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What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade
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2.11 Clock Switching

The system clock source can be switched between
external and internal clock sources via software using
the System Clock Select (SCS<1:0>) bits of the
OSCCON register.

PIC18(L)F2X/4XK22 devices contain circuitry to pre-
vent clock “glitches” when switching between clock
sources. A short pause in the device clock occurs
during the clock switch. The length of this pause is the
sum of two cycles of the old clock source and three to
four cycles of the new clock source. This formula
assumes that the new clock source is stable.

Clock transitions are discussed in greater detail in
Section 3.1.2 “Entering Power-Managed Modes”.

2.11.1 SYSTEM CLOCK SELECT 
(SCS<1:0>) BITS

The System Clock Select (SCS<1:0>) bits of the
OSCCON register select the system clock source that
is used for the CPU and peripherals.

• When SCS<1:0> = 00, the system clock source is 
determined by configuration of the FOSC<3:0> 
bits in the CONFIG1H Configuration register.

• When SCS<1:0> = 10, the system clock source is 
chosen by the internal oscillator frequency 
selected by the INTSRC bit of the OSCTUNE 
register, the MFIOSEL bit of the OSCCON2 
register and the IRCF<2:0> bits of the OSCCON 
register. 

• When SCS<1:0> = 01, the system clock source is 
the 32.768 kHz secondary oscillator shared with 
Timer1, Timer3 and Timer5.

After a Reset, the SCS<1:0> bits of the OSCCON
register are always cleared.

2.11.2 OSCILLATOR START-UP TIME-OUT 
STATUS (OSTS) BIT

The Oscillator Start-up Time-out Status (OSTS) bit of
the OSCCON register indicates whether the system
clock is running from the external clock source, as
defined by the FOSC<3:0> bits in the CONFIG1H
Configuration register, or from the internal clock
source. In particular, when the primary oscillator is the
source of the primary clock, OSTS indicates that the
Oscillator Start-up Timer (OST) has timed out for LP,
XT or HS modes.

TABLE 2-3: OSC1 AND OSC2 PIN STATES IN SLEEP MODE

OSC Mode OSC1 Pin OSC2 Pin

RC, INTOSC with CLKOUT Floating, external resistor should pull high At logic low (clock/4 output)

RC with IO Floating, external resistor should pull high Configured as PORTA, bit 6

INTOSC with IO Configured as PORTA, bit 7 Configured as PORTA, bit 6

EC with IO Floating, pulled by external clock Configured as PORTA, bit 6

EC with CLKOUT Floating, pulled by external clock At logic low (clock/4 output)

LP, XT, HS Feedback inverter disabled at quiescent 
voltage level

Feedback inverter disabled at quiescent 
voltage level

Note: See Table 4-2 in Section 4.0 “Reset” for time-outs due to Sleep and MCLR Reset.

Note: Any automatic clock switch, which may
occur from Two-Speed Start-up or Fail-
Safe Clock Monitor, does not update the
SCS<1:0> bits of the OSCCON register.
The user can monitor the SOSCRUN,
MFIOFS and LFIOFS bits of the
OSCCON2 register, and the HFIOFS and
OSTS bits of the OSCCON register to
determine the current system clock source.
 2010-2016 Microchip Technology Inc. DS40001412G-page 39
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2.13 Fail-Safe Clock Monitor

The Fail-Safe Clock Monitor (FSCM) allows the device
to continue operating should the external oscillator fail.
The FSCM can detect oscillator failure any time after
the Oscillator Start-up Timer (OST) has expired. The
FSCM is enabled by setting the FCMEN bit in the
CONFIG1H Configuration register. The FSCM is
applicable to all external oscillator modes (LP, XT, HS,
EC, RC and RCIO).

FIGURE 2-10: FSCM BLOCK DIAGRAM 

2.13.1 FAIL-SAFE DETECTION

The FSCM module detects a failed oscillator by
comparing the external oscillator to the FSCM sample
clock. The sample clock is generated by dividing the
LFINTOSC by 64 (see Figure 2-10). Inside the fail
detector block is a latch. The external clock sets the
latch on each falling edge of the external clock. The
sample clock clears the latch on each rising edge of the
sample clock. A failure is detected when an entire half-
cycle of the sample clock elapses before the primary
clock goes low.

2.13.2 FAIL-SAFE OPERATION

When the external clock fails, the FSCM switches the
device clock to an internal clock source and sets the bit
flag OSCFIF of the PIR2 register. The OSCFIF flag will
generate an interrupt if the OSCFIE bit of the PIE2
register is also set. The device firmware can then take
steps to mitigate the problems that may arise from a
failed clock. The system clock will continue to be
sourced from the internal clock source until the device
firmware successfully restarts the external oscillator
and switches back to external operation. An automatic
transition back to the failed clock source will not occur.

The internal clock source chosen by the FSCM is
determined by the IRCF<2:0> bits of the OSCCON
register. This allows the internal oscillator to be
configured before a failure occurs.

2.13.3 FAIL-SAFE CONDITION CLEARING

The Fail-Safe condition is cleared by either one of the
following:

• Any Reset 

• By toggling the SCS1 bit of the OSCCON register

Both of these conditions restart the OST. While the
OST is running, the device continues to operate from
the INTOSC selected in OSCCON. When the OST
times out, the Fail-Safe condition is cleared and the
device automatically switches over to the external clock
source. The Fail-Safe condition need not be cleared
before the OSCFIF flag is cleared.

2.13.4 RESET OR WAKE-UP FROM SLEEP

The FSCM is designed to detect an oscillator failure
after the Oscillator Start-up Timer (OST) has expired.
The OST is used after waking up from Sleep and after
any type of Reset. The OST is not used with the EC or
RC Clock modes so that the FSCM will be active as
soon as the Reset or wake-up has completed. 

