

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	48MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	35
Program Memory Size	16KB (8K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	768 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 30x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	40-UFQFN Exposed Pad
Supplier Device Package	40-UQFN (5x5)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18lf44k22-e-mv

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at **docerrors@microchip.com**. We welcome your feedback.

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Website at:

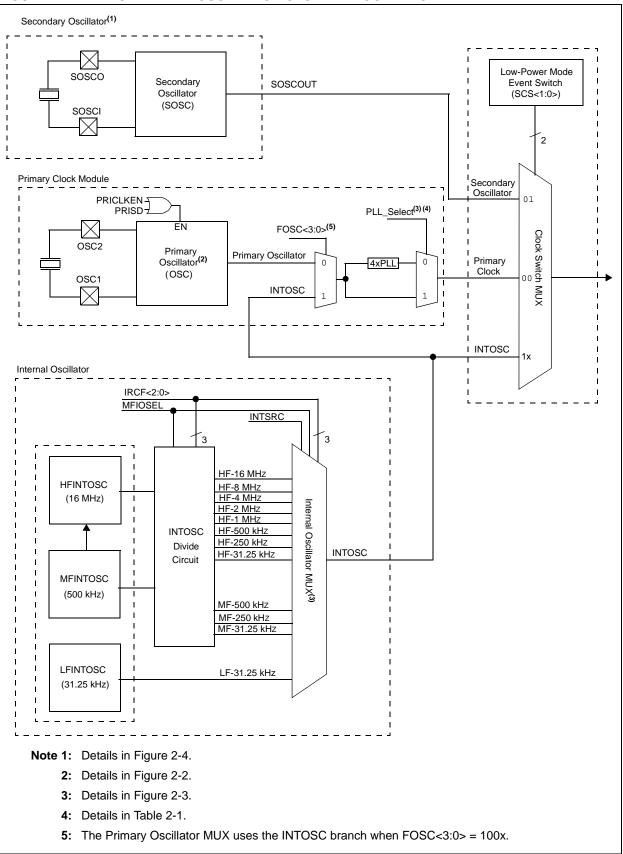
http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000000A is version A of document DS30000000).

Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:


- Microchip's Worldwide Website; http://www.microchip.com
- Your local Microchip sales office (see last page)

When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are using.

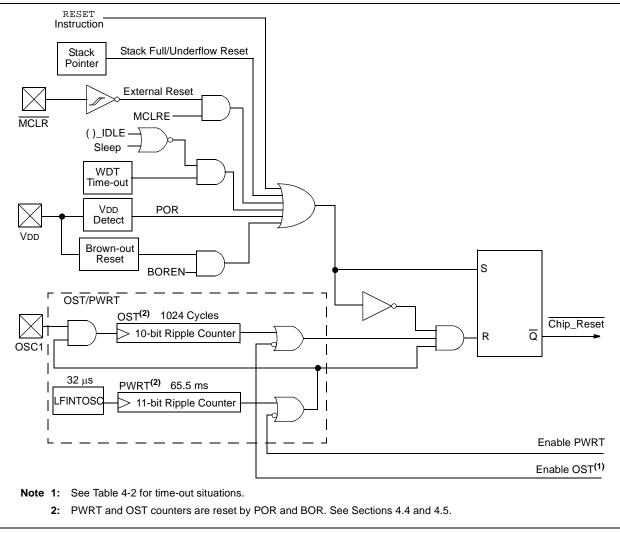
Customer Notification System

Register on our website at www.microchip.com to receive the most current information on all of our products.

4.0 RESET

The PIC18(L)F2X/4XK22 devices differentiate between various kinds of Reset:

- a) Power-on Reset (POR)
- b) MCLR Reset during normal operation
- c) MCLR Reset during power-managed modes
- d) Watchdog Timer (WDT) Reset (during execution)
- e) Programmable Brown-out Reset (BOR)
- f) RESET Instruction
- g) Stack Full Reset
- h) Stack Underflow Reset


This section discusses Resets generated by MCLR, POR and BOR and covers the operation of the various start-up timers. Stack Reset events are covered in Section 5.2.0.1 "Stack Full and Underflow Resets". WDT Resets are covered in Section 24.3 "Watchdog Timer (WDT)". A simplified block diagram of the On-Chip Reset Circuit is shown in Figure 4-1.

4.1 RCON Register

Device Reset events are tracked through the RCON register (Register 4-1). The lower five bits of the register indicate that a specific Reset event has occurred. In most cases, these bits can only be cleared by the event and must be set by the application after the event. The state of these flag bits, taken together, can be read to indicate the type of Reset that just occurred. This is described in more detail in **Section 4.7 "Reset State of Registers"**.

The RCON register also has control bits for setting interrupt priority (IPEN) and software control of the BOR (SBOREN). Interrupt priority is discussed in Section 9.0 "Interrupts". BOR is covered in Section 4.5 "Brown-out Reset (BOR)".

6.3.1 TABLAT – TABLE LATCH REGISTER

The Table Latch (TABLAT) is an 8-bit register mapped into the SFR space. The Table Latch register is used to hold 8-bit data during data transfers between program memory and data RAM.

6.3.2 TBLPTR – TABLE POINTER REGISTER

The Table Pointer (TBLPTR) register addresses a byte within the program memory. The TBLPTR is comprised of three SFR registers: Table Pointer Upper Byte, Table Pointer High Byte and Table Pointer Low Byte (TBLPTRU:TBLPTRH:TBLPTRL). These three registers join to form a 22-bit wide pointer. The low-order 21 bits allow the device to address up to 2 Mbytes of program memory space. The 22nd bit allows access to the device ID, the user ID and the Configuration bits.

The Table Pointer register, TBLPTR, is used by the TBLRD and TBLWT instructions. These instructions can update the TBLPTR in one of four ways based on the table operation. These operations on the TBLPTR affect only the low-order 21 bits.

6.3.3 TABLE POINTER BOUNDARIES

TBLPTR is used in reads, writes and erases of the Flash program memory.

When a TBLRD is executed, all 22 bits of the TBLPTR determine which byte is read from program memory directly into the TABLAT register.

