

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	48MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	35
Program Memory Size	32KB (16K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	1.5K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 30x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	40-UFQFN Exposed Pad
Supplier Device Package	40-UQFN (5x5)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18lf45k22-e-mv

Email: info@E-XFL.COM

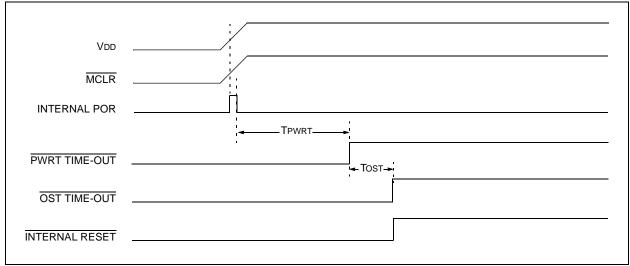
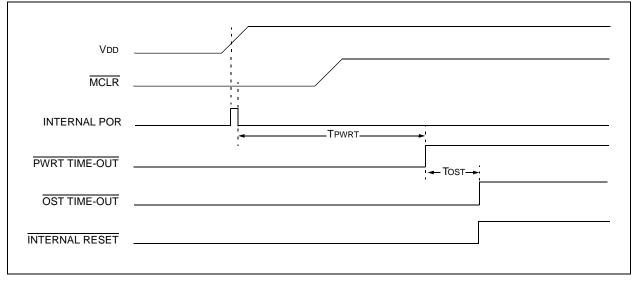

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

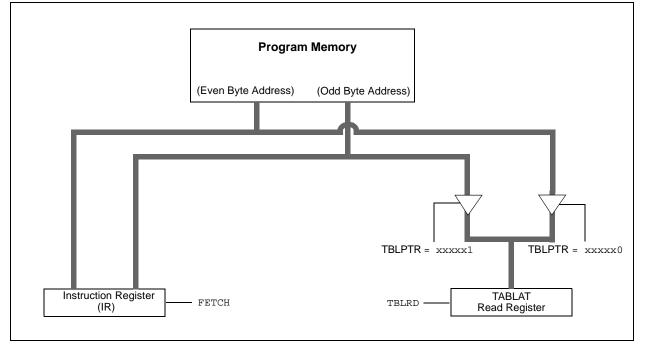
TABLE 4-2: TIME-OUT IN VARIOUS SITUATIONS


Oscillator	Power-up ⁽²⁾ ar	nd Brown-out	Exit from
Configuration	PWRTEN = 0	PWRTEN = 1	Power-Managed Mode
HSPLL	66 ms ⁽¹⁾ + 1024 Tosc + 2 ms ⁽²⁾	1024 Tosc + 2 ms ⁽²⁾	1024 Tosc + 2 ms ⁽²⁾
HS, XT, LP	66 ms ⁽¹⁾ + 1024 Tosc	1024 Tosc	1024 Tosc
EC, ECIO	66 ms ⁽¹⁾	_	—
RC, RCIO	66 ms ⁽¹⁾	_	—
INTIO1, INTIO2	66 ms ⁽¹⁾		—

Note 1: 66 ms (65.5 ms) is the nominal Power-up Timer (PWRT) delay.2: 2 ms is the nominal time required for the PLL to lock.

FIGURE 4-3: TIME-OUT SEQUENCE ON POWER-UP (MCLR TIED TO VDD, VDD RISE < TPWRT)

FIGURE 4-4: TIME-OUT SEQUENCE ON POWER-UP (MCLR NOT TIED TO VDD): CASE 1



6.4 Reading the Flash Program Memory

The TBLRD instruction retrieves data from program memory and places it into data RAM. Table reads from program memory are performed one byte at a time.

TBLPTR points to a byte address in program space. Executing TBLRD places the byte pointed to into TABLAT. In addition, TBLPTR can be modified automatically for the next table read operation. The internal program memory is typically organized by words. The Least Significant bit of the address selects between the high and low bytes of the word. Figure 6-4 shows the interface between the internal program memory and the TABLAT.

