

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	64MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	35
Program Memory Size	16KB (8K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	768 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 30x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	40-UFQFN Exposed Pad
Supplier Device Package	40-UQFN (5x5)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18lf44k22-i-mv

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Number			Din Nome	Pin	Buffer	Description		
PDIP	TQFP	QFN	UQFN	Pin Name	Туре	Туре	Description	
10	27	27	25	RE2/CCP5/AN7				
				RE2	I/O	ST	Digital I/O.	
				CCP5	I/O	ST	Capture 5 input/Compare 5 output/PWM 5 output	
				AN7	Ι	Analog	Analog input 7.	
1	18	18	16	RE3/VPP/MCLR				
				RE3	I	ST	Digital input.	
				Vpp	Р		Programming voltage input.	
				MCLR	I	ST	Active-low Master Clear (device Reset) input.	
11,32	7, 28	7, 8, 28, 29	7, 26	Vdd	Р	—	Positive supply for logic and I/O pins.	
12,31	6, 29	6,30, 31	6, 27	Vss	Р	_	Ground reference for logic and I/O pins.	
	12,13, 33,34	13		NC				

TABLE 1-3: PIC18(L)F4XK22 PINOUT I/O DESCRIPTIONS (CONTINUED)

Legend: TTL = TTL compatible input CMOS = CMOS compatible input or output; ST = Schmitt Trigger input with CMOS levels; I = Input; O = Output; P = Power.

Note 1: Default pin assignment for P2B, T3CKI, CCP3/P3A and CCP2/P2A when Configuration bits PB2MX, T3CMX, CCP3MX and CCP2MX are set.

2: Alternate pin assignment for P2B, T3CKI, CCP3/P3A and CCP2/P2A when Configuration bits PB2MX, T3CMX, CCP3MX and CCP2MX are clear.

6.3.1 TABLAT – TABLE LATCH REGISTER

The Table Latch (TABLAT) is an 8-bit register mapped into the SFR space. The Table Latch register is used to hold 8-bit data during data transfers between program memory and data RAM.

6.3.2 TBLPTR – TABLE POINTER REGISTER

The Table Pointer (TBLPTR) register addresses a byte within the program memory. The TBLPTR is comprised of three SFR registers: Table Pointer Upper Byte, Table Pointer High Byte and Table Pointer Low Byte (TBLPTRU:TBLPTRH:TBLPTRL). These three registers join to form a 22-bit wide pointer. The low-order 21 bits allow the device to address up to 2 Mbytes of program memory space. The 22nd bit allows access to the device ID, the user ID and the Configuration bits.

The Table Pointer register, TBLPTR, is used by the TBLRD and TBLWT instructions. These instructions can update the TBLPTR in one of four ways based on the table operation. These operations on the TBLPTR affect only the low-order 21 bits.

6.3.3 TABLE POINTER BOUNDARIES

TBLPTR is used in reads, writes and erases of the Flash program memory.

When a TBLRD is executed, all 22 bits of the TBLPTR determine which byte is read from program memory directly into the TABLAT register.

When a TBLWT is executed the byte in the TABLAT register is written, not to Flash memory but, to a holding register in preparation for a program memory write. The holding registers constitute a write block which varies depending on the device (see Table 6-1). The 3, 4, or 5 LSbs of the TBLPTRL register determine which specific address within the holding register block is written to. The MSBs of the Table Pointer have no effect during TBLWT operations.

When a program memory write is executed the entire holding register block is written to the Flash memory at the address determined by the MSbs of the TBLPTR. The 3, 4, or 5 LSBs are ignored during Flash memory writes. For more detail, see **Section 6.6** "**Writing to Flash Program Memory**".

When an erase of program memory is executed, the 16 MSbs of the Table Pointer register (TBLPTR<21:6>) point to the 64-byte block that will be erased. The Least Significant bits (TBLPTR<5:0>) are ignored.

Figure 6-3 describes the relevant boundaries of TBLPTR based on Flash program memory operations.

TABLE 6-1: TABLE POINTER OPERATIONS WITH TBLRD AND TBLWT INSTRUCTIONS

Example	Operation on Table Pointer						
TBLRD* TBLWT*	TBLPTR is not modified						
TBLRD*+ TBLWT*+	TBLPTR is incremented after the read/write						
TBLRD*- TBLWT*-	TBLPTR is decremented after the read/write						
TBLRD+* TBLWT+*	TBLPTR is incremented before the read/write						

FIGURE 6-3: TABLE POINTER BOUNDARIES BASED ON OPERATION

6.4 Reading the Flash Program Memory

The TBLRD instruction retrieves data from program memory and places it into data RAM. Table reads from program memory are performed one byte at a time.