 

External

LFINTOSC
÷ 64
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(~32 s)

488 Hz
(~2 ms)

Clock Monitor
Latch

Clock
Failure

Detected

Oscillator

Clock

Q

Sample Clock
Note: Due to the wide range of oscillator start-up

times, the Fail-Safe circuit is not active
during oscillator start-up (i.e., after exiting
Reset or Sleep). After an appropriate
amount of time, the user should check the
OSTS bit of the OSCCON register to verify
the oscillator start-up and that the system
clock switchover has successfully
completed.

Note: When the device is configured for Fail-
Safe clock monitoring in either HS, XT, or
LS Oscillator modes then the IESO config-
uration bit should also be set so that the
clock will automatically switch from the
internal clock to the external oscillator
when the OST times out.
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4.5 Brown-out Reset (BOR)

PIC18(L)F2X/4XK22 devices implement a BOR circuit
that provides the user with a number of configuration and
power-saving options. The BOR is controlled by the
BORV<1:0> and BOREN<1:0> bits of the CONFIG2L
Configuration register. There are a total of four BOR
configurations which are summarized in Table 4-1.

The BOR threshold is set by the BORV<1:0> bits. If
BOR is enabled (any values of BOREN<1:0>, except
‘00’), any drop of VDD below VBOR for greater than
TBOR will reset the device. A Reset may or may not
occur if VDD falls below VBOR for less than TBOR. The
chip will remain in Brown-out Reset until VDD rises
above VBOR. 

If the Power-up Timer is enabled, it will be invoked after
VDD rises above VBOR; it then will keep the chip in
Reset for an additional time delay, TPWRT. If VDD drops
below VBOR while the Power-up Timer is running, the
chip will go back into a Brown-out Reset and the
Power-up Timer will be initialized. Once VDD rises
above VBOR, the Power-up Timer will execute the
additional time delay. 

BOR and the Power-on Timer (PWRT) are
independently configured. Enabling BOR Reset does
not automatically enable the PWRT.

The BOR circuit has an output that feeds into the POR
circuit and rearms the POR within the operating range
of the BOR. This early rearming of the POR ensures
that the device will remain in Reset in the event that VDD

falls below the operating range of the BOR circuitry.

4.5.1 DETECTING BOR

When BOR is enabled, the BOR bit always resets to ‘0’
on any BOR or POR event. This makes it difficult to
determine if a BOR event has occurred just by reading
the state of BOR alone. A more reliable method is to
simultaneously check the state of both POR and BOR.
This assumes that the POR and BOR bits are reset to
‘1’ by software immediately after any POR event. If
BOR is ‘0’ while POR is ‘1’, it can be reliably assumed
that a BOR event has occurred.

4.5.2 SOFTWARE ENABLED BOR

When BOREN<1:0> = 01, the BOR can be enabled or
disabled by the user in software. This is done with the
SBOREN control bit of the RCON register. Setting
SBOREN enables the BOR to function as previously
described. Clearing SBOREN disables the BOR
entirely. The SBOREN bit operates only in this mode;
otherwise it is read as ‘0’.

Placing the BOR under software control gives the user
the additional flexibility of tailoring the application to the
environment without having to reprogram the device to
change BOR configuration. It also allows the user to
tailor device power consumption in software by
eliminating the incremental current that the BOR
consumes. While the BOR current is typically very small,
it may have some impact in low-power applications.

 

4.5.3 DISABLING BOR IN SLEEP MODE

When BOREN<1:0> = 10, the BOR remains under
hardware control and operates as previously
described. Whenever the device enters Sleep mode,
however, the BOR is automatically disabled. When the
device returns to any other operating mode, BOR is
automatically re-enabled.

This mode allows for applications to recover from
brown-out situations, while actively executing code,
when the device requires BOR protection the most. At
the same time, it saves additional power in Sleep mode
by eliminating the small incremental BOR current. 

4.5.4 MINIMUM BOR ENABLE TIME

Enabling the BOR also enables the Fixed Voltage
Reference (FVR) when no other peripheral requiring the
FVR is active. The BOR becomes active only after the
FVR stabilizes. Therefore, to ensure BOR protection,
the FVR settling time must be considered when
enabling the BOR in software or when the BOR is
automatically enabled after waking from Sleep. If the
BOR is disabled, in software or by reentering Sleep
before the FVR stabilizes, the BOR circuit will not sense
a BOR condition. The FVRST bit of the VREFCON0
register can be used to determine FVR stability.

Note: Even when BOR is under software
control, the BOR Reset voltage level is still
set by the BORV<1:0> Configuration bits.
It cannot be changed by software.
DS40001412G-page 58   2010-2016 Microchip Technology Inc.
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6.5 Erasing Flash Program Memory

The minimum erase block is 32 words or 64 bytes. Only
through the use of an external programmer, or through
ICSP™ control, can larger blocks of program memory
be bulk erased. Word erase in the Flash array is not
supported.

When initiating an erase sequence from the
microcontroller itself, a block of 64 bytes of program
memory is erased. The Most Significant 16 bits of the
TBLPTR<21:6> point to the block being erased. The
TBLPTR<5:0> bits are ignored.

The EECON1 register commands the erase operation.
The EEPGD bit must be set to point to the Flash
program memory. The WREN bit must be set to enable
write operations. The FREE bit is set to select an erase
operation.

The write initiate sequence for EECON2, shown as
steps 4 through 6 in Section 6.5.1 “Flash Program
Memory Erase Sequence”, is used to guard against
accidental writes. This is sometimes referred to as a
long write.

A long write is necessary for erasing the internal Flash.
Instruction execution is halted during the long write
cycle. The long write is terminated by the internal
programming timer.

