

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	64MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	35
Program Memory Size	16KB (8K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	768 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 30x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18lf44k22-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at **docerrors@microchip.com**. We welcome your feedback.

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Website at:

http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000000A is version A of document DS30000000).

Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

- Microchip's Worldwide Website; http://www.microchip.com
- Your local Microchip sales office (see last page)

When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are using.

Customer Notification System

Register on our website at www.microchip.com to receive the most current information on all of our products.

TABLE 1-2: PIC18(L)F2XK22 PINOUT I/O DESCRIPTIONS (CONTINUED)

Pin Number			Dia	D	
PDIP, SOIC	QFN, UQFN	Pin Name	Туре	Туре	Description
13	10	RC2/CTPLS/P1A/CCP1/T5CKI/AN14			
		RC2	I/O	ST	Digital I/O.
		CTPLS	0	—	CTMU pulse generator output.
		P1A	0	CMOS	Enhanced CCP1 PWM output.
		CCP1	I/O	ST	Capture 1 input/Compare 1 output/PWM 1 output.
		T5CKI	I	ST	Timer5 clock input.
		AN14	Ι	Analog	Analog input 14.
14	11	RC3/SCK1/SCL1/AN15			
		RC3	I/O	ST	Digital I/O.
		SCK1	I/O	ST	Synchronous serial clock input/output for SPI mode (MSSP).
		SCL1	I/O	ST	Synchronous serial clock input/output for I ² C mode (MSSP).
		AN15	Ι	Analog	Analog input 15.
15	12	RC4/SDI1/SDA1/AN16			
		RC4	I/O	ST	Digital I/O.
		SDI1	I	ST	SPI data in (MSSP).
		SDA1	I/O	ST	I ² C data I/O (MSSP).
		AN16	Ι	Analog	Analog input 16.
16	13	RC5/SDO1/AN17			
		RC5	I/O	ST	Digital I/O.
		SDO1	0	—	SPI data out (MSSP).
		AN17	Ι	Analog	Analog input 17.
17	14	RC6/P3A/CCP3/TX1/CK1/AN18	•		
		RC6	I/O	ST	Digital I/O.
		P3A ⁽²⁾	0	CMOS	Enhanced CCP3 PWM output.
		CCP3 ⁽²⁾	I/O	ST	Capture 3 input/Compare 3 output/PWM 3 output.
		TX1	0	—	EUSART asynchronous transmit.
		CK1	I/O	ST	EUSART synchronous clock (see related RXx/DTx).
		AN18	Ι	Analog	Analog input 18.
18	15	RC7/P3B/RX1/DT1/AN19	•		
		RC7	I/O	ST	Digital I/O.
		P3B	0	CMOS	Enhanced CCP3 PWM output.
		RX1	I	ST	EUSART asynchronous receive.
		DT1	I/O	ST	EUSART synchronous data (see related TXx/CKx).
		AN19	I	Analog	Analog input 19.
1	26	RE3/VPP/MCLR	T		
		RE3	1	ST	Digital input.
		Vpp	Р		Programming voltage input.
		MCLR	Ι	ST	Active-Low Master Clear (device Reset) input.
Logondu	TT I	TTL compatible input CMOC CMOC		tible incu	t or output CT Cohmitt Trigger input with CMOC loveler

Legend: TTL = TTL compatible input CMOS = CMOS compatible input or output; ST = Schmitt Trigger input with CMOS levels; I = Input; O = Output; P = Power.

Note 1: Default pin assignment for P2B, T3CKI, CCP3 and CCP2 when Configuration bits PB2MX, T3CMX, CCP3MX and CCP2MX are set.

2: Alternate pin assignment for P2B, T3CKI, CCP3 and CCP2 when Configuration bits PB2MX, T3CMX, CCP3MX and CCP2MX are clear.

6.3.1 TABLAT – TABLE LATCH REGISTER

The Table Latch (TABLAT) is an 8-bit register mapped into the SFR space. The Table Latch register is used to hold 8-bit data during data transfers between program memory and data RAM.

6.3.2 TBLPTR – TABLE POINTER REGISTER

The Table Pointer (TBLPTR) register addresses a byte within the program memory. The TBLPTR is comprised of three SFR registers: Table Pointer Upper Byte, Table Pointer High Byte and Table Pointer Low Byte (TBLPTRU:TBLPTRH:TBLPTRL). These three registers join to form a 22-bit wide pointer. The low-order 21 bits allow the device to address up to 2 Mbytes of program memory space. The 22nd bit allows access to the device ID, the user ID and the Configuration bits.

The Table Pointer register, TBLPTR, is used by the TBLRD and TBLWT instructions. These instructions can update the TBLPTR in one of four ways based on the table operation. These operations on the TBLPTR affect only the low-order 21 bits.

6.3.3 TABLE POINTER BOUNDARIES

TBLPTR is used in reads, writes and erases of the Flash program memory.

When a TBLRD is executed, all 22 bits of the TBLPTR determine which byte is read from program memory directly into the TABLAT register.

When a TBLWT is executed the byte in the TABLAT register is written, not to Flash memory but, to a holding register in preparation for a program memory write. The holding registers constitute a write block which varies depending on the device (see Table 6-1). The 3, 4, or 5 LSbs of the TBLPTRL register determine which specific address within the holding register block is written to. The MSBs of the Table Pointer have no effect during TBLWT operations.

When a program memory write is executed the entire holding register block is written to the Flash memory at the address determined by the MSbs of the TBLPTR. The 3, 4, or 5 LSBs are ignored during Flash memory writes. For more detail, see **Section 6.6** "**Writing to Flash Program Memory**".