TBLPTR points to a byte address in program space. Executing TBLRD places the byte pointed to into TABLAT. In addition, TBLPTR can be modified automatically for the next table read operation. The internal program memory is typically organized by words. The Least Significant bit of the address selects between the high and low bytes of the word. Figure 6-4 shows the interface between the internal program memory and the TABLAT.

FIGURE 6-4: READS FROM FLASH PROGRAM MEMORY

EXAMPLE 6-1: READING A FLASH PROGRAM MEMORY WORD

	MOVLW	CODE_ADDR_UPPER	;	Load TBLPTR with the base
	MOVWF	TBLPTRU	;	address of the word
	MOVLW	CODE_ADDR_HIGH		
	MOVWF	TBLPTRH		
	MOVLW	CODE_ADDR_LOW		
	MOVWF	TBLPTRL		
READ_WORD				
	TBLRD*+		;	read into TABLAT and increment
	MOVF	TABLAT, W	;	get data
	MOVWF	WORD_EVEN		
	TBLRD*+		;	read into TABLAT and increment
	MOVFW	TABLAT, W	;	get data
	MOVF	WORD_ODD		

U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1					
_	ADIP	RC1IP	TX1IP	SSP1IP	CCP1IP	TMR2IP	TMR1IP					
bit 7							bit 0					
Legend:												
R = Readable bit		W = Writable	bit	U = Unimpler								
-n = Value at POR		'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown					
bit 7	Unimplemen	ted: Read as '	כ'									
bit 6	ADIP: A/D Co	onverter Interru	pt Priority bit									
	1 = High prio	1 = High priority										
bit 5			ntorrunt Prior	-ity hit								
bit 5	1 - High prio	rity	interrupt i noi	ity bit								
	0 = Low prior	0 = Low priority										
bit 4	TX1IP: EUSA	RT1 Transmit	Interrupt Prio	rity bit								
	1 = High prio	ority										
	0 = Low prior	ity										
bit 3	SSP1IP: Mas	SSP1IP: Master Synchronous Serial Port 1 Interrupt Priority bit										
	1 = High priority											
hit 2		ily 21 Intorrunt Driv	ority bit									
Dit Z	1 = High prio	CCP1IP: CCP1 Interrupt Priority bit										
	0 = Low prior	ity										
bit 1	TMR2IP: TMF	R2 to PR2 Mate	ch Interrupt P	riority bit								
	1 = High prio	rity										
	0 = Low prior	ity										
bit 0	TMR1IP: TMF	R1 Overflow Int	errupt Priority	y bit								
	1 = High prio	rity										
	0 = Low prior	пу										

REGISTER 9-14: IPR1: PERIPHERAL INTERRUPT PRIORITY REGISTER 1

FIGURE 11-2: TIMER0 BLOCK DIAGRAM (16-BIT MODE)

11.4 Prescaler

An 8-bit counter is available as a prescaler for the Timer0 module. The prescaler is not directly readable or writable; its value is set by the PSA and T0PS<2:0> bits of the T0CON register which determine the prescaler assignment and prescale ratio.

Clearing the PSA bit assigns the prescaler to the Timer0 module. When the prescaler is assigned, prescale values from 1:2 through 1:256 in integer power-of-2 increments are selectable.

When assigned to the Timer0 module, all instructions writing to the TMR0 register (e.g., CLRF TMR0, MOVWF TMR0, BSF TMR0, etc.) clear the prescaler count.

Note: Writing to TMR0 when the prescaler is assigned to Timer0 will clear the prescaler count but will not change the prescaler assignment.

11.4.1 SWITCHING PRESCALER ASSIGNMENT

The prescaler assignment is fully under software control and can be changed "on-the-fly" during program execution.

11.5 Timer0 Interrupt

The TMR0 interrupt is generated when the TMR0 register overflows from FFh to 00h in 8-bit mode, or from FFFFh to 0000h in 16-bit mode. This overflow sets the TMR0IF flag bit. The interrupt can be masked by clearing the TMR0IE bit of the INTCON register. Before re-enabling the interrupt, the TMR0IF bit must be cleared by software in the Interrupt Service Routine.

Since Timer0 is shut down in Sleep mode, the TMR0 interrupt cannot awaken the processor from Sleep.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on page
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	109
INTCON2	RBPU	INTEDG0	INTEDG1	INTEDG2		TMR0IP		RBIP	110
T0CON	TMR0ON	T08BIT	T0CS	T0SE	PSA		T0PS<2:0>		154
TMR0H			Tin	ner0 Regist	er, High Byt	е			—
TMR0L	Timer0 Register, Low Byte								
TRISA	TRISA7	TRISA6	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	151

TABLE 11-1: REGISTERS ASSOCIATED WITH TIMER0

Legend: — = unimplemented locations, read as '0'. Shaded bits are not used by Timer0.