6.5.1 FLASH PROGRAM MEMORY 
ERASE SEQUENCE

The sequence of events for erasing a block of internal
program memory is:

1. Load Table Pointer register with address of
block being erased.

2. Set the EECON1 register for the erase operation:

• set EEPGD bit to point to program memory;

• clear the CFGS bit to access program memory;

• set WREN bit to enable writes; 

• set FREE bit to enable the erase.

3. Disable interrupts.

4. Write 55h to EECON2.

5. Write 0AAh to EECON2.

6. Set the WR bit. This will begin the block erase
cycle.

7. The CPU will stall for duration of the erase
(about 2 ms using internal timer).

8. Re-enable interrupts.

EXAMPLE 6-2: ERASING A FLASH PROGRAM MEMORY BLOCK 

MOVLW CODE_ADDR_UPPER ; load TBLPTR with the base
MOVWF TBLPTRU ; address of the memory block
MOVLW CODE_ADDR_HIGH
MOVWF TBLPTRH 
MOVLW CODE_ADDR_LOW
MOVWF TBLPTRL 

ERASE_BLOCK 
BSF EECON1, EEPGD ; point to Flash program memory
BCF EECON1, CFGS ; access Flash program memory
BSF EECON1, WREN ; enable write to memory
BSF EECON1, FREE ; enable block Erase operation
BCF INTCON, GIE ; disable interrupts

Required MOVLW 55h
Sequence MOVWF EECON2 ; write 55h

MOVLW 0AAh
MOVWF EECON2 ; write 0AAh
BSF EECON1, WR ; start erase (CPU stall)
BSF INTCON, GIE ; re-enable interrupts
 2010-2016 Microchip Technology Inc.  DS40001412G-page 95
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REGISTER 9-12: PIE4: PERIPHERAL INTERRUPT ENABLE (FLAG) REGISTER 4

U-0 U-0 U-0 U-0 U-0 R/W-0 R/W-0 R/W-0

— — — — — CCP5IE CCP4IE CCP3IE

bit 7 bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 7-3 Unimplemented: Read as ‘0’

bit 2 CCP5IE: CCP5 Interrupt Enable bit 

1 = Enabled
0 = Disabled

bit 1 CCP4IE: CCP4 Interrupt Enable bit 

1 = Enabled
0 = Disabled

bit 0 CCP3IE: CCP3 Interrupt Enable bit 

1 = Enabled
0 = Disabled

REGISTER 9-13: PIE5: PERIPHERAL INTERRUPT ENABLE (FLAG) REGISTER 5

U-0 U-0 U-0 U-0 U-0 R/W-0 R/W-0 R/W-0

— — — — — TMR6IE TMR5IE TMR4IE

bit 7 bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 7-3 Unimplemented: Read as ‘0’

bit 2 TMR6IE: TMR6 to PR6 Match Interrupt Enable bit 

1 = Enables the TMR6 to PR6 match interrupt
0 = Disables the TMR6 to PR6 match interrupt

bit 1 TMR5IE: TMR5 Overflow Interrupt Enable bit 

1 = Enables the TMR5 overflow interrupt
0 = Disables the TMR5 overflow interrupt

bit 0 TMR4IE: TMR4 to PR4 Match Interrupt Enable bit 

1 = Enables the TMR4 to PR4 match interrupt
0 = Disables the TMR4 to PR4 match interrupt
DS40001412G-page 120   2010-2016 Microchip Technology Inc.
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10.6 PORTE Registers

Depending on the particular PIC18(L)F2X/4XK22
device selected, PORTE is implemented in two
different ways.

10.6.1 PORTE ON 40/44-PIN DEVICES

For PIC18(L)F2X/4XK22 devices, PORTE is a 4-bit
wide port. Three pins (RE0/P3A/CCP3/AN5, RE1/P3B/
AN6 and RE2/CCP5/AN7) are individually configurable
as inputs or outputs. These pins have Schmitt Trigger
input buffers. When selected as an analog input, these
pins will read as ‘0’s.

The corresponding data direction register is TRISE.
Setting a TRISE bit (= 1) will make the corresponding
PORTE pin an input (i.e., disable the output driver).
Clearing a TRISE bit (= 0) will make the corresponding
PORTE pin an output (i.e., enable the output driver and
put the contents of the output latch on the selected pin).

TRISE controls the direction of the REx pins, even
when they are being used as analog inputs. The user
must make sure to keep the pins configured as inputs
when using them as analog inputs.

The Data Latch register (LATE) is also memory
mapped. Read-modify-write operations on the LATE
register read and write the latched output value for
PORTE. 

The fourth pin of PORTE (MCLR/VPP/RE3) is an input
only pin. Its operation is controlled by the MCLRE
Configuration bit. When selected as a port pin
(MCLRE = 0), it functions as a digital input only pin; as
such, it does not have TRIS or LAT bits associated with its
operation. Otherwise, it functions as the device’s Master
Clear input. In either configuration, RE3 also functions as
the programming voltage input during programming.

EXAMPLE 10-5: INITIALIZING PORTE    

10.6.2 PORTE ON 28-PIN DEVICES

For PIC18F2XK22 devices, PORTE is only available
when Master Clear functionality is disabled
(MCLR = 0). In these cases, PORTE is a single bit,
input only port comprised of RE3 only. The pin operates
as previously described.

10.6.3 RE3 WEAK PULL-UP

The port RE3 pin has an individually controlled weak
internal pull-up. When set, the WPUE3 (TRISE<7>) bit
enables the RE3 pin pull-up. The RBPU bit of the INT-
CON2 register controls pull-ups on both PORTB and
PORTE. When RBPU = 0, the weak pull-ups become
active on all pins which have the WPUE3 or WPUBx
bits set. When set, the RBPU bit disables all weak pull-
ups. The pull-ups are disabled on a Power-on Reset.
When the RE3 port pin is configured as MCLR, (CON-
FIG3H<7>, MCLRE=1 and CONFIG4L<2>, LVP=0), or
configured for Low Voltage Programming, (MCLRE=x
and LVP=1), the pull-up is always enabled and the
WPUE3 bit has no effect.