When an erase of program memory is executed, the 16 MSbs of the Table Pointer register (TBLPTR<21:6>) point to the 64-byte block that will be erased. The Least Significant bits (TBLPTR<5:0>) are ignored.

Figure 6-3 describes the relevant boundaries of TBLPTR based on Flash program memory operations.

TABLE 6-1: TABLE POINTER OPERATIONS WITH TBLRD AND TBLWT INSTRUCTIONS

Example	Operation on Table Pointer
TBLRD* TBLWT*	TBLPTR is not modified
TBLRD*+ TBLWT*+	TBLPTR is incremented after the read/write
TBLRD*- TBLWT*-	TBLPTR is decremented after the read/write
TBLRD+* TBLWT+*	TBLPTR is incremented before the read/write

FIGURE 6-3: TABLE POINTER BOUNDARIES BASED ON OPERATION

EXAMPLE 6-3: WRITING TO FLASH PROGRAM MEMORY (CONTINUED)

	DECFSZ	COUNTER	; loop until holding registers are full
	BRA	WRITE_WORD_TO_HREGS	
PROGRAM_MEMORY			
	BSF	EECON1, EEPGD	; point to Flash program memory
	BCF	EECON1, CFGS	; access Flash program memory
	BSF	EECON1, WREN	; enable write to memory
	BCF	INTCON, GIE	; disable interrupts
	MOVLW	55h	
Required	MOVWF	EECON2	; write 55h
Sequence	MOVLW	0AAh	
	MOVWF	EECON2	; write OAAh
	BSF	EECON1, WR	; start program (CPU stall)
	DCFSZ	COUNTER2	; repeat for remaining write blocks
	BRA	WRITE_BYTE_TO_HREGS	;
	BSF	INTCON, GIE	; re-enable interrupts
	BCF	EECON1, WREN	; disable write to memory

6.6.2 WRITE VERIFY

Depending on the application, good programming practice may dictate that the value written to the memory should be verified against the original value. This should be used in applications where excessive writes can stress bits near the specification limit.

6.6.3 UNEXPECTED TERMINATION OF WRITE OPERATION

If a write is terminated by an unplanned event, such as loss of power or an unexpected Reset, the memory location just programmed should be verified and reprogrammed if needed. If the write operation is interrupted by a MCLR Reset or a WDT Time-out Reset during normal operation, the WRERR bit will be set which the user can check to decide whether a rewrite of the location(s) is needed.

6.6.4 PROTECTION AGAINST SPURIOUS WRITES

To protect against spurious writes to Flash program memory, the write initiate sequence must also be followed. See **Section 24.0** "**Special Features of the CPU**" for more detail.

6.7 Flash Program Operation During Code Protection

See Section 24.5 "Program Verification and Code Protection" for details on code protection of Flash program memory.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on page	
TBLPTRU	Program Memory Table Pointer Upper Byte (TBLPTR<21:16>)									
TBLPTRH	Program Memory Table Pointer High Byte (TBLPTR<15:8>)									
TBLPTRL	Program Memory Table Pointer Low Byte (TBLPTR<7:0>)									
TABLAT	Program Memory Table Latch									
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	109	
EECON2	EEPROM Control Register 2 (not a physical register)									
EECON1	EEPGD	CFGS	—	FREE	WRERR	WREN	WR	RD	92	
IPR2	OSCFIP	C1IP	C2IP	EEIP	BCL1IP	HLVDIP	TMR3IP	CCP2IP	122	
PIR2	OSCFIF	C1IF	C2IF	EEIF	BCL1IF	HLVDIF	TMR3IF	CCP2IF	113	
PIE2	OSCFIE	C1IE	C2IE	EEIE	BCL1IE	HLVDIE	TMR3IE	CCP2IE	118	

TABLE 6-2: REGISTERS ASSOCIATED WITH PROGRAM FLASH MEMORY

Legend: — = unimplemented, read as '0'. Shaded bits are not used during Flash/EEPROM access.

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
	ADIE	RC1IE	TX1IE	SSP1IE	CCP1IE	TMR2IE	TMR1IE			
bit 7							bit 0			
Legend:										
R = Readable	bit	W = Writable	bit	U = Unimplei	mented bit, read	l as '0'				
-n = Value at P	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	iown			
bit 7	Unimplemen	ted: Read as '	0'.							
bit 6	ADIE: A/D Co	onverter Interru	pt Enable bit							
	1 = Enables t	he A/D interrup	ot ot							
hit 5			Jl Interrupt Engl	ala hit						
bit 5	1 – Enables ti		eceive interru							
	0 = Disables the set of the s	the EUSART1	receive interru	upt						
bit 4	TX1IE: EUSA	RT1 Transmit	Interrupt Enat	ole bit						
	1 = Enables tl	he EUSART1 t	ransmit interr	upt						
	0 = Disables t	the EUSART1	transmit interr	rupt						
bit 3	SSP1IE: Mas	ter Synchronou	us Serial Port	1 Interrupt Ena	able bit					
	1 = Enables ti 0 = Disables t	he MSSP1 inte he MSSP1 inte	errupt errupt							
bit 2	CCP1IE: CCF	P1 Interrupt En	able bit							
	1 = Enables tl	he CCP1 interr	upt							
	0 = Disables t	the CCP1 inter	rupt							
bit 1	TMR2IE: TMF	R2 to PR2 Mate	ch Interrupt E	nable bit						
	1 = Enables t	he TMR2 to PF	R2 match inter	rrupt						
h it 0			R2 match inte	errupt						
DITU			errupt Enable	DIT						
	$\perp = \Box ables ti0 = Disables t$	the TMR1 over	flow interrupt							
	2.000.000									

REGISTER 9-9: PIE1: PERIPHERAL INTERRUPT ENABLE (FLAG) REGISTER 1

10.0 I/O PORTS

Depending on the device selected and features enabled, there are up to five ports available. All pins of the I/O ports are multiplexed with one or more alternate functions from the peripheral features on the device. In general, when a peripheral is enabled, that pin may not be used as a general purpose I/O pin.