R/W-0/u	R/W-0/u	R/W-0/u	R/W-0/u	R/W/HC-0/u	R-x/x	R/W-0/u	R/W-0/u			
TMRxGE	TxGPOL	TxGTM	TxGSPM	TxGGO/DONE	TxGVAL	TxGSS	5<1:0>			
bit 7	·						bit 0			
Legend:										
R = Readable	bit	W = Writable	bit	U = Unimplemer	nted bit, read a	as '0'				
u = Bit is unch	anged	x = Bit is unkr	nown	-n/n = Value at POR and BOR/Value at all other Resets						
'1' = Bit is set		'0' = Bit is cle	ared	HC = Bit is cleared by hardware						
bit 7	TMRxGE: Tir <u>If TMRxON =</u> This bit is igno <u>If TMRxON =</u> 1 = Timer1/3 0 = Timer1/3	ner1/3/5 Gate <u>0</u> : ored <u>1</u> : /5 counting is c /5 counts regal	Enable bit controlled by the rdless of Time	ne Timer1/3/5 gate r1/3/5 gate functio	e function n					
bit 6	If TMRXON = 1: 1 = Timer1/3/5 counting is controlled by the Timer1/3/5 gate function 0 = Timer1/3/5 counts regardless of Timer1/3/5 gate function bit 6 TxGPOL: Timer1/3/5 Gate Polarity bit 1 = Timer1/3/5 gate is active-high (Timer1/3/5 counts when gate is high) 0 = Timer1/3/5 gate is active-low (Timer1/3/5 counts when gate is low) bit 5 TxGTM: Timer1/3/5 Gate Toggle Mode bit 1 = Timer1/3/5 Gate Toggle mode is enabled									
bit 5	TxGTM: Timer1/3/5 Gate Toggle Mode bit 1 = Timer1/3/5 Gate Toggle mode is enabled 0 = Timer1/3/5 Gate Toggle mode is disabled and toggle flip-flop is cleared Timer1/3/5 gate flip-flop toggles on every rising edge.									
bit 4	TxGSPM: Tin 1 = Timer1/3 0 = Timer1/3	ner1/3/5 Gate 3 /5 gate Single- /5 gate Single-	Single-Pulse M Pulse mode is Pulse mode is	lode bit enabled and is co disabled	ontrolling Time	r1/3/5 gate				
bit 3	TxGGO/DON 1 = Timer1/3 0 = Timer1/3 This bit is aut	E: Timer1/3/5 /5 gate single- _l /5 gate single- _l omatically clea	Gate Single-P oulse acquisition oulse acquisition red when TxG	ulse Acquisition S on is ready, waitin on has completed SPM is cleared.	tatus bit g for an edge or has not bee	en started				
bit 2	TxGVAL: Tim Indicates the Unaffected by	ner1/3/5 Gate C current state o / Timer1/3/5 Ga	Current State b f the Timer1/3, ate Enable (TM	it /5 gate that could /IRxGE).	be provided to	TMRxH:TMR	xL.			
bit 1-0	TxGSS<1:0> 00 = Timer1/3 01 = Timer2/4 10 = Compar 11 = Compar	: Timer1/3/5 G 3/5 Gate pin 4/6 Match PR2 ator 1 optional ator 2 optional	ate Source Se /4/6 output (Se ly synchronize ly synchronize	lect bits ee Table 12-5 for p d output (sync_C1 d output (sync_C2	proper timer m IOUT) 2OUT)	atch selection))			

REGISTER 12-2: TXGCON: TIMER1/3/5 GATE CONTROL REGISTER

FIGURE 15-31: STOP CONDITION RECEIVE OR TRANSMIT MODE

15.6.10 SLEEP OPERATION

While in Sleep mode, the I²C slave module can receive addresses or data and when an address match or complete byte transfer occurs, wake the processor from Sleep (if the MSSPx interrupt is enabled).

15.6.11 EFFECTS OF A RESET

A Reset disables the MSSPx module and terminates the current transfer.

15.6.12 MULTI-MASTER MODE

In Multi-Master mode, the interrupt generation on the detection of the Start and Stop conditions allows the determination of when the bus is free. The Stop (P) and Start (S) bits are cleared from a Reset or when the MSSPx module is disabled. Control of the I²C bus may be taken when the P bit of the SSPxSTAT register is set, or the bus is Idle, with both the S and P bits clear. When the bus is busy, enabling the SSPx interrupt will generate the interrupt when the Stop condition occurs.

In multi-master operation, the SDAx line must be monitored for arbitration to see if the signal level is the expected output level. This check is performed by hardware with the result placed in the BCLxIF bit.