10.6.4 PORTE OUTPUT PRIORITY

Each PORTE pin is multiplexed with other functions.
The pins, their combined functions and their output
priorities are briefly described here. For additional
information, refer to the appropriate section in this data
sheet.

When multiple outputs are enabled, the actual pin
control goes to the peripheral with the higher priority.
Table 10-4 lists the PORTE pin functions from the
highest to the lowest priority.

Analog input functions, such as ADC, comparator and
SR latch inputs, are not shown in the priority lists.

These inputs are active when the I/O pin is set for
Analog mode using the ANSELx registers. Digital
output functions may control the pin when it is in Analog
mode with the priority shown below.

Note: On a Power-on Reset, RE<2:0> are
configured as analog inputs.

Note: On a Power-on Reset, RE3 is enabled as
a digital input only if Master Clear
functionality is disabled.

CLRF PORTE ; Initialize PORTE by
; clearing output
; data latches

CLRF LATE ; Alternate method
; to clear output
; data latches

CLRF ANSELE ; Configure analog pins 
; for digital only

MOVLW 05h ; Value used to 
; initialize data 
; direction

MOVWF TRISE ; Set RE<0> as input
; RE<1> as output
; RE<2> as input
 2010-2016 Microchip Technology Inc.  DS40001412G-page 145
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FIGURE 11-2: TIMER0 BLOCK DIAGRAM (16-BIT MODE)    

11.4 Prescaler

An 8-bit counter is available as a prescaler for the Timer0
module. The prescaler is not directly readable or writable;
its value is set by the PSA and T0PS<2:0> bits of the
T0CON register which determine the prescaler
assignment and prescale ratio.

Clearing the PSA bit assigns the prescaler to the
Timer0 module. When the prescaler is assigned,
prescale values from 1:2 through 1:256 in integer
power-of-2 increments are selectable. 

When assigned to the Timer0 module, all instructions
writing to the TMR0 register (e.g., CLRF TMR0, MOVWF
TMR0, BSF TMR0, etc.) clear the prescaler count. 

   

11.4.1 SWITCHING PRESCALER 
ASSIGNMENT

The prescaler assignment is fully under software
control and can be changed “on-the-fly” during program
execution. 

11.5 Timer0 Interrupt

The TMR0 interrupt is generated when the TMR0 reg-
ister overflows from FFh to 00h in 8-bit mode, or from
FFFFh to 0000h in 16-bit mode. This overflow sets the
TMR0IF flag bit. The interrupt can be masked by clear-
ing the TMR0IE bit of the INTCON register. Before
re-enabling the interrupt, the TMR0IF bit must be
cleared by software in the Interrupt Service Routine.

Since Timer0 is shut down in Sleep mode, the TMR0
interrupt cannot awaken the processor from Sleep. 

 

Note: Upon Reset, Timer0 is enabled in 8-bit mode with clock input from T0CKI max. prescale.

T0CKI pin

T0SE

0

1

1

0

T0CS

FOSC/4

Programmable
Prescaler

Sync with
Internal
Clocks

TMR0L

(2 TCY Delay)

Internal Data Bus

8

PSA

T0PS<2:0>

Set 
TMR0IF
on Overflow

3

TMR0

TMR0H

 High Byte

8
8

8

Read TMR0L

Write TMR0L

8

Note: Writing to TMR0 when the prescaler is
assigned to Timer0 will clear the prescaler
count but will not change the prescaler
assignment.

TABLE 11-1: REGISTERS ASSOCIATED WITH TIMER0

Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Reset 
Values 

on page

INTCON GIE/GIEH PEIE/GIEL TMR0IE INT0IE RBIE TMR0IF INT0IF RBIF 109

INTCON2 RBPU INTEDG0 INTEDG1 INTEDG2 — TMR0IP — RBIP 110

T0CON TMR0ON T08BIT T0CS T0SE PSA T0PS<2:0> 154

TMR0H Timer0 Register, High Byte —

TMR0L Timer0 Register, Low Byte —

TRISA TRISA7 TRISA6 TRISA5 TRISA4 TRISA3 TRISA2 TRISA1 TRISA0 151

Legend: — = unimplemented locations, read as ‘0’. Shaded bits are not used by Timer0.
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15.0 MASTER SYNCHRONOUS 
SERIAL PORT (MSSP1 AND 
MSSP2) MODULE

15.1 Master SSPx (MSSPx) Module 
Overview

The Master Synchronous Serial Port (MSSPx) module
is a serial interface useful for communicating with other
peripheral or microcontroller devices. These peripheral
devices may be Serial EEPROMs, shift registers,
display drivers, A/D converters, etc. The MSSPx
module can operate in one of two modes:

• Serial Peripheral Interface (SPI)

• Inter-Integrated Circuit (I2C)

The SPI interface supports the following modes and
features:

• Master mode

• Slave mode

• Clock Parity

• Slave Select Synchronization (Slave mode only)

• Daisy chain connection of slave devices

Figure 15-1 is a block diagram of the SPI interface
module.

FIGURE 15-1: MSSPx BLOCK DIAGRAM (SPI MODE)

(            )

Read Write

Data Bus

SSPxSR Reg

SSPxM<3:0>

bit 0 Shift
Clock

SSx Control
Enable

Edge
Select

Clock Select

TMR2 Output

TOSCPrescaler
4, 16, 64

2

Edge
Select

2 (CKP, CKE)

4

TRIS bit

SDOx

SSPxBUF Reg

SDIx

SSx

SCKx

Baud Rate
Generator
(SSPxADD)
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15.3 I2C Mode Overview

The Inter-Integrated Circuit Bus (I2C) is a multi-master
serial data communication bus. Devices communicate
in a master/slave environment where the master
devices initiate the communication. A slave device is
controlled through addressing.