Each port has five registers for its operation. These registers are:

- TRIS register (data direction register)
- PORT register (reads the levels on the pins of the device)
- LAT register (output latch)
- ANSEL register (analog input control)
- SLRCON register (port slew rate control)

The Data Latch (LAT register) is useful for read-modifywrite operations on the value that the I/O pins are driving.

A simplified model of a generic I/O port, without the interfaces to other peripherals, is shown in Figure 10-1.

FIGURE 10-1: GENERIC I/O PORT OPERATION

10.1 PORTA Registers

PORTA is an 8-bit wide, bidirectional port. The corresponding data direction register is TRISA. Setting a TRISA bit (= 1) will make the corresponding PORTA pin an input (i.e., disable the output driver). Clearing a TRISA bit (= 0) will make the corresponding PORTA pin an output (i.e., enable the output driver and put the contents of the output latch on the selected pin).

Reading the PORTA register reads the status of the pins, whereas writing to it, will write to the PORT latch.

The Data Latch (LATA) register is also memory mapped. Read-modify-write operations on the LATA register read and write the latched output value for PORTA.

The RA4 pin is multiplexed with the Timer0 module clock input and one of the comparator outputs to become the RA4/T0CKI/C1OUT pin. Pins RA6 and RA7 are multiplexed with the main oscillator pins; they are enabled as oscillator or I/O pins by the selection of the main oscillator in the Configuration register (see **Section 24.1 "Configuration Bits"** for details). When they are not used as port pins, RA6 and RA7 and their associated TRIS and LAT bits are read as '0'.

The other PORTA pins are multiplexed with analog inputs, the analog VREF+ and VREF- inputs, and the comparator voltage reference output. The operation of pins RA<3:0> and RA5 as analog is selected by setting the ANSELA<5, 3:0> bits in the ANSELA register which is the default setting after a Power-on Reset.

Pins RA0 through RA5 may also be used as comparator inputs or outputs by setting the appropriate bits in the CM1CON0 and CM2CON0 registers.

Note: On a Power-on Reset, RA5 and RA<3:0> are configured as analog inputs and read as '0'. RA4 is configured as a digital input.

The RA4/T0CKI/C1OUT pin is a Schmitt Trigger input. All other PORTA pins have TTL input levels and full CMOS output drivers.

The TRISA register controls the drivers of the PORTA pins, even when they are being used as analog inputs. The user should ensure the bits in the TRISA register are maintained set when using them as analog inputs.

	-	
MOVLB	0xF	; Set BSR for banked SFRs
CLRF	PORTA	; Initialize PORTA by
		; clearing output
		; data latches
CLRF	LATA	; Alternate method
		; to clear output
		; data latches
MOVLW	E0h	; Configure I/O
MOVWF	ANSELA	; for digital inputs
MOVLW	0CFh	; Value used to
		; initialize data
		; direction
MOVWF	TRISA	; Set RA<3:0> as inputs
		; RA<5:4> as outputs

14.1.4 CCP PRESCALER

There are four prescaler settings specified by the CCPxM<3:0> bits of the CCPxCON register. Whenever the CCP module is turned off, or the CCP module is not in Capture mode, the prescaler counter is cleared. Any Reset will clear the prescaler counter.

Switching from one capture prescaler to another does not clear the prescaler and may generate a false interrupt. To avoid this unexpected operation, turn the module off by clearing the CCPxCON register before changing the prescaler. Example 14-1 demonstrates the code to perform this function.

EXAMPLE 14-1: CHANGING BETWEEN CAPTURE PRESCALERS

#define NEW_CAPT_PS 0x06	//Capture
	// Prescale 4th
	// rising edge
CCPxCON = 0;	// Turn the CCP
	// Module Off
CCPxCON = NEW_CAPT_PS;	// Turn CCP module
	// on with new
	<pre>// prescale value</pre>

14.1.5 CAPTURE DURING SLEEP

Capture mode requires a 16-bit TimerX module for use as a time base. There are four options for driving the 16-bit TimerX module in Capture mode. It can be driven by the system clock (Fosc), the instruction clock (Fosc/ 4), or by the external clock sources, the Secondary Oscillator (Sosc), or the TxCKI clock input. When the 16-bit TimerX resource is clocked by Fosc or Fosc/4, TimerX will not increment during Sleep. When the device wakes from Sleep, TimerX will continue from its previous state. Capture mode will operate during Sleep when the 16-bit TimerX resource is clocked by one of the external clock sources (Sosc or the TxCKI pin).