The states where arbitration can be lost are:

- Address Transfer
- Data Transfer
- A Start Condition
- A Repeated Start Condition
- An Acknowledge Condition

FIGURE 16-5: ASYNCHRONOUS RECEPTION

TABLE 16-2: REGISTERS ASSOCIATED WITH ASYNCHRONOUS RECEPTION

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
BAUDCON1	ABDOVF	RCIDL	DTRXP	CKTXP	BRG16	_	WUE	ABDEN	271
BAUDCON2	ABDOVF	RCIDL	DTRXP	CKTXP	BRG16		WUE	ABDEN	271
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	109
IPR1	—	ADIP	RC1IP	TX1IP	SSP1IP	CCP1IP	TMR2IP	TMR1IP	121
IPR3	SSP2IP	BCL2IP	RC2IP	TX2IP	CTMUIP	TMR5GIP	TMR3GIP	TMR1GIP	123
PIE1	—	ADIE	RC1IE	TX1IE	SSP1IE	CCP1IE	TMR2IE	TMR1IE	117
PIE3	SSP2IE	BCL2IE	RC2IE	TX2IE	CTMUIE	TMR5GIE	TMR3GIE	TMR1GIE	119
PIR1	—	ADIF	RC1IF	TX1IF	SSP1IF	CCP1IF	TMR2IF	TMR1IF	112
PIR3	SSP2IF	BCL2IF	RC2IF	TX2IF	CTMUIF	TMR5GIF	TMR3GIF	TMR1GIF	114
PMD0	UART2MD UART1MD TMR6MD TMR5MD TMR4MD TMR3MD TMR2MD TMR1MD							52	
RCREG1			EU	SART1 Re	ceive Regis	ter			
RCSTA1	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	270
RCREG2			EU	SART2 Re	ceive Regis	ter			
RCSTA2	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	270
SPBRG1			EUSART1	Baud Rate	Generator,	Low Byte			_
SPBRGH1			EUSART1	Baud Rate	Generator,	High Byte			_
SPBRG2			EUSART2	Baud Rate	Generator,	Low Byte			_
SPBRGH2			EUSART2	Baud Rate	Generator,	High Byte			_
TRISB ⁽²⁾	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	151
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	151
TRISD ⁽¹⁾	TRISD7	TRISD6	TRISD5	TRISD4	TRISD3	TRISD2	TRISD1	TRISD0	151
ANSELC	ANSC7	ANSC6	ANSC5	ANSC4	ANSC3	ANSC2	—	—	150
ANSELD ⁽¹⁾	ANSD7	ANSD6	ANSD5	ANSD4	ANSD3	ANSD2	ANSD1	ANSD0	150
TXSTA1	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	269
TXSTA2	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	269

Legend: — = unimplemented locations, read as '0'. Shaded bits are not used for asynchronous reception.

1: PIC18(L)F4XK22 devices.

2: PIC18(L)F2XK22 devices.

Note

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
ADCON0	—			CHS<4:0>			GO/DONE	ADON	295
ADCON1	TRIGSEL	—	—	—	PVCF		NVCFG	<1:0>	296
ADCON2	ADFM	—	ŀ	ACQT<2:0>			297		
ADRESH				A/D Res	ult, High Byte				298
ADRESL				A/D Res	ult, Low Byte				298
ANSELA	_	_	ANSA5	_	ANSA3	ANSA2	ANSA1	ANSA0	149
ANSELB	_	_	ANSB5	ANSB4	ANSB3	ANSB2	ANSB1	ANSB0	150
ANSELC	ANSC7	ANSC6	ANSC5	ANSC4	ANSC3	ANSC2	_	—	150
ANSELD ⁽¹⁾	ANSD7	ANSD6	ANSD5	ANSD4	ANSD3	ANSD2	ANSD1	ANSD0	150
ANSELE ⁽¹⁾	—	—	—	—	—	ANSE2	ANSE1	ANSE0	151
CCP5CON	_	—	DC5B<	1:0>		CCP5M	<3:0>		198
CTMUCONH	CTMUEN	—	CTMUSIDL	TGEN	EDGEN	EDGSEQEN	IDISSEN	CTTRIG	323
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INTOIF	RBIF	109
IPR1	—	ADIP	RC1IP	TX1IP	SSP1IP	CCP1IP	TMR2IP	TMR1IP	121
IPR3	SSP2IP	BCL2IP	RC2IP	TX2IP	CTMUIP	TMR5GIP	TMR3GIP	TMR1GIP	123
IPR4	—	—	—	—	—	CCP5IP	CCP4IP	CCP3IP	124
PIE1	—	ADIE	RC1IE	TX1IE	SSP1IE	CCP1IE	TMR2IE	TMR1IE	117
PIE3	SSP2IE	BCL2IE	RC2IE	TX2IE	CTMUIE	TMR5GIE	TMR3GIE	TMR1GIE	119
PIE4	_	—		—	_	CCP5IE	CCP4IE	CCP3IE	120
PIR1	—	ADIF	RC1IF	TX1IF	SSP1IF	CCP1IF	TMR2IF	TMR1IF	112
PIR3	SSP2IF	BCL2IF	RC2IF	TX2IF	CTMUIF	TMR5GIF	TMR3GIF	TMR1GIF	114
PIR4	—	—		—	_	CCP5IF	CCP4IF	CCP3IF	115
PMD1	MSSP2MD	MSSP1MD		CCP5MD	CCP4MD	CCP3MD	CCP2MD	CCP1MD	53
PMD2	—	—	_	—	CTMUMD	CMP2MD	CMP1MD	ADCMD	54
TRISA	TRISA7	TRISA6	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	151
TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	151
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	151
TRISD ⁽¹⁾	TRISD7	TRISD6	TRISD5	TRISD4	TRISD3	TRISD2	TRISD1	TRISD0	151
TRISE	WPUE3	_	_	_	_	TRISE2 ⁽¹⁾	TRISE1 ⁽¹⁾	TRISE0 ⁽¹⁾	151