FIGURE 6-4: READS FROM FLASH PROGRAM MEMORY

EXAMPLE 6-1: READING A FLASH PROGRAM MEMORY WORD

	MOVLW MOVWF	CODE_ADDR_UPPER TBLPTRU		Load TBLPTR with the base address of the word
	MOVLW	CODE_ADDR_HIGH	'	address of the word
	MOVWF	TBLPTRH		
	MOVLW	CODE_ADDR_LOW		
	MOVWF	TBLPTRL		
READ_WORD				
	TBLRD*+		;	read into TABLAT and increment
	MOVF	TABLAT, W	;	get data
	MOVWF	WORD_EVEN		
	TBLRD*+		;	read into TABLAT and increment
	MOVFW	TABLAT, W	;	get data
	MOVF	WORD_ODD		

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
ANSELB	—	—	ANSB5	ANSB4	ANSB3	ANSB2	ANSB1	ANSB0	150
ECCP2AS	CCP2ASE		CCP2AS<2:0>	>	PSS2AC<	1:0>	PSS2B	BD<1:0>	202
CCP2CON	P2M	<1:0>	DC2B	<1:0>		CCP2M<3	:0>		198
ECCP3AS	CCP3ASE	(CCP3AS<2:0>		PSS3AC<	1:0>	PSS3B	SD<1:0>	202
CCP3CON	P3M	<1:0>	DC3B-	<1:0>		CCP3M<3	:0>		198
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	109
INTCON2	RBPU	INTEDG0	INTEDG1	INTEDG2	—	TMR0IP	_	RBIP	110
INTCON3	INT2IP	INT1IP	_	INT2IE	INT1IE	_	INT2IF	INT1IF	111
IOCB	IOCB7	IOCB6	IOCB5	IOCB4	—		_	_	153
LATB	LATB7	LATB6	LATB5	LATB4	LATB3	LATB2	LATB1	LATB0	152
PORTB	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	148
SLRCON	—			SLRE ⁽¹⁾	SLRD ⁽¹⁾	SLRC	SLRB	SLRA	153
T1GCON	TMR1GE	T1GPOL	T1GTM	T1GSPM	T1GGO/DONE	T1GVAL	T1GS	S<1:0>	167
T3CON	TMR3C	CS<1:0>	T3CKP	S<1:0>	T3SOSCEN	T3SYNC	T3RD16	TMR3ON	166
T5GCON	TMR5GE	T5GPOL	T5GTM	T5GSPM	T5GGO/DONE	T5GVAL	T5GS	S<1:0>	167
TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	151
WPUB	WPUB7	WPUB6	WPUB5	WPUB4	WPUB3	WPUB2	WPUB1	WPUB0	152

TABLE 10-6: REGISTERS ASSOCIATED WITH PORTB

Legend: — = unimplemented locations, read as '0'. Shaded bits are not used for PORTB.

Note 1: Available on PIC18(L)F4XK22 devices.

TABLE 10-7: CONFIGURATION REGISTERS ASSOCIATED WITH PORTB

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
CONFIG3H	MCLRE	—	P2BMX	T3CMX	HFOFST	ССРЗМХ	PBADEN	CCP2MX	348
CONFIG4L	DEBUG	XINST	_	_	_	LVP ⁽¹⁾	—	STRVEN	349

Legend: — = unimplemented locations, read as '0'. Shaded bits are not used for PORTB.

Note 1: Can only be changed when in high voltage programming mode.

REGISTER I	U-Z. FURI	C. FURIERI	EGISTER				
U-0	U-0	U-0	U-0	R/W-u/x	R/W-u/x	R/W-u/x	R/W-u/x
_	—	—	—	RE3 ⁽¹⁾	RE2 ^{(2), (3)}	RE1 ^{(2), (3)}	RE0 ^{(2), (3)}
bit 7							bit C
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	d as '0'	
'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unk	nown		
-n/n = Value at	POR and BOR	R/Value at all o	ther Resets				

REGISTER 10-2: PORTE: PORTE REGISTER

bit 3 **RE3:** PORTE Input bit value⁽¹⁾

bit 2-0 **RE<2:0>:** PORTE I/O bit values^{(2), (3)}

Note 1: Port is available as input only when MCLRE = 0.

- 2: Writes to PORTx are written to corresponding LATx register. Reads from PORTx register is return of I/O pin values.
- 3: Available on PIC18(L)F4XK22 devices.