TABLE 14-3: REGISTERS ASSOCIATED WITH CAPTURE

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page	
CCP1CON	P1M-	<1:0>	DC1B-	<1:0>		CCP1M<	3:0>		198	
CCP2CON	P2M	<1:0>	DC2B	<1:0>		CCP2M<	3:0>		198	
CCP3CON	P3M-	<1:0>	DC3B	<1:0>		CCP3M<	3:0>		198	
CCP4CON	—	—	DC4B	<1:0>		CCP4M<	3:0>		198	
CCP5CON	_	_	DC5B-	<1:0>		CCP5M<	3:0>		198	
CCPR1H		Capture/Compare/PWM Register 1 High Byte (MSB)								
CCPR1L	Capture/Compare/PWM Register 1 Low Byte (LSB)									
CCPR2H	Capture/Compare/PWM Register 2 High Byte (MSB)									
CCPR2L	Capture/Compare/PWM Register 2 Low Byte (LSB)									
CCPR3H	Capture/Compare/PWM Register 3 High Byte (MSB)									
CCPR3L			Capture/Co	mpare/PWM	Register 3 Low By	rte (LSB)			_	
CCPR4H			Capture/Co	mpare/PWM F	Register 4 High By	te (MSB)			—	
CCPR4L			Capture/Co	mpare/PWM	Register 4 Low By	rte (LSB)			—	
CCPR5H			Capture/Co	mpare/PWM F	Register 5 High By	te (MSB)			—	
CCPR5L			Capture/Co	mpare/PWM	Register 5 Low By	rte (LSB)			—	
CCPTMRS0	C3TSE	L<1:0>	_	C2TS	SEL<1:0>	—	C1TSEL	_<1:0>	201	
CCPTMRS1	—	—	_	_	C5TSEL∢	<1:0>	C4TSEL	_<1:0>	201	
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INTOIE	RBIE	TMR0IF	INTOIF	RBIF	109	
IPR1	_	ADIP	RC1IP	TX1IP	SSP1IP	CCP1IP	TMR2IP	TMR1IP	121	
IPR2	OSCFIP	C1IP	C2IP	EEIP	BCL1IP	HLVDIP	TMR3IP	CCP2IP	122	
IPR4	_	—	—	—	_	CCP5IP	CCP4IP	CCP3IP	124	
PIE1	_	ADIE	RC1IE	TX1IE	SSP1IE	CCP1IE	TMR2IE	TMR1IE	117	

Legend: — = Unimplemented location, read as '0'. Shaded bits are not used by Capture mode.

Note 1: These registers/bits are available on PIC18(L)F4XK22 devices.

R/W-0	R/W-0	U-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0
C3TS	EL<1:0>	—	C2TSE	C2TSEL<1:0>		C1TSEL<1:0>	
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimpler	mented bit, read	d as '0'	
u = Bit is unc	hanged	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all o	other Resets
'1' = Bit is set	t	'0' = Bit is clea	ared				
bit 7-6	 c3TSEL<1:0>: CCP3 Timer Selection bits 00 = CCP3 - Capture/Compare modes use Timer1, PWM modes use Timer2 01 = CCP3 - Capture/Compare modes use Timer3, PWM modes use Timer4 10 = CCP3 - Capture/Compare modes use Timer5, PWM modes use Timer6 11 = Reserved 						
bit 5	Unused						
bit 4-3	C2TSEL<1:0>: CCP2 Timer Selection bits 00 = CCP2 – Capture/Compare modes use Timer1, PWM modes use Timer2 01 = CCP2 – Capture/Compare modes use Timer3, PWM modes use Timer4 10 = CCP2 – Capture/Compare modes use Timer5, PWM modes use Timer6 11 = Reserved						
bit 2	Unused						
bit 1-0	C1TSEL<1:0>: CCP1 Timer Selection bits 00 = CCP1 – Capture/Compare modes use Timer1, PWM modes use Timer2 01 = CCP1 – Capture/Compare modes use Timer3, PWM modes use Timer4 10 = CCP1 – Capture/Compare modes use Timer5, PWM modes use Timer6 11 = Reserved						

REGISTER 14-3: CCPTMRS0: PWM TIMER SELECTION CONTROL REGISTER 0

REGISTER 14-4: CCPTMRS1: PWM TIMER SELECTION CONTROL REGISTER 1

U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—	—	C5TSEL<1:0>		C4TSE	L<1:0>
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

0'
0

bit 3-2	C5TSEL<1:0>: CCP5 Timer Selection bits 00 = CCP5 - Capture/Compare modes use Timer1, PWM modes use Timer2 01 = CCP5 - Capture/Compare modes use Timer3, PWM modes use Timer4 10 = CCP5 - Capture/Compare modes use Timer5, PWM modes use Timer6 11 = Reserved
bit 1-0	C4TSEL<1:0>: CCP4 Timer Selection bits 00 = CCP4 - Capture/Compare modes use Timer1, PWM modes use Timer2 01 = CCP4 - Capture/Compare modes use Timer3, PWM modes use Timer4 10 = CCP4 - Capture/Compare modes use Timer5, PWM modes use Timer6 11 = Reserved

15.6.6 I²C MASTER MODE TRANSMISSION

Transmission of a data byte, a 7-bit address or the other half of a 10-bit address is accomplished by simply writing a value to the SSPxBUF register. This action will set the Buffer Full flag bit, BF, and allow the Baud Rate Generator to begin counting and start the next transmission. Each bit of address/data will be shifted out onto the SDAx pin after the falling edge of SCLx is asserted. SCLx is held low for one Baud Rate Generator rollover count (TBRG). Data should be valid before SCLx is released high. When the SCLx pin is released high, it is held that way for TBRG. The data on the SDAx pin must remain stable for that duration and some hold time after the next falling edge of SCLx. After the eighth bit is shifted out (the falling edge of the eighth clock), the BF flag is cleared and the master releases SDAx. This allows the slave device being addressed to respond with an ACK bit during the ninth bit time if an address match occurred, or if data was received properly. The status of \overline{ACK} is written into the ACKSTAT bit on the rising edge of the ninth clock. If the master receives an Acknowledge, the Acknowledge Status bit, ACKSTAT, is cleared. If not, the bit is set. After the ninth clock, the SSPxIF bit is set and the master clock (Baud Rate Generator) is suspended until the next data byte is loaded into the SSPxBUF, leaving SCLx low and SDAx unchanged (Figure 15-28).