TABLE 17-2: REGISTERS ASSOCIATED WITH A/D OPERATION

Legend: — = unimplemented locations, read as '0'. Shaded bits are not used by this module.

Note 1: Available on PIC18(L)F4XK22 devices.

TABLE 17-3: CONFIGURATION REGISTERS ASSOCIATED WITH THE ADC MODULE

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
CONFIG3H	MCLRE	_	P2BMX	T3CMX	HFOFST	CCP3MX	PBADEN	CCP2MX	348

Legend: — = unimplemented locations, read as '0'. Shaded bits are not used by the ADC module.

18.5 Operation During Sleep

The comparator, if enabled before entering Sleep mode, remains active during Sleep. The additional current consumed by the comparator is shown separately in **Section 27.0** "**Electrical Specifications**". If the comparator is not used to wake the device, power consumption can be minimized while in Sleep mode by turning off the comparator. Each comparator is turned off by clearing the CxON bit of the CMxCON0 register.

A change to the comparator output can wake-up the device from Sleep. To enable the comparator to wake the device from Sleep, the CxIE bit of the PIE2 register and the PEIE/GIEL bit of the INTCON register must be set. The instruction following the SLEEP instruction always executes following a wake from Sleep. If the GIE/GIEH bit of the INTCON register is also set, the device will then execute the Interrupt Service Routine.

18.6 Effects of a Reset

A device Reset forces the CMxCON0 and CM2CON1 registers to their Reset states. This forces both comparators and the voltage references to their Off states.Comparator Control Registers.

18.7 Analog Input Connection Considerations

A simplified circuit for an analog input is shown in Figure 18-5. Since the analog input pins share their connection with a digital input, they have reverse biased ESD protection diodes to VDD and VSS. The analog input, therefore, must be between VSS and VDD. If the input voltage deviates from this range by more than 0.6V in either direction, one of the diodes is forward biased and a latch-up may occur.

A maximum source impedance of $10 \text{ k}\Omega$ is recommended for the analog sources. Also, any external component connected to an analog input pin, such as a capacitor or a Zener diode, should have very little leakage current to minimize inaccuracies introduced.

Note 1: When reading a PORT register, all pins configured as analog inputs will read as a '0'. Pins configured as digital inputs will convert as an analog input, according to the input specification.

2: Analog levels on any pin defined as a digital input, may cause the input buffer to consume more current than is specified.

BCF		Bit Clear f		BN		Branch if Negative					
Synta	ax:	BCF f, b	{,a}		Synta	ax:	BN n				
Oper	ands:	$0 \leq f \leq 255$			Oper	ands:	-128 ≤ n ≤ 1	$\textbf{-128} \leq n \leq 127$			
		0 ≤ b ≤ 7 a ∈ [0,1]			Oper	ation:	if NEGATIVE bit is '1' (PC) + 2 + 2n \rightarrow PC				
Oper	ation:	$0 \rightarrow f < b >$			Statu	s Affected:	None				
Statu	is Affected:	cted: None		Enco	Encodina:		1110 0110 nnnn nnn				
Enco	coding: 1001 bbba ffff ffff		Desc	rintion.	If the NEGA	TIVE bit is '1'	then the				
	л риол.	bit of in register T is cleared. If 'a' is '0', the Access Bank is selected. If 'a' is '1', the BSR is used to select the GPR bank. If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever f ≤ 95 (5Fh). See Section 25.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed Literal Offset Mode" for details.		Word Cycle Q C	ls: es: ycle Activity: mo:	The 2's complement number '2n' is added to the PC. Since the PC will have incremented to fetch the next instruction, the new address will be PC + 2 + 2n. This instruction is then a 2-cycle instruction. 1 1(2)					
Word	ds:	1			li Ju	mp: 01	02	03	04		
Cycle Q C	es: ycle Activity:	1				Decode	Read literal 'n'	Process Data	Write to PC		
	Q1	Q2	Q3	Q4		No	No	No	No		
	Decode	Read	Process	Write		operation	operation	operation	operation		
		register T	Data	register T	lf No	o Jump:					
Evon	nalo:			7 0		Q1	Q2	Q3	Q4		
Exan	npie: Before Instruc FLAG_RI	tion EG = C7	'nLAG_REG,	7, 0		Decode	Read literal 'n'	Process Data	No operation		
	After Instructic FLAG_RI	on EG = 47	h		<u>Exan</u>	Example: HERE BN Jump Before Instruction PC = address (HERE) After Instruction					
						If NEGA PC PC PC	TIVE = 0; = add = add	dress (Jump) dress (HERE	+ 2)		