REGISTER 10-3: ANSELA – PORTA ANALOG SELECT REGISTER

U-0	U-0	R/W-1	U-0	R/W-1	R/W-1	R/W-1	R/W-1
—	—	ANSA5	—	ANSA3	ANSA2	ANSA1	ANSA0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	t, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

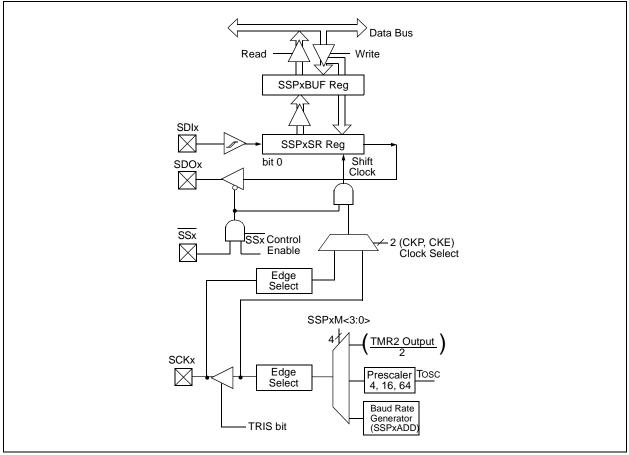
bit 7-6	Unimplemented: Read as '0'
bit 5	ANSA5: RA5 Analog Select bit
	1 = Digital input buffer disabled0 = Digital input buffer enabled
bit 4	Unimplemented: Read as '0'
bit 3-0	ANSA<3:0>: RA<3:0> Analog Select bit
	1 = Digital input buffer disabled

0 = Digital input buffer enabled

15.0 MASTER SYNCHRONOUS SERIAL PORT (MSSP1 AND MSSP2) MODULE

15.1 Master SSPx (MSSPx) Module Overview

The Master Synchronous Serial Port (MSSPx) module is a serial interface useful for communicating with other peripheral or microcontroller devices. These peripheral devices may be Serial EEPROMs, shift registers, display drivers, A/D converters, etc. The MSSPx module can operate in one of two modes:

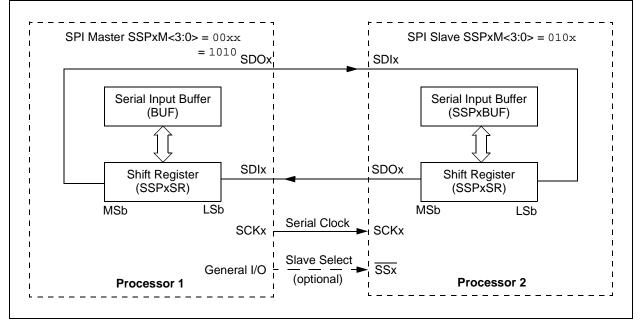

- Serial Peripheral Interface (SPI)
- Inter-Integrated Circuit (I²C)

The SPI interface supports the following modes and features:

- Master mode
- Slave mode
- Clock Parity
- Slave Select Synchronization (Slave mode only)
- · Daisy chain connection of slave devices

Figure 15-1 is a block diagram of the SPI interface module.

FIGURE 15-1: MSSPx BLOCK DIAGRAM (SPI MODE)


Any serial port function that is not desired may be overridden by programming the corresponding data direction (TRIS) register to the opposite value.

The MSSPx consists of a transmit/receive shift register (SSPxSR) and a buffer register (SSPxBUF). The SSPxSR shifts the data in and out of the device, MSb first. The SSPxBUF holds the data that was written to the SSPxSR until the received data is ready. Once the 8 bits of data have been received, that byte is moved to the SSPxBUF register. Then, the Buffer Full Detect bit, BF of the SSPxSTAT register, and the interrupt flag bit, SSPxIF, are set. This double-buffering of the received data (SSPxBUF) allows the next byte to start reception before reading the data that was just received. Any write to the SSPxBUF register during transmission/reception of data will be ignored and the write collision detect bit, WCOL of the SSPxCON1 register, will be

set. User software must clear the WCOL bit to allow the following write(s) to the SSPxBUF register to complete successfully.

When the application software is expecting to receive valid data, the SSPxBUF should be read before the next byte of data to transfer is written to the SSPxBUF. The Buffer Full bit, BF of the SSPxSTAT register, indicates when SSPxBUF has been loaded with the received data (transmission is complete). When the SSPxBUF is read, the BF bit is cleared. This data may be irrelevant if the SPI is only a transmitter. Generally, the MSSPx interrupt is used to determine when the transmission/reception has completed. If the interrupt method is not going to be used, then software polling can be done to ensure that a write collision does not occur.