After the write to the SSPxBUF, each bit of the address will be shifted out on the falling edge of SCLx until all seven address bits and the R/W bit are completed. On the falling edge of the eighth clock, the master will release the SDAx pin, allowing the slave to respond with an Acknowledge. On the falling edge of the ninth clock, the master will sample the SDAx pin to see if the address was recognized by a slave. The status of the ACK bit is loaded into the ACKSTAT Status bit of the SSPxCON2 register. Following the falling edge of the ninth clock transmission of the address, the SSPxIF is set, the BF flag is cleared and the Baud Rate Generator is turned off until another write to the SSPxBUF takes place, holding SCLx low and allowing SDAx to float.

15.6.6.1 BF Status Flag

In Transmit mode, the BF bit of the SSPxSTAT register is set when the CPU writes to SSPxBUF and is cleared when all 8 bits are shifted out.

15.6.6.2 WCOL Status Flag

If the user writes the SSPxBUF when a transmit is already in progress (i.e., SSPxSR is still shifting out a data byte), the WCOL is set and the contents of the buffer are unchanged (the write does not occur).

WCOL must be cleared by software before the next transmission.

15.6.6.3 ACKSTAT Status Flag

In Transmit mode, the ACKSTAT bit of the SSPxCON2 register is cleared when the slave has sent an Acknowledge ($\overline{ACK} = 0$) and is set when the slave does not Acknowledge ($\overline{ACK} = 1$). A slave sends an Acknowledge when it has recognized its address (including a general call), or when the slave has properly received its data.

15.6.6.4 Typical Transmit Sequence:

- 1. The user generates a Start condition by setting the SEN bit of the SSPxCON2 register.
- 2. SSPxIF is set by hardware on completion of the Start.
- 3. SSPxIF is cleared by software.
- 4. The MSSPx module will wait the required start time before any other operation takes place.
- 5. The user loads the SSPxBUF with the slave address to transmit.
- 6. Address is shifted out the SDAx pin until all eight bits are transmitted. Transmission begins as soon as SSPxBUF is written to.
- 7. The MSSPx module shifts in the ACK bit from the slave device and writes its value into the ACKSTAT bit of the SSPxCON2 register.
- The MSSPx module generates an interrupt at the end of the ninth clock cycle by setting the SSPxIF bit.
- 9. The user loads the SSPxBUF with eight bits of data.
- 10. Data is shifted out the SDAx pin until all eight bits are transmitted.
- The MSSPx module shifts in the ACK bit from the slave device and writes its value into the ACKSTAT bit of the SSPxCON2 register.
- 12. Steps 8-11 are repeated for all transmitted data bytes.
- The user generates a Stop or Restart condition by setting the PEN or RSEN bits of the SSPx-CON2 register. Interrupt is generated once the Stop/Restart condition is complete.

FIGURE 15-31: STOP CONDITION RECEIVE OR TRANSMIT MODE

15.6.10 SLEEP OPERATION

While in Sleep mode, the I²C slave module can receive addresses or data and when an address match or complete byte transfer occurs, wake the processor from Sleep (if the MSSPx interrupt is enabled).

15.6.11 EFFECTS OF A RESET

A Reset disables the MSSPx module and terminates the current transfer.

15.6.12 MULTI-MASTER MODE

In Multi-Master mode, the interrupt generation on the detection of the Start and Stop conditions allows the determination of when the bus is free. The Stop (P) and Start (S) bits are cleared from a Reset or when the MSSPx module is disabled. Control of the I²C bus may be taken when the P bit of the SSPxSTAT register is set, or the bus is Idle, with both the S and P bits clear. When the bus is busy, enabling the SSPx interrupt will generate the interrupt when the Stop condition occurs.

In multi-master operation, the SDAx line must be monitored for arbitration to see if the signal level is the expected output level. This check is performed by hardware with the result placed in the BCLxIF bit.

The states where arbitration can be lost are:

- Address Transfer
- Data Transfer
- A Start Condition
- A Repeated Start Condition
- An Acknowledge Condition

15.6.13.3 Bus Collision During a Stop Condition

Bus collision occurs during a Stop condition if:

- a) After the SDAx pin has been deasserted and allowed to float high, SDAx is sampled low after the BRG has timed out (Case 1).
- b) After the SCLx pin is deasserted, SCLx is sampled low before SDAx goes high (Case 2).

The Stop condition begins with SDAx asserted low. When SDAx is sampled low, the SCLx pin is allowed to float. When the pin is sampled high (clock arbitration), the Baud Rate Generator is loaded with SSPxADD and counts down to zero. After the BRG times out, SDAx is sampled. If SDAx is sampled low, a bus collision has occurred. This is due to another master attempting to drive a data '0' (Figure 15-38). If the SCLx pin is sampled low before SDAx is allowed to float high, a bus collision occurs. This is another case of another master attempting to drive a data '0' (Figure 15-39).

