Activity:						
Q1	Q2	Q3	Q4			
Decode	Read register 'f'	Process Data	Write to destination			
Example:	RLNCF	REG, 1,	0			
REG After Instruction	tion = 1010 1 on	011				
REG	= 0101 0	111				

RRCF	Rotate Rig	ght f throug	h Carry					
Syntax:	RRCF f{,	d {,a}}						
Operands:	0 ≤ f ≤ 255 d ∈ [0,1] a ∈ [0,1]	0 ≤ f ≤ 255 d ∈ [0,1] a ∈ [0,1]						
Operation:	$(f < n >) \rightarrow de$ $(f < 0 >) \rightarrow C$ $(C) \rightarrow dest <$	est <n 1="" –="">, <7></n>						
Status Affected:	C, N, Z							
Encoding:	0011	00da ffi	f ffff					
	one bit to th flag. If 'd' is If 'd' is '1', ti register 'f' (i If 'a' is '0', ti If 'a' is '0', ti GPR bank. If 'a' is '0' a set is enabl in Indexed I mode when Section 25 Bit-Oriente Literal Offs	one bit to the right through the CARRY flag. If 'd' is '0', the result is placed in W. If 'd' is '1', the result is placed back in register 'f' (default). If 'a' is '0', the Access Bank is selected. If 'a' is '1', the BSR is used to select the GPR bank. If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever f ≤ 95 (5Fh). See Section 25.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed Literal Offset Mode" for details.						
Words:	1							
Cycles:	1							
	I							
Q Oycic Adimiy. Q1	Q2	Q3	Q4					
Decode		-						
	Read register 'f'	Process Data	Write to destination					
Example:	Read register 'f'	Process Data REG, 0, 0	Write to destination					
Example: Before Instruct REG C After Instructio REG W C	Read register 'f' RRCF ttion = 1110 0 = 0 cn = 1110 0 = 0111 0 = 0	Process Data REG, 0, 0 110 110 011	Write to destination					

FIGURE 27-10: BROWN-OUT RESET TIMING

TABLE 27-19: EUSART SYNCHRONOUS TRANSMISSION REQUIREMENTS

Param. No.	Symbol	Characteristic	Min	Max	Units	Conditions
120	TckH2dtV	SYNC XMIT (MASTER & SLAVE) Clock High to Data Out Valid	_	40	ns	
121	Tckrf	Clock Out Rise Time and Fall Time (Master mode)	—	20	ns	
122	Tdtrf	Data Out Rise Time and Fall Time	_	20	ns	

FIGURE 27-22: EUSART SYNCHRONOUS RECEIVE (MASTER/SLAVE) TIMING

TABLE 27-20: EUSART SYNCHRONOUS RECEIVE REQUIREMENTS

Param. No.	Symbol	Characteristic	Min	Мах	Units	Conditions
125	TdtV2ckl	SYNC RCV (MASTER & SLAVE) Data Setup before CK \downarrow (DT setup time)	10		ns	
126	TckL2dtl	Data Hold after CK \downarrow (DT hold time)	15	—	ns	

28.0 DC AND AC CHARACTERISTICS GRAPHS AND CHARTS

Note: The graphs and tables provided following this note are a statistical summary based on a limited number of samples and are provided for informational purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified operating range (e.g. outside specified power supply range) and therefore, outside the warranted range.

PIC18(L)F2X/4XK22 DELTA IDD A/D CONVERTOR¹ FIGURE 28-19:

28-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS					
Dimension	Limits	MIN	NOM	MAX		
Number of Pins	N	28				
Pitch	е	1.27 BSC				
Overall Height	A	-	2.65			
Molded Package Thickness	A2	2.05	-	-		
Standoff §	A1	0.10	-	0.30		
Overall Width	E	10.30 BSC				
Molded Package Width	E1	7.50 BSC				
Overall Length	D	17.90 BSC				
Chamfer (Optional)	h	0.25	-	0.75		
Foot Length	L	0.40	-	1.27		
Footprint	L1	1.40 REF				
Lead Angle	Θ	0°	-	-		
Foot Angle	φ	0°	-	8°		
Lead Thickness	С	0.18	-	0.33		
Lead Width	b	0.31	_	0.51		
Mold Draft Angle Top	α	5°	-	15°		
Mold Draft Angle Bottom	β	5°	-	15°		

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. § Significant Characteristic
- 3. Dimension D does not include mold flash, protrusions or gate burrs, which shall not exceed 0.15 mm per end. Dimension E1 does not include interlead flash or protrusion, which shall not exceed 0.25 mm per side.
- Dimensioning and tolerancing per ASME Y14.5M BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only.
- 5. Datums A & B to be determined at Datum H.

Microchip Technology Drawing C04-052C Sheet 2 of 2