The I2C bus specifies two signal connections:

• Serial Clock (SCLx)

• Serial Data (SDAx)

Figure 15-2 shows the block diagram of the MSSPx
module when operating in I2C mode.

Both the SCLx and SDAx connections are bidirectional
open-drain lines, each requiring pull-up resistors for the
supply voltage. Pulling the line to ground is considered
a logical zero and letting the line float is considered a
logical one.

Figure 15-11 shows a typical connection between two
processors configured as master and slave devices.

The I2C bus can operate with one or more master
devices and one or more slave devices. 

There are four potential modes of operation for a given
device:

• Master Transmit mode
(master is transmitting data to a slave)

• Master Receive mode
(master is receiving data from a slave)

• Slave Transmit mode
(slave is transmitting data to a master)

• Slave Receive mode
(slave is receiving data from the master)

To begin communication, a master device starts out in
Master Transmit mode. The master device sends out a
Start bit followed by the address byte of the slave it
intends to communicate with. This is followed by a sin-
gle Read/Write bit, which determines whether the mas-
ter intends to transmit to or receive data from the slave
device.

If the requested slave exists on the bus, it will respond
with an Acknowledge bit, otherwise known as an ACK.
The master then continues in either Transmit mode or
Receive mode and the slave continues in the comple-
ment, either in Receive mode or Transmit mode,
respectively.

A Start bit is indicated by a high-to-low transition of the
SDAx line while the SCLx line is held high. Address and
data bytes are sent out, Most Significant bit (MSb) first.
The Read/Write bit is sent out as a logical one when the
master intends to read data from the slave, and is sent
out as a logical zero when it intends to write data to the
slave. 

FIGURE 15-11: I2C MASTER/
SLAVE CONNECTION

The Acknowledge bit (ACK) is an active-low signal,
which holds the SDAx line low to indicate to the
transmitter that the slave device has received the
transmitted data and is ready to receive more.

The transition of data bits is always performed while the
SCLx line is held low. Transitions that occur while the
SCLx line is held high are used to indicate Start and
Stop bits.

If the master intends to write to the slave, then it
repeatedly sends out a byte of data, with the slave
responding after each byte with an ACK bit. In this
example, the master device is in Master Transmit mode
and the slave is in Slave Receive mode.

If the master intends to read from the slave, then it
repeatedly receives a byte of data from the slave, and
responds after each byte with an ACK bit. In this
example, the master device is in Master Receive mode
and the slave is Slave Transmit mode.

On the last byte of data communicated, the master
device may end the transmission by sending a Stop bit.
If the master device is in Receive mode, it sends the
Stop bit in place of the last ACK bit. A Stop bit is
indicated by a low-to-high transition of the SDAx line
while the SCLx line is held high.

In some cases, the master may want to maintain con-
trol of the bus and re-initiate another transmission. If
so, the master device may send another Start bit in
place of the Stop bit or last ACK bit when it is in receive
mode.

The I2C bus specifies three message protocols;

• Single message where a master writes data to a 
slave.

• Single message where a master reads data from 
a slave.

• Combined message where a master initiates a 
minimum of two writes, or two reads, or a 
combination of writes and reads, to one or more 
slaves.

Master

SCLK

SDIx

SCLK

SDOx

Slave
VDD

VDD
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15.6.8 ACKNOWLEDGE SEQUENCE 
TIMING

An Acknowledge sequence is enabled by setting the
Acknowledge Sequence Enable bit, ACKEN, of the
SSPxCON2 register. When this bit is set, the SCLx pin is
pulled low and the contents of the Acknowledge data bit
are presented on the SDAx pin. If the user wishes to
generate an Acknowledge, then the ACKDT bit should
be cleared. If not, the user should set the ACKDT bit
before starting an Acknowledge sequence. The Baud
Rate Generator then counts for one rollover period
(TBRG) and the SCLx pin is deasserted (pulled high).
When the SCLx pin is sampled high (clock arbitration),
the Baud Rate Generator counts for TBRG. The SCLx pin
is then pulled low. Following this, the ACKEN bit is auto-
matically cleared, the Baud Rate Generator is turned off
and the MSSPx module then goes into Idle mode
(Figure 15-30).

15.6.8.1 WCOL Status Flag

If the user writes the SSPxBUF when an Acknowledge
sequence is in progress, then WCOL is set and the
contents of the buffer are unchanged (the write does
not occur).

15.6.9 STOP CONDITION TIMING

A Stop bit is asserted on the SDAx pin at the end of a
receive/transmit by setting the Stop Sequence Enable
bit, PEN, of the SSPxCON2 register. At the end of a
receive/transmit, the SCLx line is held low after the
falling edge of the ninth clock. When the PEN bit is set,
the master will assert the SDAx line low. When the
SDAx line is sampled low, the Baud Rate Generator is
reloaded and counts down to ‘0’. When the Baud Rate
Generator times out, the SCLx pin will be brought high
and one TBRG (Baud Rate Generator rollover count)
later, the SDAx pin will be deasserted. When the SDAx
pin is sampled high while SCLx is high, the P bit of the
SSPxSTAT register is set. A TBRG later, the PEN bit is
cleared and the SSPxIF bit is set (Figure 15-31).

15.6.9.1 WCOL Status Flag

If the user writes the SSPxBUF when a Stop sequence
is in progress, then the WCOL bit is set and the
contents of the buffer are unchanged (the write does
not occur).

FIGURE 15-30: ACKNOWLEDGE SEQUENCE WAVEFORM         

Note: TBRG = one Baud Rate Generator period.