FIGURE 15-38: BUS COLLISION DURING A STOP CONDITION (CASE 1)

FIGURE 15-39: BUS COLLISION DURING A STOP CONDITION (CASE 2)

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
BAUDCON1	ABDOVF	RCIDL	DTRXP	CKTXP	BRG16		WUE	ABDEN	271
BAUDCON2	ABDOVF	RCIDL	DTRXP	CKTXP	BRG16	_	WUE	ABDEN	271
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	109
IPR1	-	ADIP	RC1IP	TX1IP	SSP1IP	CCP1IP	TMR2IP	TMR1IP	121
IPR3	SSP2IP	BCL2IP	RC2IP	TX2IP	CTMUIP	TMR5GIP	TMR3GIP	TMR1GIP	123
PIE1		ADIE	RC1IE	TX1IE	SSP1IE	CCP1IE	TMR2IE	TMR1IE	117
PIE3	SSP2IE	BCL2IE	RC2IE	TX2IE	CTMUIE	TMR5GIE	TMR3GIE	TMR1GIE	119
PIR1		ADIF	RC1IF	TX1IF	SSP1IF	CCP1IF	TMR2IF	TMR1IF	112
PIR3	SSP2IF	BCL2IF	RC2IF	TX2IF	CTMUIF	TMR5GIF	TMR3GIF	TMR1GIF	114
PMD0	UART2MD	UART1MD	TMR6MD	TMR5MD	TMR4MD	TMR3MD	TMR2MD	TMR1MD	52
RCSTA1	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	270
RCSTA2	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	270
SPBRG1			EUSART1	Baud Rate	Generator, L	ow Byte	—		
SPBRGH1	EUSART1 Baud Rate Generator, High Byte						—		
SPBRG2	EUSART2 Baud Rate Generator, Low Byte						—		
SPBRGH2			EUSART2	Baud Rate	Generator, H	igh Byte			—
TRISB ⁽²⁾	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	151
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	151
TRISD ⁽¹⁾	TRISD7	TRISD6	TRISD5	TRISD4	TRISD3	TRISD2	TRISD1	TRISD0	151
ANSELC	ANSC7	ANSC6	ANSC5	ANSC4	ANSC3	ANSC2	_	—	150
ANSELD ⁽¹⁾	ANSD7	ANSD6	ANSD5	ANSD4	ANSD3	ANSD2	ANSD1	ANSD0	150
TXREG1			EU	SART1 Trar	smit Registe	r	_		
TXSTA1	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	269
TXREG2			EU	SART2 Trar	ismit Registe	r			—
TXSTA2	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	269

TABLE 16-7: REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER TRANSMISSION

Legend: — = unimplemented locations, read as '0'. Shaded bits are not used for synchronous master transmission.

Note 1: PIC18(L)F4XK22 devices.

2: PIC18(L)F2XK22 devices.

24.2 Register Definitions: Configuration Word

REGISTER 24-1: CONFIG1H: CONFIGURATION REGISTER 1 HIGH

				ILE OID I EIX			
R/P-0	R/P-0	R/P-1	R/P-0	R/P-0	R/P-1	R/P-0	R/P-1
IESO	FCMEN	PRICLKEN	PLLCFG		FOSC	<3:0>	
bit 7							bit 0
Legend:							
R = Readal	ole bit	P = Programn	nable bit	U = Unimple	mented bit, read	d as '0'	
-n = Value v	when device is un	programmed		x = Bit is unk	nown		
bit 7 bit 6	IESO⁽¹⁾: Inte 1 = Oscillator 0 = Oscillator FCMEN⁽¹⁾: F	rnal/External Os r Switchover mo r Switchover mo ail-Safe Clock I	scillator Switch ode enabled ode disabled Monitor Enable	nover bit e bit			
	1 = Fail-Safe 0 = Fail-Safe	Clock Monitor Clock Monitor	enabled disabled				
bit 5	PRICLKEN: 1 = Primary (0 = Primary (Primary Clock E Clock is always Clock can be dis	nable bit enabled sabled by soft	ware			
bit 4	PLLCFG: 4 > 1 = 4 x PLL a 0 = 4 x PLL is	CPLL Enable bialways enabled, s under softwar	t Oscillator mu e control, PLL	ltiplied by 4 EN (OSCTUN	E<6>)		
bit 3-0	FOSC<3:0>: 1111 = Exte 1110 = Exte 1101 = EC o 1100 = EC o 1011 = EC o 1010 = EC o 1010 = Inter 1000 = Inter 0111 = Exte 0110 = Exte 0110 = EC o 0101 = EC o 0101 = HS o 0010 = HS o 0001 = XT o 0000 = LP o	Oscillator Sele rnal RC oscillat rnal RC oscillat oscillator (low p oscillator, CLKC oscillator, CLKC nal oscillator, CLKC nal oscillator bl rnal RC oscillat rnal RC oscillat oscillator (high oscillator, CLKC oscillator (high oscillator (high oscillator oscillator bl oscillator (high oscillator bl oscillator	ction bits or, CLKOUT fi or, CLKOUT fi ower, ≤500 kl OUT function o um power, 50 OUT function o ock, CLKOUT ock or or, CLKOUT fi power, >16 M OUT function o um power, >16 M	unction on RAI unction on RAI Hz) n OSC2 (low) 0 kHz-16 MHz n OSC2 (medi function on OS unction on OS IHz) n OSC2 (high MHz-16 MHz) Hz)	5 5 5 5 5 6 6 6 7 7 7 7 7 7 7 7 7 7 7 7	lz)) kHz-16 MHz) lz)	
Note 1:	When FOSC<3:0:	> is configured	for HS, XT, or	LP oscillator a	nd FCMEN bit i	s set, then the I	ESO bit

should also be set to prevent a false failed clock indication and to enable automatic clock switch over from the internal oscillator block to the external oscillator when the OST times out.