When a TBLWT is executed the byte in the TABLAT register is written, not to Flash memory but, to a holding register in preparation for a program memory write. The holding registers constitute a write block which varies depending on the device (see Table 6-1). The 3, 4, or 5 LSbs of the TBLPTRL register determine which specific address within the holding register block is written to. The MSBs of the Table Pointer have no effect during TBLWT operations.

When a program memory write is executed the entire holding register block is written to the Flash memory at the address determined by the MSbs of the TBLPTR. The 3, 4, or 5 LSBs are ignored during Flash memory writes. For more detail, see **Section 6.6** "**Writing to Flash Program Memory**".

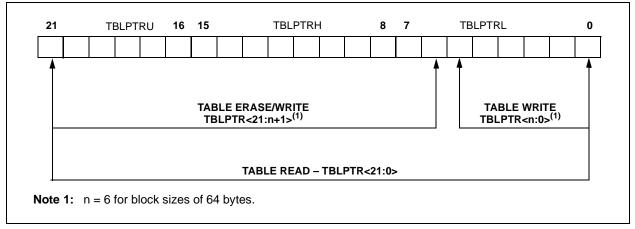

When an erase of program memory is executed, the 16 MSbs of the Table Pointer register (TBLPTR<21:6>) point to the 64-byte block that will be erased. The Least Significant bits (TBLPTR<5:0>) are ignored.

Figure 6-3 describes the relevant boundaries of TBLPTR based on Flash program memory operations.

TABLE 6-1: TABLE POINTER OPERATIONS WITH TBLRD AND TBLWT INSTRUCTIONS

Example	Operation on Table Pointer
TBLRD* TBLWT*	TBLPTR is not modified
TBLRD*+ TBLWT*+	TBLPTR is incremented after the read/write
TBLRD*- TBLWT*-	TBLPTR is decremented after the read/write
TBLRD+* TBLWT+*	TBLPTR is incremented before the read/write

FIGURE 6-3: TABLE POINTER BOUNDARIES BASED ON OPERATION

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
OSCFIF	C1IF	C2IF	EEIF	BCL1IF	HLVDIF	TMR3IF	CCP2IF
bit 7							bit 0
Legend:							
R = Readable		W = Writable		-	mented bit, read		
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unk	nown
bit 7	OSCFIF: Os	cillator Fail Inte	rrupt Flag bit				
		oscillator failed,		as changed to I	HFINTOSC (mu	ust be cleared b	y software)
		clock operating		0	× ×		
bit 6	C1IF: Compa	arator C1 Interr	upt Flag bit				
		ator C1 output			ed by software)		
	-	ator C1 output	-	led			
bit 5	•	arator C2 Interr					
		ator C2 output ator C2 output			ed by software)		
bit 4	-	•			a hit		
DIL 4	EEIF: Data EEPROM/Flash Write Operation Interrupt Flag bit 1 = The write operation is complete (must be cleared by software)						
1 = The write operation is not complete (must be cleared by software) 0 = The write operation is not complete or has not been started							
bit 3		SP1 Bus Collis	•				
		ollision occurred	-	-	re)		
	0 = No bus	collision occurre	ed				
bit 2	HLVDIF: Low	w-Voltage Deteo	t Interrupt Fla	ıg bit			
		oltage condition	occurred (dire	ection determin	ed by the VDIF	RMAG bit of the	
		ON register) oltage condition	haa not aaau	rrad			
bit 1		0					
		IR3 Overflow In egister overflow	1 0		(are)		
		egister did not c		leared by solu	vale)		
bit 0		P2 Interrupt Fla					
	Capture mod	-	0				
		register capture		ist be cleared b	oy software)		
		R register captur	e occurred				
	Compare mo		a matab agai	mad (must be a	leared by coffy	(070)	
		register compar R register compa			leared by solu	/are)	
	PWM mode:	•					

REGISTER 9-5: PIR2: PERIPHERAL INTERRUPT REQUEST (FLAG) REGISTER 2

					· ·		
U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
	—	—	—	—	CCP5IE	CCP4IE	CCP3IE
bit 7 bit 0							
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'	
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 7-3	Unimplemen	ted: Read as '	0'				
bit 2	CCP5IE: CCF	P5 Interrupt En	able bit				
	1 = Enabled						
	0 = Disabled						
bit 1	CCP4IE: CCF	P4 Interrupt En	able bit				
1 = Enabled							
	0 = Disabled						
bit 0 CCP3IE: CCP3 Interrupt Enable bit							
	1 = Enabled						
	0 = Disabled						

REGISTER 9-12: PIE4: PERIPHERAL INTERRUPT ENABLE (FLAG) REGISTER 4

REGISTER 9-13: PIE5: PERIPHERAL INTERRUPT ENABLE (FLAG) REGISTER 5

U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
—	—	—	—	—	TMR6IE	TMR5IE	TMR4IE
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-3	Unimplemented: Read as '0'
bit 2	TMR6IE: TMR6 to PR6 Match Interrupt Enable bit
	 1 = Enables the TMR6 to PR6 match interrupt 0 = Disables the TMR6 to PR6 match interrupt
bit 1	TMR5IE: TMR5 Overflow Interrupt Enable bit
	1 = Enables the TMR5 overflow interrupt0 = Disables the TMR5 overflow interrupt
bit 0	TMR4IE: TMR4 to PR4 Match Interrupt Enable bit
	 1 = Enables the TMR4 to PR4 match interrupt 0 = Disables the TMR4 to PR4 match interrupt

10.6 PORTE Registers

Depending on the particular PIC18(L)F2X/4XK22 device selected, PORTE is implemented in two different ways.

10.6.1 PORTE ON 40/44-PIN DEVICES

For PIC18(L)F2X/4XK22 devices, PORTE is a 4-bit wide port. Three pins (RE0/P3A/CCP3/AN5, RE1/P3B/ AN6 and RE2/CCP5/AN7) are individually configurable as inputs or outputs. These pins have Schmitt Trigger input buffers. When selected as an analog input, these pins will read as '0's.

The corresponding data direction register is TRISE. Setting a TRISE bit (= 1) will make the corresponding PORTE pin an input (i.e., disable the output driver). Clearing a TRISE bit (= 0) will make the corresponding PORTE pin an output (i.e., enable the output driver and put the contents of the output latch on the selected pin).