SDAx

SCLx

SSPxIF set at 

Acknowledge sequence starts here,
write to SSPxCON2

ACKEN automatically cleared

Cleared in

TBRG TBRG

the end of receive

8

ACKEN = 1, ACKDT = 0

D0

9

SSPxIF

software SSPxIF set at the end
of Acknowledge sequence

Cleared in
software

ACK
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15.6.13 MULTI -MASTER COMMUNICATION, 
BUS COLLISION AND BUS 
ARBITRATION

Multi-Master mode support is achieved by bus
arbitration. When the master outputs address/data bits
onto the SDAx pin, arbitration takes place when the
master outputs a ‘1’ on SDAx, by letting SDAx float high
and another master asserts a ‘0’. When the SCLx pin
floats high, data should be stable. If the expected data
on SDAx is a ‘1’ and the data sampled on the SDAx pin
is ‘0’, then a bus collision has taken place. The master
will set the Bus Collision Interrupt Flag, BCLxIF, and
reset the I2C port to its Idle state (Figure 15-32).

If a transmit was in progress when the bus collision
occurred, the transmission is halted, the BF flag is
cleared, the SDAx and SCLx lines are deasserted and
the SSPxBUF can be written to. When the user
services the bus collision Interrupt Service Routine and
if the I2C bus is free, the user can resume
communication by asserting a Start condition. 

If a Start, Repeated Start, Stop or Acknowledge
condition was in progress when the bus collision
occurred, the condition is aborted, the SDAx and SCLx
lines are deasserted and the respective control bits in
the SSPxCON2 register are cleared. When the user
services the bus collision Interrupt Service Routine and
if the I2C bus is free, the user can resume
communication by asserting a Start condition.

The master will continue to monitor the SDAx and SCLx
pins. If a Stop condition occurs, the SSPxIF bit will be set.

A write to the SSPxBUF will start the transmission of
data at the first data bit, regardless of where the
transmitter left off when the bus collision occurred.

In Multi-Master mode, the interrupt generation on the
detection of Start and Stop conditions allows the
determination of when the bus is free. Control of the I2C
bus can be taken when the P bit is set in the SSPxSTAT
register, or the bus is Idle and the S and P bits are
cleared.

FIGURE 15-32: BUS COLLISION TIMING FOR TRANSMIT AND ACKNOWLEDGE       

SDAx

SCLx

BCLxIF

SDAx released 

SDAx line pulled low
by another source

Sample SDAx. While SCLx is high,
data does not match what is driven 

Bus collision has occurred.

Set bus collision
interrupt (BCLxIF)

by the master.

by master

Data changes
while SCLx = 0
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16.4 EUSART Baud Rate Generator 
(BRG)

The Baud Rate Generator (BRG) is an 8-bit or 16-bit
timer that is dedicated to the support of both the
asynchronous and synchronous EUSART operation.
By default, the BRG operates in 8-bit mode. Setting the
BRG16 bit of the BAUDCONx register selects 16-bit
mode.

The SPBRGHx:SPBRGx register pair determines the
period of the free running baud rate timer. In
Asynchronous mode the multiplier of the baud rate
period is determined by both the BRGH bit of the
TXSTAx register and the BRG16 bit of the BAUDCONx
register. In Synchronous mode, the BRGH bit is ignored.

Table 16-3 contains the formulas for determining the
baud rate. Example 16-1 provides a sample calculation
for determining the baud rate and baud rate error. 

Typical baud rates and error values for various
Asynchronous modes have been computed for your
convenience and are shown in Table 16-5. It may be
advantageous to use the high baud rate (BRGH = 1),
or the 16-bit BRG (BRG16 = 1) to reduce the baud rate
error. The 16-bit BRG mode is used to achieve slow
baud rates for fast oscillator frequencies.

Writing a new value to the SPBRGHx, SPBRGx
register pair causes the BRG timer to be reset (or
cleared). This ensures that the BRG does not wait for a
timer overflow before outputting the new baud rate.

If the system clock is changed during an active receive
operation, a receive error or data loss may result. To
avoid this problem, check the status of the RCIDL bit to
make sure that the receive operation is Idle before
changing the system clock.

EXAMPLE 16-1: CALCULATING BAUD 
RATE ERROR 

For a device with FOSC of 16 MHz, desired baud rate
of 9600, Asynchronous mode, 8-bit BRG:

Solving for SPBRGHx:SPBRGx:

 X

FOSC

Desired Baud Rate
---------------------------------------------

64
--------------------------------------------- 1–=

Desired Baud Rate 
FOSC

64 [SPBRGHx:SPBRGx] 1+ 
--------------------------------------------------------------------------=

  

16000000
9600

------------------------

64
------------------------ 1–=

  25.042  25= =

Calculated Baud Rate 
16000000

64 25 1+ 
---------------------------=

  9615=

Error
Calc. Baud Rate Desired Baud Rate –

Desired Baud Rate 
--------------------------------------------------------------------------------------------=

  
9615 9600– 

9600
---------------------------------- 0.16%= =

TABLE 16-3: BAUD RATE FORMULAS

Configuration Bits
BRG/EUSART Mode Baud Rate Formula

SYNC BRG16 BRGH

0 0 0 8-bit/Asynchronous FOSC/[64 (n+1)]

0 0 1 8-bit/Asynchronous
FOSC/[16 (n+1)]

0 1 0 16-bit/Asynchronous

0 1 1 16-bit/Asynchronous

FOSC/[4 (n+1)]1 0 x 8-bit/Synchronous

1 1 x 16-bit/Synchronous

Legend: x = Don’t care, n = value of SPBRGHx, SPBRGx register pair.
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17.1.7 RESULT FORMATTING

The 10-bit A/D conversion result can be supplied in two
formats, left justified or right justified. The ADFM bit of
the ADCON2 register controls the output format.

Figure 17-2 shows the two output formats.