RET	FIE	Return fr	Return from Interrupt				
Synta	ax:	RETFIE {	s}				
Oper	ands:	$s \in \left[0,1\right]$					
Oper	ation:	$(TOS) \rightarrow F$ $1 \rightarrow GIE/G$ if s = 1 $(WS) \rightarrow W$ (STATUSS) $(BSRS) \rightarrow$ PCLATU, I	PC, GIEH or P $\frac{1}{2}$, 3) → Statu BSR, PCLATH :	EIE/GIE Is, are unch	L, nanged.		
Statu	s Affected:	GIE/GIEH,	PEIE/GI	EL.			
Enco	ding:	0000	0000	0001	000s		
Desc	ription:	Return from interrupt. Stack is popped and Top-of-Stack (TOS) is loaded into the PC. Interrupts are enabled by setting either the high or low priority global interrupt enable bit. If 's' = 1, the contents of the shadow registers, WS, STATUSS and BSRS, are loaded into their corresponding registers, W, STATUS and BSR. If 's' = 0, no update of these registers occurs (default).					
Word	ls:	1					
Cycle	es:	2					
QC	ycle Activity:						
	Q1	Q2	Q3	}	Q4		
	Decode	No operation	No opera	tion s	POP PC from stack Set GIEH or GIEL		
	No	No	No)	No		
	operation	operation	opera	tion	operation		
<u>Exan</u>	nple:	RETFIE	1				
After Interrupt PC = TOS W = WS BSR = BSRS Status = STATUSS GIE/GIEH. PEIE/GIEL = 1							

C',	2.2.1		-					
Synta	ax:	REILVV K						
Oper	ands:	$0 \le k \le 255$						
Oper	ation:	$k \rightarrow W,$ (TOS) $\rightarrow P($ PCLATU, P	C, CLATH a	are uncha	nged			
Statu	s Affected:	None						
Enco	ding:	0000	1100	kkkk	kkkk			
Desc	ription:	W is loaded program co of the stack high addres unchanged.	I with the unter is I (the retu ss latch (l	8-bit liter oaded fro urn addres PCLATH)	al 'k'. The m the top ss). The remains			
Word	ls:	1						
Cycle	es:	2						
QC	ycle Activity:							
	Q1	Q2	Q3		Q4			
	Decode	Read literal 'k'	Proce Data	ess P a fro W	OP PC om stack, rite to W			
	No	No	No		No			
	operation	operation	operat	tion o	peration			
<u>Exan</u>	n ple : CALL TABLE	; W contai	ins tab	le				
		; offset v	/alue					
		; w now na ; table va	; W now has ; table value					
:								
TABI	Æ							
	ADDWF PCL	; W = offs	set					
	RETLW k0	; Begin ta	able					
	RETLW KI	i						
:								

W = 07h After Instruction

W = value of kn

25.2 Extended Instruction Set

In addition to the standard 75 instructions of the PIC18 instruction set, PIC18(L)F2X/4XK22 devices also provide an optional extension to the core CPU functionality. The added features include eight additional instructions that augment indirect and indexed addressing operations and the implementation of Indexed Literal Offset Addressing mode for many of the standard PIC18 instructions.

The additional features of the extended instruction set are disabled by default. To enable them, users must set the XINST Configuration bit.

The instructions in the extended set can all be classified as literal operations, which either manipulate the File Select Registers, or use them for indexed addressing. Two of the instructions, ADDFSR and SUBFSR, each have an additional special instantiation for using FSR2. These versions (ADDULNK and SUBULNK) allow for automatic return after execution.

The extended instructions are specifically implemented to optimize re-entrant program code (that is, code that is recursive or that uses a software stack) written in high-level languages, particularly C. Among other things, they allow users working in high-level languages to perform certain operations on data structures more efficiently. These include:

- dynamic allocation and deallocation of software stack space when entering and leaving subroutines
- function pointer invocation
- software Stack Pointer manipulation
- manipulation of variables located in a software stack

A summary of the instructions in the extended instruction set is provided in Table 25-3. Detailed descriptions are provided in **Section 25.2.2 "Extended Instruction Set**". The opcode field descriptions in Table 25-1 apply to both the standard and extended PIC18 instruction sets.

Note: The instruction set extension and the Indexed Literal Offset Addressing mode were designed for optimizing applications written in C; the user may likely never use these instructions directly in assembler. The syntax for these commands is provided as a reference for users who may be reviewing code that has been generated by a compiler.

25.2.1 EXTENDED INSTRUCTION SYNTAX

Most of the extended instructions use indexed arguments, using one of the File Select Registers and some offset to specify a source or destination register. When an argument for an instruction serves as part of indexed addressing, it is enclosed in square brackets ("[]"). This is done to indicate that the argument is used as an index or offset. MPASM[™] Assembler will flag an error if it determines that an index or offset value is not bracketed.

When the extended instruction set is enabled, brackets are also used to indicate index arguments in byteoriented and bit-oriented instructions. This is in addition to other changes in their syntax. For more details, see Section 25.2.3.1 "Extended Instruction Syntax with Standard PIC18 Commands".

Note: In the past, square brackets have been used to denote optional arguments in the PIC18 and earlier instruction sets. In this text and going forward, optional arguments are denoted by braces ("{ }").