When one device is transmitting a logical one, or letting the line float, and a second device is transmitting a logical zero, or holding the line low, the first device can detect that the line is not a logical one. This detection, when used on the SCLx line, is called clock stretching. Clock stretching give slave devices a mechanism to control the flow of data. When this detection is used on the SDAx line, it is called arbitration. Arbitration ensures that there is only one master device communicating at any single time.

15.3.1 CLOCK STRETCHING

When a slave device has not completed processing data, it can delay the transfer of more data through the process of clock stretching. An addressed slave device may hold the SCLx clock line low after receiving or sending a bit, indicating that it is not yet ready to continue. The master that is communicating with the slave will attempt to raise the SCLx line in order to transfer the next bit, but will detect that the clock line has not yet been released. Because the SCLx connection is open-drain, the slave has the ability to hold that line low until it is ready to continue communicating.

Clock stretching allows receivers that cannot keep up with a transmitter to control the flow of incoming data.

15.3.2 ARBITRATION

Each master device must monitor the bus for Start and Stop bits. If the device detects that the bus is busy, it cannot begin a new message until the bus returns to an Idle state.

However, two master devices may try to initiate a transmission on or about the same time. When this occurs, the process of arbitration begins. Each transmitter checks the level of the SDAx data line and compares it to the level that it expects to find. The first transmitter to observe that the two levels don't match, loses arbitration, and must stop transmitting on the SDAx line.

For example, if one transmitter holds the SDAx line to a logical one (lets it float) and a second transmitter holds it to a logical zero (pulls it low), the result is that the SDAx line will be low. The first transmitter then observes that the level of the line is different than expected and concludes that another transmitter is communicating.

The first transmitter to notice this difference is the one that loses arbitration and must stop driving the SDAx line. If this transmitter is also a master device, it also must stop driving the SCLx line. It then can monitor the lines for a Stop condition before trying to reissue its transmission. In the meantime, the other device that has not noticed any difference between the expected and actual levels on the SDAx line continues with its original transmission. It can do so without any complications, because so far, the transmission appears exactly as expected with no other transmitter disturbing the message.

Slave Transmit mode can also be arbitrated, when a master addresses multiple slaves, but this is less common.

If two master devices are sending a message to two different slave devices at the address stage, the master sending the lower slave address always wins arbitration. When two master devices send messages to the same slave address, and addresses can sometimes refer to multiple slaves, the arbitration process must continue into the data stage.

Arbitration usually occurs very rarely, but it is a necessary process for proper multi-master support.

15.6.7 I²C MASTER MODE RECEPTION

Master mode reception (Figure 15-29) is enabled by programming the Receive Enable bit, RCEN, of the SSPxCON2 register.

Note: The MSSPx module must be in an Idle state before the RCEN bit is set or the RCEN bit will be disregarded.

The Baud Rate Generator begins counting and on each rollover, the state of the SCLx pin changes (high-to-low/ low-to-high) and data is shifted into the SSPxSR. After the falling edge of the eighth clock, the receive enable flag is automatically cleared, the contents of the SSPxSR are loaded into the SSPxBUF, the BF flag bit is set, the SSPxIF flag bit is set and the Baud Rate Generator is suspended from counting, holding SCLx low. The MSSPx is now in Idle state awaiting the next command. When the buffer is read by the CPU, the BF flag bit is automatically cleared. The user can then send an Acknowledge bit at the end of reception by setting the Acknowledge Sequence Enable bit, ACKEN, of the SSPxCON2 register.

15.6.7.1 BF Status Flag

In receive operation, the BF bit is set when an address or data byte is loaded into SSPxBUF from SSPxSR. It is cleared when the SSPxBUF register is read.

15.6.7.2 SSPxOV Status Flag

In receive operation, the SSPxOV bit is set when eight bits are received into the SSPxSR and the BF flag bit is already set from a previous reception.

15.6.7.3 WCOL Status Flag

If the user writes the SSPxBUF when a receive is already in progress (i.e., SSPxSR is still shifting in a data byte), the WCOL bit is set and the contents of the buffer are unchanged (the write does not occur).