TRISE controls the direction of the REx pins, even when they are being used as analog inputs. The user must make sure to keep the pins configured as inputs when using them as analog inputs.

The Data Latch register (LATE) is also memory mapped. Read-modify-write operations on the LATE register read and write the latched output value for PORTE.

Note: On a Power-on Reset, RE<2:0> are configured as analog inputs.

The fourth pin of PORTE ($\overline{\text{MCLR}}/\text{VPP}/\text{RE3}$) is an input only pin. Its operation is controlled by the MCLRE Configuration bit. When selected as a port pin (MCLRE = 0), it functions as a digital input only pin; as such, it does not have TRIS or LAT bits associated with its operation. Otherwise, it functions as the device's Master Clear input. In either configuration, RE3 also functions as the programming voltage input during programming.

Note: On a Power-on Reset, RE3 is enabled as a digital input only if Master Clear functionality is disabled.

EXAMPLE 10-5: INITIALIZING PORTE

CLRF	PORTE	;	Initialize PORTE by
		;	clearing output
		;	data latches
CLRF	LATE	;	Alternate method
		;	to clear output
		;	data latches
CLRF	ANSELE	;	Configure analog pins
		;	for digital only
MOVLW	05h	;	Value used to
		;	initialize data
		;	direction
MOVWF	TRISE	;	Set RE<0> as input
		;	RE<1> as output
		;	RE<2> as input
1			

10.6.2 PORTE ON 28-PIN DEVICES

For PIC18F2XK22 devices, PORTE is only available when Master Clear functionality is disabled (MCLR = 0). In these cases, PORTE is a single bit, input only port comprised of RE3 only. The pin operates as previously described.

10.6.3 RE3 WEAK PULL-UP

The port RE3 pin has an individually controlled weak internal pull-up. When set, the WPUE3 (TRISE<7>) bit enables the RE3 pin pull-up. The RBPU bit of the INT-CON2 register controls pull-ups on both PORTB and PORTE. When RBPU = 0, the weak pull-ups become active on all pins which have the WPUE3 or WPUBx bits set. When set, the RBPU bit disables all weak pull-ups. The pull-ups are disabled on a Power-on Reset. When the RE3 port pin is configured as MCLR, (CON-FIG3H<7>, MCLRE=1 and CONFIG4L<2>, LVP=0), or configured for Low Voltage Programming, (MCLRE=x and LVP=1), the pull-up is always enabled and the WPUE3 bit has no effect.

10.6.4 PORTE OUTPUT PRIORITY

Each PORTE pin is multiplexed with other functions. The pins, their combined functions and their output priorities are briefly described here. For additional information, refer to the appropriate section in this data sheet.

When multiple outputs are enabled, the actual pin control goes to the peripheral with the higher priority. Table 10-4 lists the PORTE pin functions from the highest to the lowest priority.

Analog input functions, such as ADC, comparator and SR latch inputs, are not shown in the priority lists.

These inputs are active when the I/O pin is set for Analog mode using the ANSELx registers. Digital output functions may control the pin when it is in Analog mode with the priority shown below.

REGISTER I	U-Z. FURI	C. FURIERI	EGISTER				
U-0	U-0	U-0	U-0	R/W-u/x	R/W-u/x	R/W-u/x	R/W-u/x
_	—	—	—	RE3 ⁽¹⁾	RE2 ^{(2), (3)}	RE1 ^{(2), (3)}	RE0 ^{(2), (3)}
bit 7							bit C
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	d as '0'	
'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unk	nown		
-n/n = Value at	POR and BOR	R/Value at all o	ther Resets				

REGISTER 10-2: PORTE: PORTE REGISTER

bit 3 **RE3:** PORTE Input bit value⁽¹⁾

bit 2-0 **RE<2:0>:** PORTE I/O bit values^{(2), (3)}

Note 1: Port is available as input only when MCLRE = 0.

- 2: Writes to PORTx are written to corresponding LATx register. Reads from PORTx register is return of I/O pin values.
- 3: Available on PIC18(L)F4XK22 devices.

REGISTER 10-3: ANSELA – PORTA ANALOG SELECT REGISTER

U-0	U-0	R/W-1	U-0	R/W-1	R/W-1	R/W-1	R/W-1
—	—	ANSA5	—	ANSA3	ANSA2	ANSA1	ANSA0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	t, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-6	Unimplemented: Read as '0'
bit 5	ANSA5: RA5 Analog Select bit
	1 = Digital input buffer disabled0 = Digital input buffer enabled
bit 4	Unimplemented: Read as '0'
bit 3-0	ANSA<3:0>: RA<3:0> Analog Select bit
	1 = Digital input buffer disabled

0 = Digital input buffer enabled

U-0	U-0	U-0	U-0	R/W-1	R/W-1	R/W-1
—	—	—	—	ANSE2 ⁽¹⁾	ANSE1 ⁽¹⁾	ANSE0 ⁽¹⁾
						bit 0
bit	W = Writable	bit	U = Unimple	mented bit, read	d as '0'	
OR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown
				Dit W = Writable bit U = Unimple	— — — ANSE2 ⁽¹⁾ Dit W = Writable bit U = Unimplemented bit, read	$ ANSE2^{(1)} ANSE1^{(1)}$ Dit W = Writable bit U = Unimplemented bit, read as '0'

REGISTER 10-7: ANSELE – PORTE ANALOG SELECT REGISTER

bit 7-3 Unimplemented: Read as '0'

bit 2-0 ANSE<2:0>: RE<2:0> Analog Select bit⁽¹⁾

1 = Digital input buffer disabled

0 = Digital input buffer enabled

Note 1: Available on PIC18(L)F4XK22 devices only.

REGISTER 10-8: TRISx: PORTx TRI-STATE REGISTER⁽¹⁾

| R/W-1 |
|--------|--------|--------|--------|--------|--------|--------|--------|
| TRISx7 | TRISx6 | TRISx5 | TRISx4 | TRISx3 | TRISx2 | TRISx1 | TRISx0 |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	t, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-0 TRISx<7:0>: PORTx Tri-State Control bit

1 = PORTx pin configured as an input (tri-stated)

0 = PORTx pin configured as an output

Note 1: Register description for TRISA, TRISB, TRISC and TRISD.