Mnemonic, Operands		Description	Cyclos	16-Bit Instruction Word				Status
		Description	Cycles	MSb			LSb	Affected
ADDFSR	f, k	Add literal to FSR	1	1110	1000	ffkk	kkkk	None
ADDULNK	k	Add literal to FSR2 and return	2	1110	1000	11kk	kkkk	None
CALLW		Call subroutine using WREG	2	0000	0000	0001	0100	None
MOVSF	z _s , f _d	Move z _s (source) to 1st word	2	1110	1011	0zzz	ZZZZ	None
		f _d (destination) 2nd word		1111	ffff	ffff	ffff	
MOVSS	z _s , z _d	Move z _s (source) to 1st word	2	1110	1011	lzzz	ZZZZ	None
		z _d (destination) 2nd word		1111	XXXX	XZZZ	ZZZZ	
PUSHL	k	Store literal at FSR2,	1	1110	1010	kkkk	kkkk	None
		decrement FSR2						
SUBESR	f, K	Subtract literal from FSR	1	1110	1001	ÍÍKK	kkkk	None
SUBULNK	k	Subtract literal from FSR2 and	2	1110	1001	11kk	kkkk	None
		return						

TABLE 25-3: EXTENSIONS TO THE PIC18 INSTRUCTION SET

TABLE 21-11: WASTER 33PT C DUS START/STUP DITS REQUIREMENT	TABLE 27-17:	MASTER SS	P I ² C BUS	START/STOP	BITS REQ	UIREMENTS
--	--------------	-----------	------------------------	------------	-----------------	-----------

Param. No.	Symbol	Characteristic		Min	Max	Units	Conditions
90	TSU:STA	Start Condition	100 kHz mode	2(Tosc)(BRG + 1)		ns	Only relevant for
		Setup Time	400 kHz mode	2(Tosc)(BRG + 1)			Repeated Start
			1 MHz mode ⁽¹⁾	2(Tosc)(BRG + 1)	—		Condition
91	THD:STA	Start Condition	100 kHz mode	2(Tosc)(BRG + 1)	—	ns	After this period, the
		Hold Time	400 kHz mode	2(Tosc)(BRG + 1)	—		first clock pulse is
			1 MHz mode ⁽¹⁾	2(Tosc)(BRG + 1)	—		generated
92	Tsu:sto	Stop Condition	100 kHz mode	2(Tosc)(BRG + 1)		ns	
		Setup Time	400 kHz mode	2(Tosc)(BRG + 1)			
			1 MHz mode ⁽¹⁾	2(Tosc)(BRG + 1)			
93	THD:STO	Stop Condition	100 kHz mode	2(Tosc)(BRG + 1)		ns	
		Hold Time	400 kHz mode	2(Tosc)(BRG + 1)	—		
			1 MHz mode ⁽¹⁾	2(Tosc)(BRG + 1)	_		

Note 1: Maximum pin capacitance = 10 pF for all I^2C pins.

FIGURE 27-20: MASTER SSP I²C BUS DATA TIMING

Param. No.	Symbol	Characteristic		Min	Max	Units	Conditions
100	Thigh	Clock High Time	100 kHz mode	2(Tosc)(BRG + 1)	—	ms	
			400 kHz mode	2(Tosc)(BRG + 1)		ms	
			1 MHz mode ⁽¹⁾	2(Tosc)(BRG + 1)	_	ms	
101	TLOW	Clock Low Time	100 kHz mode	2(Tosc)(BRG + 1)	_	ms	
			400 kHz mode	2(Tosc)(BRG + 1)	_	ms	
			1 MHz mode ⁽¹⁾	2(Tosc)(BRG + 1)	_	ms	
102	TR	SDA and SCL	100 kHz mode	—	1000	ns	CB is specified to be
		Rise Time	400 kHz mode	20 + 0.1 Св	300	ns	from
			1 MHz mode ⁽¹⁾		300	ns	10 to 400 pr
103	TF	SDA and SCL	100 kHz mode		300	ns	CB is specified to be
		Fall Time	400 kHz mode	20 + 0.1 Св	300	ns	from
			1 MHz mode ⁽¹⁾		100	ns	10 to 400 pr
90	TSU:STA	Start Condition	100 kHz mode	2(Tosc)(BRG + 1)	—	ms	Only relevant for
		Setup Time	400 kHz mode	2(Tosc)(BRG + 1)	_	ms	Repeated Start
		1 MHz mode ⁽¹⁾	2(Tosc)(BRG + 1)	—	ms	condition	
91	THD:STA	Start Condition	100 kHz mode	2(Tosc)(BRG + 1)	_	ms	After this period, the first
		Hold Time	400 kHz mode	2(Tosc)(BRG + 1)	_	ms	clock pulse is generated
			1 MHz mode ⁽¹⁾	2(Tosc)(BRG + 1)	_	ms	
106	THD:DAT	Data Input	100 kHz mode	0	—	ns	
		Hold Time	400 kHz mode	0	0.9	ms	
107	TSU:DAT	Data Input	100 kHz mode	250	—	ns	(Note 2)
		Setup Time	400 kHz mode	100	—	ns	
92	TSU:STO	Stop Condition	100 kHz mode	2(Tosc)(BRG + 1)	—	ms	
		Setup Time	400 kHz mode	2(Tosc)(BRG + 1)	—	ms	
			1 MHz mode ⁽¹⁾	2(Tosc)(BRG + 1)	_	ms	
109	ΤΑΑ	Output Valid	100 kHz mode	—	3500	ns	
		from Clock	400 kHz mode	—	1000	ns	
			1 MHz mode ⁽¹⁾	—	_	ns	
110	TBUF	Bus Free Time	100 kHz mode	4.7	_	ms	Time the bus must be
			400 kHz mode	1.3	—	ms	free before a new trans- mission can start
D102	Св	Bus Capacitive L	oading	—	400	pF	

Note 1: Maximum pin capacitance = 10 pF for all I^2C pins.

^{2:} A fast mode I²C bus device can be used in a standard mode I²C bus system, but parameter 107 ≥ 250 ns must then be met. This will automatically be the case if the device does not stretch the Low period of the SCL signal. If such a device does stretch the Low period of the SCL signal, it must output the next data bit to the SDA line, parameter 102 + parameter 107 = 1000 + 250 = 1250 ns (for 100 kHz mode), before the SCL line is released.