FIGURE 17-2: 10-BIT A/D CONVERSION RESULT FORMAT 

ADRESH ADRESL

(ADFM = 0) MSB LSB

bit 7 bit 0 bit 7 bit 0

10-bit A/D Result Unimplemented: Read as ‘0’

(ADFM = 1) MSB LSB

bit 7 bit 0 bit 7 bit 0

Unimplemented: Read as ‘0’ 10-bit A/D Result
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17.2 ADC Operation

17.2.1 STARTING A CONVERSION

To enable the ADC module, the ADON bit of the
ADCON0 register must be set to a ‘1’. Setting the GO/
DONE bit of the ADCON0 register to a ‘1’ will, depend-
ing on the ACQT bits of the ADCON2 register, either
immediately start the Analog-to-Digital conversion or
start an acquisition delay followed by the Analog-to-
Digital conversion.

Figure 17-3 shows the operation of the A/D converter
after the GO bit has been set and the ACQT<2:0> bits
are cleared. A conversion is started after the following
instruction to allow entry into SLEEP mode before the
conversion begins.

Figure 17-4 shows the operation of the A/D converter
after the GO bit has been set and the ACQT<2:0> bits
are set to ‘010’ which selects a 4 TAD acquisition time
before the conversion starts.

FIGURE 17-3: A/D CONVERSION TAD CYCLES (ACQT<2:0> = 000, TACQ = 0)    

FIGURE 17-4: A/D CONVERSION TAD CYCLES   (ACQT<2:0> = 010, TACQ = 4 TAD)    

Note: The GO/DONE bit should not be set in the
same instruction that turns on the ADC.
Refer to Section 17.2.10 “A/D
Conversion Procedure”.

TAD1 TAD2 TAD3 TAD4 TAD5 TAD6 TAD7 TAD8 TAD11

Set GO bit 

Holding capacitor is disconnected from analog input (0.5 TAD) 

TAD9 TAD10TCY - TAD

ADRESH:ADRESL is loaded, GO bit is cleared, 
ADIF bit is set, holding capacitor is connected to analog input. 

Conversion starts 

b0b9 b6 b5 b4 b3 b2 b1b8 b7

On the following cycle: 

1 TCY

Discharge 

1 2 3 4 5 6 7 8 11

Set GO bit 

(Holding capacitor is disconnected from analog input) 

9 10

Conversion starts 

1 2 3 4

(Holding capacitor continues
acquiring input) 

TACQT Cycles TAD Cycles 

Automatic
Acquisition

Time 

b0b9 b6 b5 b4 b3 b2 b1b8 b7

ADRESH:ADRESL is loaded, GO bit is cleared, 
ADIF bit is set, holding capacitor is connected to analog input. 

On the following cycle: 

1 TCY

Discharge 
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FIGURE 24-4: EXTERNAL BLOCK TABLE READ (EBTRn) DISALLOWED

FIGURE 24-5: EXTERNAL BLOCK TABLE READ (EBTRn) ALLOWED

WRTB, EBTRB = 11

WRT0, EBTR0 = 10

WRT1, EBTR1 = 11

WRT2, EBTR2 = 11

WRT3, EBTR3 = 11

TBLRD*

TBLPTR = 0008FFh

PC = 003FFEh

Results: All table reads from external blocks to Blockn are disabled whenever EBTRn = 0.
TABLAT register returns a value of ‘0’.

Register Values Program Memory Configuration Bit Settings

000000h

0007FFh
000800h

001FFFh
002000h

003FFFh
004000h

005FFFh
006000h

007FFFh

WRTB, EBTRB = 11

WRT0, EBTR0 = 10

WRT1, EBTR1 = 11

WRT2, EBTR2 = 11

WRT3, EBTR3 = 11

TBLRD*

TBLPTR = 0008FFh

PC = 001FFEh

Register Values Program Memory Configuration Bit Settings

Results: Table reads permitted within Blockn, even when EBTRBn = 0.
TABLAT register returns the value of the data at the location TBLPTR.

000000h

0007FFh
000800h

001FFFh
002000h

003FFFh
004000h

005FFFh
006000h

007FFFh
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MOVFF Move f to f

Syntax: MOVFF   fs,fd

Operands: 0  fs  4095
0  fd  4095

Operation: (fs)  fd

Status Affected: None

Encoding:
1st word (source)
2nd word (destin.)

1100
1111

ffff
ffff

ffff
ffff

ffffs
ffffd

Description: The contents of source register ‘fs’ are 
moved to destination register ‘fd’. 
Location of source ‘fs’ can be anywhere 
in the 4096-byte data space (000h to 
FFFh) and location of destination ‘fd’ 
can also be anywhere from 000h to 
FFFh.
Either source or destination can be W 
(a useful special situation).
MOVFF is particularly useful for 
transferring a data memory location to a 
peripheral register (such as the transmit 
buffer or an I/O port).
The MOVFF instruction cannot use the 
PCL, TOSU, TOSH or TOSL as the 
destination register.

Words: 2

Cycles: 2 (3)

Q Cycle Activity:

Q1 Q2 Q3 Q4

Decode Read
register ‘f’ 

(src)

Process 
Data

No 
operation

Decode No 
operation

No dummy 
read

No 
operation

Write 
register ‘f’ 

(dest)

Example: MOVFF   REG1, REG2

Before Instruction
REG1 = 33h
REG2 = 11h

After Instruction
REG1 = 33h
REG2 = 33h

MOVLB Move literal to low nibble in BSR 

Syntax: MOVLW   k

Operands: 0  k  255

Operation: k  BSR

Status Affected: None

Encoding: 0000 0001 kkkk kkkk

Description: The 8-bit literal ‘k’ is loaded into the 
Bank Select Register (BSR). The value 
of BSR<7:4> always remains ‘0’, 
regardless of the value of k7:k4.