REGISTER 10-9: TRISE: PORTE TRI-STATE REGISTER

R/W-1	U-0	U-0	U-0	U-0	R/W-1	R/W-1	R/W-1
WPUE3	—	—	—	—	TRISE2 ⁽¹⁾	TRISE1 ⁽¹⁾	TRISE0 ⁽¹⁾
bit 7							bit 0

Legend:				
R = Reada	ble bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value	at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown
bit 7	WPUE3:	Weak Pull-up Register bits		
		up enabled on PORT pin up disabled on PORT pin		
1.11.0.0				

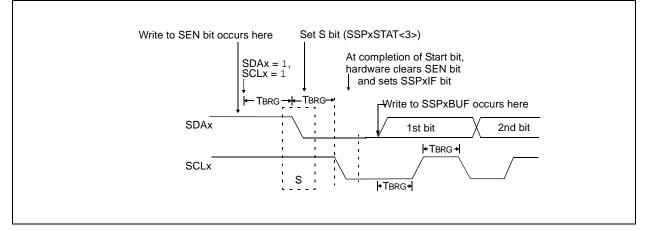
bit 6-3 Unimplemented: Read as '0'

bit 2-0 TRISE<7:0>: PORTE Tri-State Control bit⁽¹⁾

1 = PORTE pin configured as an input (tri-stated)

0 = PORTE pin configured as an output

Note 1: Available on PIC18(L)F4XK22 devices only.


© 2010-2016 Microchip Technology Inc.

15.6.4 I²C MASTER MODE START CONDITION TIMING

To initiate a Start condition (Figure 15-26), the user sets the Start Enable bit, SEN, of the SSPxCON2 register. If the SDAx and SCLx pins are sampled high, the Baud Rate Generator is reloaded with the contents of SSPxADD<7:0> and starts its count. If SCLx and SDAx are both sampled high when the Baud Rate Generator times out (TBRG), the SDAx pin is driven low. The action of the SDAx being driven low while SCLx is high is the Start condition and causes the S bit of the SSPxSTAT1 register to be set. Following this, the Baud Rate Generator is reloaded with the contents of SSPxADD<7:0> and resumes its count.

When the Baud Rate Generator times out (TBRG), the SEN bit of the SSPxCON2 register will be automatically cleared by hardware; the Baud Rate Generator is suspended, leaving the SDAx line held low and the Start condition is complete.

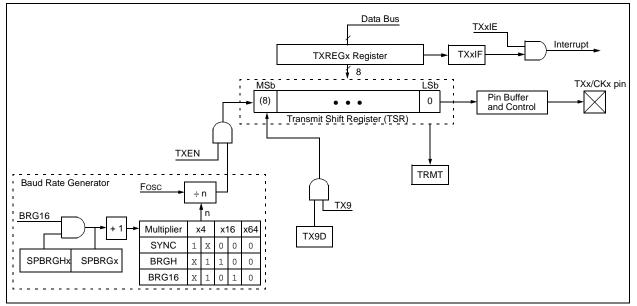
- Note 1: If at the beginning of the Start condition, the SDAx and SCLx pins are already sampled low, or if during the Start condition, the SCLx line is sampled low before the SDAx line is driven low, a bus collision occurs, the Bus Collision Interrupt Flag, BCLxIF, is set, the Start condition is aborted and the I²C module is reset into its Idle state.
 - 2: The Philips I²C Specification states that a bus collision cannot occur on a Start.

FIGURE 15-26: FIRST START BIT TIMING

16.0 ENHANCED UNIVERSAL SYNCHRONOUS ASYNCHRONOUS RECEIVER TRANSMITTER (EUSART)

The Enhanced Universal Synchronous Asynchronous Receiver Transmitter (EUSART) module is a serial I/O communications peripheral. It contains all the clock generators, shift registers and data buffers necessary to perform an input or output serial data transfer independent of device program execution. The EUSART, also known as a Serial Communications Interface (SCI), can be configured as a full-duplex asynchronous system or half-duplex synchronous system. Full-Duplex mode is useful for communications with peripheral systems, such as CRT terminals and personal computers. Half-Duplex Synchronous mode is intended for communications with peripheral devices, such as A/D or D/A integrated circuits, serial EEPROMs or other microcontrollers. These devices typically do not have internal clocks for baud rate generation and require the external clock signal provided by a master synchronous device.

The EUSART module includes the following capabilities:


- · Full-duplex asynchronous transmit and receive
- Two-character input buffer
- One-character output buffer
- Programmable 8-bit or 9-bit character length
- Address detection in 9-bit mode
- Input buffer overrun error detection
- Received character framing error detection
- Half-duplex synchronous master
- Half-duplex synchronous slave
- · Programmable clock and data polarity

The EUSART module implements the following additional features, making it ideally suited for use in Local Interconnect Network (LIN) bus systems:

- · Automatic detection and calibration of the baud rate
- Wake-up on Break reception
- 13-bit Break character transmit

Block diagrams of the EUSART transmitter and receiver are shown in Figure 16-1 and Figure 16-2.

FIGURE 16-1: EUSART TRANSMIT BLOCK DIAGRAM

22.0 DIGITAL-TO-ANALOG CONVERTER (DAC) MODULE

The Digital-to-Analog Converter supplies a variable voltage reference, ratiometric with the input source, with 32 selectable output levels.

The input of the DAC can be connected to:

- External VREF pins
- VDD supply voltage
- FVR (Fixed Voltage Reference)

The output of the DAC can be configured to supply a reference voltage to the following:

- Comparator positive input
- ADC input channel
- DACOUT pin

The Digital-to-Analog Converter (DAC) can be enabled by setting the DACEN bit of the VREFCON1 register.

22.1 Output Voltage Selection

The DAC has 32 voltage level ranges. The 32 levels are set with the DACR<4:0> bits of the VREFCON2 register.

The DAC output voltage is determined by the following equations:

EQUATION 22-1: DAC OUTPUT VOLTAGE

$$VOUT = \left((VSRC+ - VSRC-) \neq \frac{DACR < 4:0>}{2^5} \right) + VSRC-$$
$$VSRC+ = VDD, VREF+ or FVR1$$
$$VSRC- = VSS or VREF-$$

22.2 Ratiometric Output Level

The DAC output value is derived using a resistor ladder with each end of the ladder tied to a positive and negative voltage reference input source. If the voltage of either input source fluctuates, a similar fluctuation will result in the DAC output value.