NEGF	Negate f							
Syntax:	NEGF f {,a}							
Operands:	$0 \le f \le 255$ $a \in [0,1]$							
Operation:	$(\overline{f}) + 1 \rightarrow f$							
Status Affected:	N, OV, C, DC, Z							
Encoding:	0110 110a ffff f	fff						
Description:	Location 'f' is negated using two's complement. The result is placed in the data memory location 'f'. If 'a' is '0', the Access Bank is selected. If 'a' is '1', the BSR is used to select the GPR bank. If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever $f \le 95$ (5Fh). See Section 25.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed							
Words:	1							
Cycles:	1							

NOF)	No Operation						
Synta	ax:	NOP	NOP					
Oper	ands:	None						
Oper	ation:	No operati	No operation					
Statu	s Affected:	None						
Encoding:		0000	0000	000	0	0000		
		1111 xxxx xxxx xxxx						
Desc	ription:	No operati	on.					
Word	ls:	1						
Cycle	es:	1						
Q Cycle Activity:								
	Q1	Q2	Q	Q3		Q4		
	Decode	No	No No			No		
		operation operation operatio				peration		

Example:

None.

Cycles:

Q Cycle Activity:

Q1	Q2	Q3	Q4	
Decode	Read	Process	Write	
	register 'f'	Data	register 'f'	

Example: NEGF REG, 1

Before Instruction REG = 0011 1010 [3Ah] After Instruction

Atter Instruction	on			
REG	=	1100	0110	[C6h]

RLNCF	Rotate Left f (No Carry)						
Syntax:	RLNCF	f {,d {,a}}					
Operands:	$0 \le f \le 255$ $d \in [0,1]$ $a \in [0,1]$	$\begin{array}{l} 0 \leq f \leq 255 \\ d \in [0,1] \\ a \in [0,1] \end{array}$					
Operation:	$(f < n >) \rightarrow d$ $(f < 7 >) \rightarrow d$	$(f < n >) \rightarrow dest < n + 1 >,$ $(f < 7 >) \rightarrow dest < 0 >$					
Status Affected:	N, Z	N, Z					
Encoding:	0100	01da ffi	ff ffff				
Description:	Ine conter one bit to th is placed in stored back If 'a' is '0', t If 'a' is '1', t GPR bank. If 'a' is '0' a set is enab in Indexed mode when Section 25 Bit-Oriente Literal Off	The contents of register 'f' are rotated one bit to the left. If 'd' is '0', the result is placed in W. If 'd' is '1', the result is stored back in register 'f' (default). If 'a' is '0', the Access Bank is selected. If 'a' is '1', the BSR is used to select the GPR bank. If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever $f \le 95$ (5Fh). See Section 25.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed Literal Offset Mode" for details.					
	-	register f	_				
Words:	1						
Cycles:	1						
Q Cycle Activity:							
Q1	Q2	Q3	Q4				
Decode	Read register 'f'	Write to destination					
Example:	RLNCF	REG, 1,	0				
REG After Instruction	tion = 1010 1 on	011					
REG = 0101 0111							