15.6.7.4 Typical Receive Sequence:

- 1. The user generates a Start condition by setting the SEN bit of the SSPxCON2 register.
- 2. SSPxIF is set by hardware on completion of the Start.
- 3. SSPxIF is cleared by software.
- 4. User writes SSPxBUF with the slave address to transmit and the R/W bit set.
- 5. Address is shifted out the SDAx pin until all eight bits are transmitted. Transmission begins as soon as SSPxBUF is written to.
- The MSSPx module shifts in the ACK bit from the slave device and writes its value into the ACKSTAT bit of the SSPxCON2 register.
- The MSSPx module generates an interrupt at the end of the ninth clock cycle by setting the SSPxIF bit.
- 8. User sets the RCEN bit of the SSPxCON2 register and the Master clocks in a byte from the slave.
- 9. After the 8th falling edge of SCLx, SSPxIF and BF are set.
- 10. Master clears SSPxIF and reads the received byte from SSPxUF, clears BF.
- 11. Master sets ACK value sent to slave in ACKDT bit of the SSPxCON2 register and initiates the ACK by setting the ACKEN bit.
- 12. Masters ACK is clocked out to the slave and SSPxIF is set.
- 13. User clears SSPxIF.
- 14. Steps 8-13 are repeated for each received byte from the slave.
- 15. Master sends a not ACK or Stop to end communication.

EXAMPLE 19-1: SETUP FOR CTMU CALIBRATION ROUTINES

```
#include "pl8cxxx.h"
void setup(void)
{ //CTMUCONH/1 - CTMU Control registers
   CTMUCONH = 0x00; //make sure CTMU is disabled
  CTMUCONL = 0x90;
  //CTMU continues to run when emulator is stopped,CTMU continues
  //to run in idle mode, Time Generation mode disabled, Edges are blocked
   //No edge sequence order, Analog current source not grounded, trigger
   //output disabled, Edge2 polarity = positive level, Edge2 source =
   //source 0, Edgel polarity = positive level, Edgel source = source 0,
   //CTMUICON - CTMU Current Control Register
   CTMUICON = 0x01; //0.55uA, Nominal - No Adjustment
//Set up AD converter;
TRISA=0x04;
                        //set channel 2 as an input
   // Configure AN2 as an analog channel
  ANSELAbits ANSA2=1;
  TRISAbits.TRISA2=1;
  // ADCON2
  ADCON2bits.ADFM=1; // Results format 1= Right justified
ADCON2bits.ACQT=1; // Acquition time 7 = 20TAD 2 = 4TAD 1=2TAD
ADCON2bits.ADCS=2; // Clock conversion bits 6= FOSC/64 2=FOSC/
                        // Clock conversion bits 6= FOSC/64 2=FOSC/32
  ADCON2bits.ADCS=2;
  // ADCON1
  ADCON1bits.PVCFG0 =0;
                        // Vref+ = AVdd
  ADCON1bits.NVCFG1 =0;
                         // Vref- = AVss
 // ADCON0
                        // Select ADC channel
  ADCON0bits.CHS=2;
  ADCON0bits.ADON=1; // Turn on ADC
}
```

19.9 Effects of a Reset on CTMU

Upon Reset, all registers of the CTMU are cleared. This leaves the CTMU module disabled, its current source is turned off and all configuration options return to their default settings. The module needs to be re-initialized following any Reset.

If the CTMU is in the process of taking a measurement at the time of Reset, the measurement will be lost. A partial charge may exist on the circuit that was being measured, and should be properly discharged before the CTMU makes subsequent attempts to make a measurement. The circuit is discharged by setting and then clearing the IDISSEN bit (CTMUCONH<1>) while the A/D Converter is connected to the appropriate channel.

19.10 Registers

There are three control registers for the CTMU:

- CTMUCONH
- CTMUCONL
- CTMUICON

The CTMUCONH and CTMUCONL registers (Register 19-1 and Register 19-2) contain control bits for configuring the CTMU module edge source selection, edge source polarity selection, edge sequencing, A/D trigger, analog circuit capacitor discharge and enables. The CTMUICON register (Register 19-3) has bits for selecting the current source range and current source trim.