Words: 1

Cycles: 1

Q Cycle Activity:

Q1 Q2 Q3 Q4

Decode Read
literal ‘k’

Process 
Data

Write literal 
‘k’ to BSR

Example: MOVLB 5

Before Instruction
BSR Register = 02h

After Instruction
BSR Register = 05h
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POP Pop Top of Return Stack

Syntax: POP

Operands: None

Operation: (TOS)  bit bucket

Status Affected: None

Encoding: 0000 0000 0000 0110

Description: The TOS value is pulled off the return 
stack and is discarded. The TOS value 
then becomes the previous value that 
was pushed onto the return stack.
This instruction is provided to enable 
the user to properly manage the return 
stack to incorporate a software stack.

Words: 1

Cycles: 1

Q Cycle Activity:

Q1 Q2 Q3 Q4

Decode No
operation

POP TOS 
value

No
operation

Example: POP
GOTO NEW

Before Instruction
TOS = 0031A2h
Stack (1 level down) = 014332h

After Instruction
TOS = 014332h
PC = NEW

PUSH Push Top of Return Stack

Syntax: PUSH

Operands: None

Operation: (PC + 2)  TOS

Status Affected: None

Encoding: 0000 0000 0000 0101

Description: The PC + 2 is pushed onto the top of 
the return stack. The previous TOS 
value is pushed down on the stack.
This instruction allows implementing a 
software stack by modifying TOS and 
then pushing it onto the return stack.

Words: 1

Cycles: 1

Q Cycle Activity:

Q1 Q2 Q3 Q4

Decode PUSH 
PC + 2 onto 
return stack

No 
operation

No 
operation

Example: PUSH

Before Instruction
TOS = 345Ah
PC = 0124h

After Instruction
PC = 0126h
TOS = 0126h
Stack (1 level down) = 345Ah
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25.2.2 EXTENDED INSTRUCTION SET 
  

ADDFSR Add Literal to FSR 

Syntax: ADDFSR   f, k

Operands: 0  k  63
f  [ 0, 1, 2 ]

Operation: FSR(f) + k  FSR(f)

Status Affected: None

Encoding: 1110 1000 ffkk kkkk

Description: The 6-bit literal ‘k’ is added to the 
contents of the FSR specified by ‘f’. 

Words: 1

Cycles: 1

Q Cycle Activity:

Q1 Q2 Q3 Q4

Decode Read
literal ‘k’

Process 
Data

Write to 
FSR

Example: ADDFSR 2, 23h

Before Instruction
FSR2 = 03FFh

After Instruction
FSR2 = 0422h

ADDULNK Add Literal to FSR2 and Return

Syntax: ADDULNK   k

Operands: 0  k  63

Operation: FSR2 + k  FSR2,

(TOS) PC

Status Affected: None

Encoding: 1110 1000 11kk kkkk

Description: The 6-bit literal ‘k’ is added to the 
contents of FSR2. A RETURN is then 
executed by loading the PC with the 
TOS. 
The instruction takes two cycles to 
execute; a NOP is performed during 
the second cycle.
This may be thought of as a special 
case of the ADDFSR instruction, 
where f = 3 (binary ‘11’); it operates 
only on FSR2. 

Words: 1

Cycles: 2

Q Cycle Activity:

Q1 Q2 Q3 Q4

Decode Read
literal ‘k’

Process 
Data

Write to 
FSR

No 
Operation

No 
Operation

No 
Operation

No 
Operation

Example: ADDULNK 23h

Before Instruction
FSR2 = 03FFh
PC = 0100h

After Instruction
FSR2 = 0422h
PC = (TOS)

Note: All PIC18 instructions may take an optional label argument preceding the instruction mnemonic for use in
symbolic addressing. If a label is used, the instruction syntax then becomes: {label} instruction argument(s).
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D135 0.9 18 A -40°C VDD = 1.8V Fosc = 32 kHz
(SEC_IDLE mode, 
SOSC source)

1.0 18 A +25°C

1.1 — A +60°C

1.3 20 A +85°C

2.3 22 A +125°C

D136 1.3 20 A -40°C VDD = 3.0V

1.4 20 A +25°C

1.5 — A +60°C

1.8 22 A +85°C

2.9 25 A +125°C

D137 12 30 A -40°C VDD = 2.3V Fosc = 32 kHz
(SEC_IDLE mode, 
SOSC source)

13 30 A +25°C

14 30 A +85°C

16 45 A +125°C

D138 13 35 A -40°C VDD = 3.0V

14 35 A +25°C

16 35 A +85°C

18 50 A +125°C

D139 14 40 A -40°C VDD = 5.0V

15 40 A +25°C

16 40 A +85°C

18 60 A +125°C

27.7 DC Characteristics: Secondary Oscillator Supply Current, PIC18(L)F2X/4XK22 

PIC18LF2X/4XK22 
Standard Operating Conditions (unless otherwise stated)
Operating temperature -40°C  TA  +125°C

PIC18F2X/4XK22 
Standard Operating Conditions (unless otherwise stated)
Operating temperature -40°C  TA  +125°C

Param 
No.

Device Characteristics Typ Max Units Conditions

Note 1: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading 
and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on 
the current consumption.
Test condition: All Peripheral Module Control bits in PMD0, PMD1 and PMD2 set to ‘1’. 

2: The test conditions for all IDD measurements in active operation mode are: 
All I/O pins set as outputs driven to Vss;
MCLR = VDD;
SOSCI / SOSCO = complementary external square wave, from rail-to-rail.
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FIGURE 28-28: PIC18F2X/4XK22 TYPICAL IDD: RC_RUN HF-INTOSC

FIGURE 28-29: PIC18F2X/4XK22 MAXIMUM IDD: RC_RUN HF-INTOSC
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