RRUF	Rotate Right f through Carry						
Syntax:	RRCF f {,	d {,a}}					
Operands:	$0 \le f \le 255$ d $\in [0,1]$ a $\in [0,1]$						
Operation:	$(f < n >) \rightarrow de$ $(f < 0 >) \rightarrow C$ $(C) \rightarrow dest <$	$(f < n >) \rightarrow dest < n - 1 >,$ $(f < 0 >) \rightarrow C,$ $(C) \rightarrow dest < 7 >$					
Status Affected:	C, N, Z						
Encoding:	0011	00da fff	f ffff				
	one bit to th flag. If 'd' is If 'd' is '1', ti register 'f' (i If 'a' is '0', ti If 'a' is '0', ti GPR bank. If 'a' is '0' a set is enabl in Indexed I mode when Section 25 Bit-Oriente Literal Offs	one bit to the right through the CARRY flag. If 'd' is '0', the result is placed in W. If 'd' is '1', the result is placed back in register 'f' (default). If 'a' is '0', the Access Bank is selected. If 'a' is '1', the BSR is used to select the GPR bank. If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever $f \le 95$ (5Fh). See Section 25.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed Literal Offset Mode" for details.					
Words:	1						
Cycles:	1						
	I						
Q Cycle Activity:	Q2	Q3	Q4				
Q Cycle Activity: Q1 Decode	Q2 Read register 'f'	Q3 Process Data	Q4 Write to destination				
Q Cycle Activity: Q1 Decode Example:	Q2 Read register 'f'	Q3 Process Data REG, 0, 0	Q4 Write to destination				
Example: Example: Before Instruct REG C After Instruction REG W C	Q2 Read register 'f' RRCF etion = 1110 0 = 0 Dn = 1110 0 = 0111 0 = 0	Q3 Process Data REG, 0, 0 110 110 011	Q4 Write to destination				

25.2.3 BYTE-ORIENTED AND BIT-ORIENTED INSTRUCTIONS IN INDEXED LITERAL OFFSET MODE

Note: Enabling the PIC18 instruction set extension may cause legacy applications to behave erratically or fail entirely.

In addition to eight new commands in the extended set, enabling the extended instruction set also enables Indexed Literal Offset Addressing mode (Section 5.7.1 "Indexed Addressing with Literal Offset"). This has a significant impact on the way that many commands of the standard PIC18 instruction set are interpreted.

When the extended set is disabled, addresses embedded in opcodes are treated as literal memory locations: either as a location in the Access Bank ('a' = 0), or in a GPR bank designated by the BSR ('a' = 1). When the extended instruction set is enabled and 'a' = 0, however, a file register argument of 5Fh or less is interpreted as an offset from the pointer value in FSR2 and not as a literal address. For practical purposes, this means that all instructions that use the Access RAM bit as an argument – that is, all byte-oriented and bitoriented instructions, or almost half of the core PIC18 instructions – may behave differently when the extended instruction set is enabled.

When the content of FSR2 is 00h, the boundaries of the Access RAM are essentially remapped to their original values. This may be useful in creating backward compatible code. If this technique is used, it may be necessary to save the value of FSR2 and restore it when moving back and forth between C and assembly routines in order to preserve the Stack Pointer. Users must also keep in mind the syntax requirements of the extended instruction set (see Section 25.2.3.1 "Extended Instruction Syntax with Standard PIC18 Commands").

Although the Indexed Literal Offset Addressing mode can be very useful for dynamic stack and pointer manipulation, it can also be very annoying if a simple arithmetic operation is carried out on the wrong register. Users who are accustomed to the PIC18 programming must keep in mind that, when the extended instruction set is enabled, register addresses of 5Fh or less are used for Indexed Literal Offset Addressing.

Representative examples of typical byte-oriented and bit-oriented instructions in the Indexed Literal Offset Addressing mode are provided on the following page to show how execution is affected. The operand conditions shown in the examples are applicable to all instructions of these types.

25.2.3.1 Extended Instruction Syntax with Standard PIC18 Commands

When the extended instruction set is enabled, the file register argument, 'f', in the standard byte-oriented and bit-oriented commands is replaced with the literal offset value, 'k'. As already noted, this occurs only when 'f' is less than or equal to 5Fh. When an offset value is used, it must be indicated by square brackets ("[]"). As with the extended instructions, the use of brackets indicates to the compiler that the value is to be interpreted as an index or an offset. Omitting the brackets, or using a value greater than 5Fh within brackets, will generate an error in the MPASM assembler.

If the index argument is properly bracketed for Indexed Literal Offset Addressing, the Access RAM argument is never specified; it will automatically be assumed to be '0'. This is in contrast to standard operation (extended instruction set disabled) when 'a' is set on the basis of the target address. Declaring the Access RAM bit in this mode will also generate an error in the MPASM assembler.

The destination argument, 'd', functions as before.

In the latest versions of the MPASMTM assembler, language support for the extended instruction set must be explicitly invoked. This is done with either the command line option, $/_Y$, or the PE directive in the source listing.

25.2.4 CONSIDERATIONS WHEN ENABLING THE EXTENDED INSTRUCTION SET

It is important to note that the extensions to the instruction set may not be beneficial to all users. In particular, users who are not writing code that uses a software stack may not benefit from using the extensions to the instruction set.

Additionally, the Indexed Literal Offset Addressing mode may create issues with legacy applications written to the PIC18 assembler. This is because instructions in the legacy code may attempt to address registers in the Access Bank below 5Fh. Since these addresses are interpreted as literal offsets to FSR2 when the instruction set extension is enabled, the application may read or write to the wrong data addresses.