The value of the individual resistors within the ladder can be found in **Section 27.0** "**Electrical Specifications**".

22.3 Low-Power Voltage State

In order for the DAC module to consume the least amount of power, one of the two voltage reference input sources to the resistor ladder must be disconnected. Either the positive voltage source, (VSRC+), or the negative voltage source, (VSRC-) can be disabled. The negative voltage source is disabled by setting the DACLPS bit in the VREFCON1 register. Clearing the DACLPS bit in the VREFCON1 register disables the positive voltage source.

22.4 Output Clamped to Positive Voltage Source

The DAC output voltage can be set to VsRC+ with the least amount of power consumption by performing the following:

- Clearing the DACEN bit in the VREFCON1 register.
- Setting the DACLPS bit in the VREFCON1 register.
- Configuring the DACPSS bits to the proper positive source.
- Configuring the DACRx bits to '11111' in the VREFCON2 register.

This is also the method used to output the voltage level from the FVR to an output pin. See **Section 22.6 "DAC Voltage Reference Output"** for more information.

22.5 Output Clamped to Negative Voltage Source

The DAC output voltage can be set to VSRC- with the least amount of power consumption by performing the following:

- Clearing the DACEN bit in the VREFCON1 register.
- Clearing the DACLPS bit in the VREFCON1 register.
- Configuring the DACPSS bits to the proper negative source.
- Configuring the DACRx bits to '00000' in the VREFCON2 register.

This allows the comparator to detect a zero-crossing while not consuming additional current through the DAC module.

22.6 DAC Voltage Reference Output

The DAC can be output to the DACOUT pin by setting the DACOE bit of the VREFCON1 register to '1'. Selecting the DAC reference voltage for output on the DACOUT pin automatically overrides the digital output buffer and digital input threshold detector functions of that pin. Reading the DACOUT pin when it has been configured for DAC reference voltage output will always return a '0'.

Due to the limited current drive capability, a buffer must be used on the DAC voltage reference output for external connections to DACOUT. Figure 22-2 shows an example buffering technique.

U-0	U-0	U-0	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1
_	_	_	BORV	′<1:0> ⁽¹⁾	BOREN	<1:0> (2)	PWRTEN ⁽²⁾
bit 7							bit
Legend:	1.12					0 1	
R = Readable		P = Programma	able bit	•	nted bit, read as	0'	
-n = Value wh	nen device is unprogr	ammed		x = Bit is unkno	wn		
bit 7-5	Unimplementee	d: Read as '0'					
L 4 4 0			/ IA I I I (1)				
bit 4-3		own-out Reset \	oltage bits				
DIT 4-3	11 = VBOR set to	o 1.9V nominal	oltage bits(")				
dit 4-3	11 = VBOR set to 10 = VBOR set to	o 1.9V nominal o 2.2V nominal	oltage bits				
dit 4-3	11 = VBOR set to 10 = VBOR set to 01 = VBOR set to	o 1.9V nominal o 2.2V nominal o 2.5V nominal	Oltage Dits."				
	11 = VBOR set to 10 = VBOR set to 01 = VBOR set to 00 = VBOR set to	o 1.9V nominal o 2.2V nominal o 2.5V nominal o 2.85V nominal	J				
	11 = VBOR set to 10 = VBOR set to 01 = VBOR set to 00 = VBOR set to BOREN<1:0>: E	o 1.9V nominal o 2.2V nominal o 2.5V nominal o 2.85V nominal Brown-out Reset	Enable bits ⁽²⁾	/ (SBOREN is dis	abled)		
	11 = VBOR set to 10 = VBOR set to 01 = VBOR set to 00 = VBOR set to BOREN<1:0>: E 11 = Brown-ou	o 1.9V nominal o 2.2V nominal o 2.5V nominal o 2.85V nominal Brown-out Reset tt Reset enabled	Enable bits ⁽²⁾ in hardware only	/ (SBOREN is dis / and disabled in {			
	11 = VBOR set to 10 = VBOR set to 01 = VBOR set to 00 = VBOR set to BOREN<1:0>: E 11 = Brown-ou 10 = Brown-ou	o 1.9V nominal o 2.2V nominal o 2.5V nominal o 2.85V nominal Brown-out Reset tt Reset enabled	Enable bits ⁽²⁾ in hardware only	۲ (SBOREN is dis ۲ and disabled in 5			
	11 = VBOR set to 10 = VBOR set to 01 = VBOR set to 00 = VBOR set to BOREN<1:0>: E 11 = Brown-ou 10 = Brown-ou (SBOREN	o 1.9V nominal o 2.2V nominal o 2.5V nominal o 2.85V nominal Brown-out Reset it Reset enabled t Reset enabled N is disabled)	Enable bits ⁽²⁾ in hardware only in hardware only		Sleep mode		
bit 2-1	11 = VBOR set to 10 = VBOR set to 01 = VBOR set to 00 = VBOR set to BOREN<1:0>: E 11 = Brown-ou 10 = Brown-ou (SBOREN	o 1.9V nominal o 2.2V nominal o 2.5V nominal o 2.85V nominal Brown-out Reset it Reset enabled it Reset enabled v is disabled) it Reset enabled	Enable bits ⁽²⁾ in hardware only in hardware only and controlled b	y and disabled in S y software (SBOF	Sleep mode		
	11 = VBOR set to 10 = VBOR set to 01 = VBOR set to 00 = VBOR set to BOREN<1:0>: F 11 = Brown-ou 10 = Brown-ou (SBOREN 01 = Brown-ou	o 1.9V nominal o 2.2V nominal o 2.5V nominal o 2.85V nominal Brown-out Reset tt Reset enabled tt Reset enabled v is disabled) tt Reset enabled tt Reset disabled	Enable bits ⁽²⁾ in hardware only in hardware only and controlled b in hardware and	y and disabled in S y software (SBOF	Sleep mode		
bit 2-1	11 = VBOR set to 10 = VBOR set to 01 = VBOR set to 00 = VBOR set to BOREN<1:0>: F 11 = Brown-ou 10 = Brown-ou (SBOREN 01 = Brown-ou 00 = Brown-ou	o 1.9V nominal o 2.2V nominal o 2.5V nominal o 2.85V nominal Brown-out Reset it Reset enabled it Reset enabled v is disabled) it Reset enabled it Reset disabled er-up Timer Enabled	Enable bits ⁽²⁾ in hardware only in hardware only and controlled b in hardware and	y and disabled in S y software (SBOF	Sleep mode		

2: The Power-up Timer is decoupled from Brown-out Reset, allowing these features to be independently controlled.