When porting an application to the PIC18(L)F2X/ 4XK22, it is very important to consider the type of code. A large, re-entrant application that is written in 'C' and would benefit from efficient compilation will do well when using the instruction set extensions. Legacy applications that heavily use the Access Bank will most likely not benefit from using the extended instruction set.

27.4 DC Characteristics: RC Idle Supply Current, PIC18(L)F2X/4XK22

PIC18LF	Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +125^{\circ}C$							
PIC18F2	X/4XK22	Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +125^{\circ}C$						
Param No.	Device Characteristics	Тур	Max	Units	Conditions			
D045	Supply Current (IDD)(1),(2)	0.5	18	μA	-40°C	VDD = 1.8V	Fosc = 31 kHz	
		0.6	18	μΑ	+25°C		(RC_IDLE mode,	
		0.7	_	μA	+60°C			
		0.75	20	μΑ	+85°C			
		2.3	22	μΑ	+125°C			
D046		1.1	20	μA	-40°C	VDD = 3.0V		
		1.2	20	μA	+25°C			
		1.3	—	μA	+60°C			
		1.4	22	μΑ	+85°C			
		3.2	25	μΑ	+125°C			
D047		17	30	μΑ	-40°C	VDD = 2.3V	Fosc = 31 kHz	
		13	30	μΑ	+25°C		(RC_IDLE mode,	
		14	30	μΑ	+85°C			
		15	45	μΑ	+125°C			
D048		19	35	μΑ	-40°C	VDD = 3.0V		
		15	35	μΑ	+25°C			
		16	35	μΑ	+85°C			
		17	50	μΑ	+125°C			
D049		21	40	μΑ	-40°C	VDD = 5.0V		
		15	40	μA	+25°C			
		16	40	μA	+85°C			
		18	60	μA	+125°C			
D050		0.11	0.20	mA	-40°C to +125°C	VDD = 1.8V	Fosc = 500 kHz	
D051		0.12	0.25	mA	-40°C to +125°C	VDD = 3.0V	(RC_IDLE mode, MFINTOSC source)	
D052		0.14	0.21	mA	-40°C to +125°C	VDD = 2.3V	Fosc = 500 kHz	
D053		0.15	0.25	mA	-40°C to +125°C	VDD = 3.0V	(RC_IDLE mode, MEINTOSC source)	
D054		0.20	0.31	mA	-40°C to +125°C	VDD = 5.0V		

Note 1: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on the current consumption.

Test condition: All Peripheral Module Control bits in PMD0, PMD1 and PMD2 set to '1'.

2: The test conditions for all IDD measurements in active operation mode are:

All I/O pins set as outputs driven to Vss;

 $\overline{MCLR} = VDD;$

OSC1 = external square wave, from rail-to-rail (PRI_RUN and PRI_IDLE only).

27.7 DC Characteristics: Secondary Oscillator Supply Current, PIC18(L)F2X/4XK22

PIC18LF	F2X/4XK22	Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +125^{\circ}C$							
PIC18F2	PIC18F2X/4XK22			Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +125^{\circ}C$					
Param No.	Device Characteristics	Тур	Max	Units	Conditions				
D130	Supply Current (IDD)(1),(2)	3.5	23	μA	-40°C	VDD = 1.8V	Fosc = 32 kHz		
		3.7	25	μA	+25°C]	(SEC_RUN mode,		
		3.8	—	μA	+60°C]	SOSC Source)		
		4.0	28	μA	+85°C				
		5.1	30	μA	+125°C				
D131		6.2	26	μA	-40°C	VDD = 3.0V	VDD = 3.0V		
		6.4	30	μA	+25°C				
		6.5	—	μA	+60°C				
		6.8	35	μA	+85°C				
		7.8	40	μA	+125°C				
D132		15	35	μA	-40°C	VDD = 2.3V	Fosc = 32 kHz		
		16	35	μA	+25°C		(SEC_RUN mode,		
		17	35	μA	+85°C		5000 source)		
		19	50	μA	+125°C				
D133		18	50	μA	-40°C	VDD = 3.0V			
		19	50	μA	+25°C				
		21	50	μA	+85°C				
		22	60	μA	+125°C				
D134		19	55	μA	-40°C	VDD = 5.0V			
		20	55	μA	+25°C				
		22	55	μA	+85°C				
		23	70	μA	+125°C				

Note 1: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on the current consumption.

Test condition: All Peripheral Module Control bits in PMD0, PMD1 and PMD2 set to '1'.

2: The test conditions for all IDD measurements in active operation mode are: All I/O pins set as outputs driven to Vss;

 $\frac{AIII}{MCLR} = VDD;$

SOSCI / SOSCO = complementary external square wave, from rail-to-rail.

© 2010-2016 Microchip Technology Inc.

© 2010-2016 Microchip Technology Inc.