Mnemo	nic,			16-	Bit Instr	uction W	ord	Status	
Operar	•	Description	Cycles	MSb			LSb	Affected	Notes
BYTE-ORIE	ENTED C	OPERATIONS							
ADDWF	f, d, a	Add WREG and f	1	0010	01da	ffff	ffff	C, DC, Z, OV, N	1, 2
ADDWFC	f, d, a	Add WREG and CARRY bit to f	1	0010	00da	ffff	ffff	C, DC, Z, OV, N	1, 2
ANDWF	f, d, a	AND WREG with f	1	0001	01da	ffff	ffff	Z, N	1,2
CLRF	f, a	Clear f	1	0110	101a	ffff	ffff	Z	2
COMF	f, d, a	Complement f	1	0001	11da	ffff	ffff	Z, N	1, 2
CPFSEQ	f, a	Compare f with WREG, skip =	1 (2 or 3)	0110	001a	ffff	ffff	None	4
CPFSGT	f, a	Compare f with WREG, skip >	1 (2 or 3)	0110	010a	ffff	ffff	None	4
CPFSLT	f, a	Compare f with WREG, skip <	1 (2 or 3)	0110	000a	ffff	ffff	None	1, 2
DECF	f, d, a	Decrement f	1	0000	01da	ffff	ffff	C, DC, Z, OV, N	1, 2, 3, 4
DECFSZ	f, d, a	Decrement f, Skip if 0	1 (2 or 3)	0010	11da	ffff	ffff	None	1, 2, 3, 4
DCFSNZ	f, d, a	Decrement f, Skip if Not 0	1 (2 or 3)	0100	11da	ffff	ffff	None	1, 2
INCF	f, d, a	Increment f	1	0010	10da	ffff	ffff	C, DC, Z, OV, N	1, 2, 3, 4
INCFSZ	f, d, a	Increment f, Skip if 0	1 (2 or 3)	0011	11da	ffff	ffff	None	4
INFSNZ	f, d, a	Increment f, Skip if Not 0	1 (2 or 3)	0100	10da	ffff	ffff	None	1, 2
IORWF	f, d, a	Inclusive OR WREG with f	1	0001	00da	ffff	ffff	Z, N	1, 2
MOVF	f, d, a	Move f	1	0101	00da	ffff	ffff	Z, N	1
MOVFF	f _s , f _d	Move f _s (source) to 1st word	2	1100	ffff	ffff	ffff	None	
	0 u	f _d (destination) 2nd word		1111	ffff	ffff	ffff		
MOVWF	f, a	Move WREG to f	1	0110	111a	ffff	ffff	None	
MULWF	f, a	Multiply WREG with f	1	0000	001a	ffff	ffff	None	1, 2
NEGF	f, a	Negate f	1	0110	110a	ffff	ffff	C, DC, Z, OV, N	
RLCF	f, d, a	Rotate Left f through Carry	1	0011	01da	ffff	ffff	C, Z, N	1, 2
RLNCF	f, d, a	Rotate Left f (No Carry)	1	0100	01da	ffff	ffff	Z, N	
RRCF	f, d, a	Rotate Right f through Carry	1	0011	00da	ffff	ffff	C, Z, N	
RRNCF	f, d, a	Rotate Right f (No Carry)	1	0100	00da	ffff	ffff	Z, N	
SETF	f, a	Set f	1	0110	100a	ffff	ffff	None	1, 2
SUBFWB	f, d, a	Subtract f from WREG with borrow	1	0101	01da	ffff	ffff	C, DC, Z, OV, N	
SUBWF	f, d, a	Subtract WREG from f	1	0101	11da	ffff	ffff	C, DC, Z, OV, N	1, 2
SUBWFB	f, d, a	Subtract WREG from f with	1	0101	10da	ffff	ffff	C, DC, Z, OV, N	,
	, . , .	borrow					_	, _, , _ , _	
SWAPF	f, d, a	Swap nibbles in f	1	0011	10da	ffff	ffff	None	4
TSTFSZ	f, a	Test f, skip if 0	1 (2 or 3)	0110	011a	ffff	ffff	None	1, 2
XORWF	f, d, a	Exclusive OR WREG with f	1	0001	10da	ffff	ffff	Z, N	, _

TABLE 25-2: PIC18(L)F2X/4XK22 INSTRUCTION SET

Note 1: When a PORT register is modified as a function of itself (e.g., MOVF PORTB, 1, 0), the value used will be that value present on the pins themselves. For example, if the data latch is '1' for a pin configured as input and is driven low by an external device, the data will be written back with a '0'.

2: If this instruction is executed on the TMR0 register (and where applicable, 'd' = 1), the prescaler will be cleared if assigned.

3: If Program Counter (PC) is modified or a conditional test is true, the instruction requires two cycles. The second cycle is executed as a NOP.

4: Some instructions are two-word instructions. The second word of these instructions will be executed as a NOP unless the first word of the instruction retrieves the information embedded in these 16 bits. This ensures that all program memory locations have a valid instruction.

LFS	R	Load FSF	R		MOVF	Move f		
Synta	ax:	LFSR f, k			Syntax:	MOVF f{,	d {,a}}	
Oper	ands:	$\begin{array}{l} 0 \leq f \leq 2 \\ 0 \leq k \leq 409 \end{array}$	5		Operands:	$0 \le f \le 255$ $d \in [0,1]$		
Oper	ation:	$k\toFSRf$				a ∈ [0,1]		
Statu	s Affected:	None			Operation:	$f \rightarrow dest$		
Enco	ding:	1110 1111	1110 00 0000 k ₇ }	11	Status Affected: Encoding:	N, Z	00da ff	ff ffff
Desc	ription:		literal 'k' is loa Register poin		Description:	a destinatio	n dependent	•
Word	ls:	2					. If 'd' is '0', th ′. If 'd' is '1', th	
Cycle	es:	2					tin register 'f'	
QC	ycle Activity:					Location 'f'	can be anywh	· ,
	Q1	Q2	Q3	Q4		256-byte ba		nk is selected.
	Decode	Read literal 'k' MSB	Process Data	Write literal 'k' MSB to FSRfH		lf 'a' is '1', tl GPR bank. If 'a' is '0' a	he BSR is use nd the extend	ed instruction ction operates
	Decode	Read literal 'k' LSB	Process Data	Write literal 'k' to FSRfL		in Indexed I mode when Section 25	_iteral Offset A ever f ≤ 95 (5 . 2.3 "Byte-O r	Addressing Fh). See iented and
<u>Exan</u>	nple:	LFSR 2,	3ABh				d Instruction et Mode" for	is in Indexed
	After Instruction				Words:	1		
	FSR2H FSR2L	= 03 = AE			Cycles:	1		
					Q Cycle Activity:			
					Q Cycle Activity.	Q2	Q3	Q4
					Decode	Read register 'f'	Process Data	Write W
					Example:		EG, 0, 0	
					Before Instru REG		h	
					KEG W	= 22 = FF		
					After Instruct REG			
					W	= 22	h	

TBL	RD	Table Rea	d				
Synta	ax:	TBLRD (*; *	*+; *-;	+*)			
Oper	ands:	None					
Oper	ation:	if TBLRD *, (Prog Mem TBLPTR - 1 if TBLRD *+ (Prog Mem (TBLPTR) + if TBLRD *-, (Prog Mem (TBLPTR) - if TBLRD +* (TBLPTR) + (Prog Mem	No Ch (TBLF $1 \rightarrow$ (TBLF $1 \rightarrow$ $1 \rightarrow$	ange PTR) TBLI PTR) TBLI TBLI) → TAE PTR;) → TAE PTR; PTR;	BLA BLA	т; т;
Statu	s Affected:	None					
Enco	ding:	0000	000	00	0000)	10nn nn=0 * =1 *+ =2 *- =3 +*
Desc	ription:	This instruct of Program program me Pointer (TBI The TBLPT each byte in has a 2-Mby TBLPT TBLPT TBLPT TBLPT The TBLRD of TBLPTR • no chang • post-incref	Memory, PTR) R (a 2 the p /te add R[0] = R[0] = instruct as foll e ement rement	ory (F a po i is u 1-bit rogra dres: 0: 1: 1: ction ows:	P.M.). To binter ca sed. pointer am mem s range. Least S of Prog Word Most S of Prog Word can mo) ad Illec) pc nory Sign ran igni	dress the I Table bints to r. TBLPTR ificant Byte n Memory ficant Byte n Memory
Word	ls:	1					
Cycle		2					
	ycle Activity						
20	Q1	Q2			Q3		Q4
	Decode	No	on	оре	No eration		No operation

No operation (Read Program

Memory)

No

operation

No operation

(Write TABLAT)

TBLRD	Table Read	(Continued)
-------	------------	-------------

Example1:	TBLRD *+	+ ;	
Before Instruction	n		
TABLAT		=	55h
TBLPTR MEMORY	(00A356h)	=	00A356h 34h
After Instruction	(,		•
TABLAT		=	34h
TBLPTR		=	00A357h
Example2:	TBLRD +*	* ;	
Examples.		'	
Before Instruction	102100	,	
Before Instructio	102100	=	AAh
Before Instruction TABLAT TBLPTR	on .	=	01A357h
Before Instructio	(01A357h)	=	
Before Instruction TABLAT TBLPTR MEMORY MEMORY After Instruction	(01A357h)	= = =	01A357h 12h 34h
Before Instruction TABLAT TBLPTR MEMORY MEMORY	(01A357h)	= = =	01A357h 12h

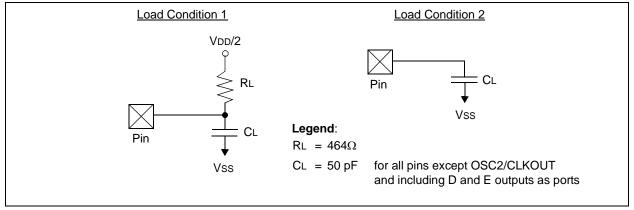
No

operation

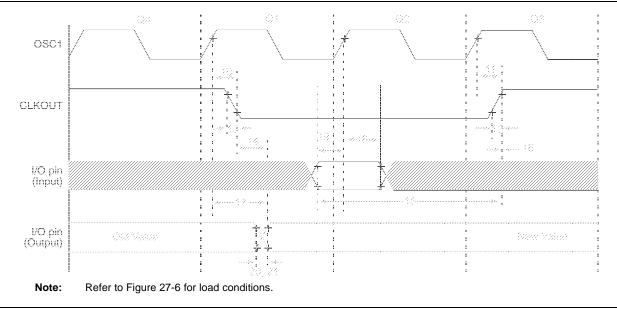
ADDWF		ADD W to Indexed (Indexed Literal Offset mode)					
Syntax:	ADDWF	[k] {,d}					
Operands:	$\begin{array}{l} 0 \leq k \leq 95 \\ d \in [0,1] \end{array}$						
Operation:	(W) + ((FSF	(W) + ((FSR2) + k) \rightarrow dest					
Status Affected:	N, OV, C, D	N, OV, C, DC, Z					
Encoding:	0010	01d0 }	kkkk	kkkk			
Description:	The contents of W are added to the contents of the register indicated by FSR2, offset by the value 'k'. If 'd' is '0', the result is stored in W. If 'd' is '1', the result is stored back in register 'f' (default).						
Words:	1	1					
Cycles:	1						
Q Cycle Activity:							
Q1	Q2	Q3		Q4			
Decode	Read 'k'	Process Data		Vrite to stination			
Example:	ADDWF	[OFST],	0				
Before Instructi	ion						
W OFST FSR2 Contents of 0A2Ch After Instruction	= = = 1	17h 2Ch 0A00h 20h					
W Contents of 0A2Ch	=	37h 20h					

BSF			Bit Set Indexed (Indexed Literal Offset mode)					
Synta	ax:	BSF [k], I	b					
Oper	ands:	$\begin{array}{l} 0 \leq f \leq 95 \\ 0 \leq b \leq 7 \end{array}$						
Oper	ation:	$1 \rightarrow ((FSF))$	2) + k) <b< td=""><td>></td><td></td></b<>	>				
Statu	s Affected:	None						
Encoding:		1000	bbb0	kkkk	kkkk			
Desc	ription:		Bit 'b' of the register indicated by FSR2, offset by the value 'k', is set.					
Word	ls:	1						
Cycle	es:	1						
Q Cycle Activity:								
	Q1	Q2	Q3	5	Q4			
	Decode	Read register 'f'	Proce Dat		Nrite to estination			
Example: BSF [FLAG_OFST], 7								
	Before Instruc FLAG_O FSR2 Contents of 0A0Ah After Instructic	FST = =	0A00ł	ו				
	Contents of 0A0Ah		D5h					

SET	F		Set Indexed (Indexed Literal Offset mode)					
Synta	ax:	SETF	SETF [k]					
Oper	ands:	$0 \le k \le 9$	95					
Oper	ation:	$FFh \rightarrow$	((F\$	SR2) + k))			
Statu	s Affected:	None	None					
Enco	ding:	0110		1000	kkk	k	kkkk	
Description:			The contents of the register indicated by FSR2, offset by 'k', are set to FFh.					
Word	ls:	1						
Cycle	es:	1						
QC	ycle Activity:							
	Q1	Q2		Q3	3 G		Q4	
	Decode	Read 'k	,	Process Data		Write register		
Example: SETF [OFST]								
Before Instructio OFST FSR2 Contents of 0A2Ch After Instruction Contents of 0A2Ch		= = = n	2C 0A 00 FF	00h h				


27.11.2 TIMING CONDITIONS

The temperature and voltages specified in Table 27-6 apply to all timing specifications unless otherwise noted. Figure 27-6 specifies the load conditions for the timing specifications.


TABLE 27-6: TEMPERATURE AND VOLTAGE SPECIFICATIONS – AC

	Standard Operating Conditions (unless otherwise stated)				
	Operating temperature $-40^{\circ}C \le TA \le +125^{\circ}C$				
AC CHARACTERISTICS	Operating voltage VDD range as described in Section 27.1 "DC Characteristics:				
	Supply Voltage, PIC18(L)F2X/4XK22" and Section 27.9 "Memory Programming				
	Requirements".				

FIGURE 27-6: LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS

TABLE 27-10: CLKOUT AND I/O TIMING REQUIREMENTS

Param. No.	Symbol	Characteristic	Min	Тур	Мах	Units	Conditions
10	TosH2ckL	OSC1 ↑ to CLKOUT \downarrow	—	75	200	ns	(Note 1)
11	TosH2ckH	OSC1 ↑ to CLKOUT ↑	_	75	200	ns	(Note 1)
12	TckR	CLKOUT Rise Time	_	35	100	ns	(Note 1)
13	TckF	CLKOUT Fall Time	—	35	100	ns	(Note 1)
14	TckL2ioV	CLKOUT ↓ to Port Out Valid	_	_	0.5 TCY + 20	ns	(Note 1)
15	TioV2ckH	Port In Valid before CLKOUT ↑	0.25 TCY + 25	_	_	ns	(Note 1)
16	TckH2iol	Port In Hold after CLKOUT ↑	0	_	_	ns	(Note 1)
17	TosH2ioV	OSC1 ↑ (Q1 cycle) to Port Out Valid	—	50	150	ns	
18	TosH2iol	OSC1 ↑ (Q2 cycle) to Port Input Invalid (I/O in hold time)	100		_	ns	
19	TioV2osH	Port Input Valid to OSC1 \uparrow (I/O in setup time)	0	_	_	ns	
20	TioR	Port Output Rise Time	_	40 15	72 32	ns ns	VDD = 1.8V VDD = 3.3V - 5.0V
21	TioF	Port Output Fall Time	_	28 15	55 30	ns ns	VDD = 1.8V VDD = 3.3V - 5.0V
22†	TINP	INTx pin High or Low Time	20	_	_	ns	
23†	Trbp	RB<7:4> Change KBIx High or Low Time	Тсү	_	_	ns	

† These parameters are asynchronous events not related to any internal clock edges.

Note 1: Measurements are taken in RC mode, where CLKOUT output is 4 x Tosc.

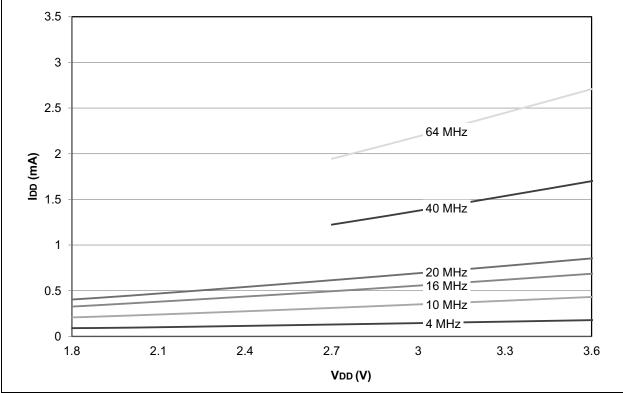
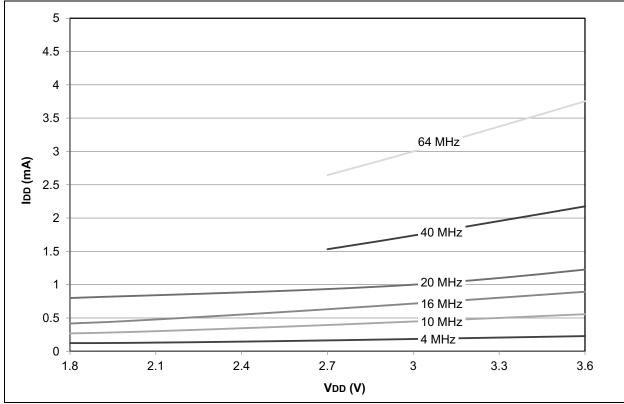



FIGURE 28-65: PIC18LF2X/4XK22 MAXIMUM IDD: PRI_IDLE EC HIGH POWER

DS40001412G-page 486