19.11 Register Definitions: CTMU Control

REGISTER 19-1: CTMUCONH: CTMU CONTROL REGISTER 0

					•		
R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0
CTMUEN		CTMUSIDL	TGEN	EDGEN	EDGSEQEN	IDISSEN	CTTRIG
bit 7							bit 0

Legend:				
R = Read	able bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value	e at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown
bit 7	CTMUEN	I: CTMU Enable bit		
		ule is enabled ule is disabled		
bit 6	Unimple	mented: Read as '0'		
bit 5	CTMUSI	DL: Stop in Idle Mode bit		
		ontinue module operation wh		
bit 4	TGEN: T	ime Generation Enable bit		
		bles edge delay generation bles edge delay generation		
bit 3	EDGEN:	Edge Enable bit		
	0	es are not blocked es are blocked		
bit 2	EDGSEC	EN: Edge Sequence Enable	e bit	
	•	e 1 event must occur before l dge sequence is needed	Edge 2 event can occur	
bit 1	IDISSEN	: Analog Current Source Cor	ntrol bit	
		og current source output is g og current source output is n		
bit 0	CTTRIG:	CTMU Special Event Trigge	r Control Bit	
		IU Special Event Trigger is ei IU Special Event Trigger is di		

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—			DACR<4:0>		
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit				U = Unimpler	nented bit, read	as '0'	
u = Bit is unchanged x = Bit is unkno			nown	-n/n = Value a	at POR and BO	R/Value at all o	ther Resets
'1' = Bit is set		'0' = Bit is clea	ared				

REGISTER 22-2: VREFCON2: VOLTAGE REFERENCE CONTROL REGISTER 1

bit 7-5 Unimplemented: Read as '0'

bit 4-0 DACR<4:0>: DAC Voltage Output Select bits VOUT = ((VSRC+) - (VSRC-))*(DACR<4:0>/(2⁵)) + VSRC-

TABLE 22-1: REGISTERS ASSOCIATED WITH DAC MODULE

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
VREFCON0	FVREN	FVRST	FVRS<1:0>		_	_	_	_	332
VREFCON1	DACEN	DACLPS	DACOE	_	DACPS	S<1:0>	_	DACNSS	335
VREFCON2	_	_	_	DACR<4:0>				336	

Legend: — = Unimplemented locations, read as '0'. Shaded bits are not used by the DAC module.

U-0	U-0	U-0	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1
_	_	_	BORV	′<1:0> ⁽¹⁾	BOREN<1:0> ⁽²⁾		PWRTEN ⁽²⁾
bit 7							bit
Legend:	1.12					0 1	
R = Readable		P = Programma	able bit	•	nted bit, read as	0,	
-n = Value wh	nen device is unprogr	ammed		x = Bit is unkno	wn		
bit 7-5	Unimplementee	d: Read as '0'					
L 4 4 0			/ IA I I I (1)				
bit 4-3		own-out Reset \	oltage bits				
DIT 4-3	11 = VBOR set to	o 1.9V nominal	oltage bits(")				
dit 4-3	11 = VBOR set to 10 = VBOR set to	o 1.9V nominal o 2.2V nominal	oltage bits				
dit 4-3	11 = VBOR set to 10 = VBOR set to 01 = VBOR set to	o 1.9V nominal o 2.2V nominal o 2.5V nominal	Oltage Dits."				
	11 = VBOR set to 10 = VBOR set to 01 = VBOR set to 00 = VBOR set to	o 1.9V nominal o 2.2V nominal o 2.5V nominal o 2.85V nominal	J				
	11 = VBOR set to 10 = VBOR set to 01 = VBOR set to 00 = VBOR set to BOREN<1:0>: E	o 1.9V nominal o 2.2V nominal o 2.5V nominal o 2.85V nominal Brown-out Reset	Enable bits ⁽²⁾	/ (SBOREN is dis	abled)		
	11 = VBOR set to 10 = VBOR set to 01 = VBOR set to 00 = VBOR set to BOREN<1:0>: E 11 = Brown-ou	o 1.9V nominal o 2.2V nominal o 2.5V nominal o 2.85V nominal Brown-out Reset tt Reset enabled	Enable bits ⁽²⁾ in hardware only	/ (SBOREN is dis / and disabled in {			
	11 = VBOR set to 10 = VBOR set to 01 = VBOR set to 00 = VBOR set to BOREN<1:0>: E 11 = Brown-ou 10 = Brown-ou	o 1.9V nominal o 2.2V nominal o 2.5V nominal o 2.85V nominal Brown-out Reset tt Reset enabled	Enable bits ⁽²⁾ in hardware only	۲ (SBOREN is dis ۲ and disabled in S			
	11 = VBOR set to 10 = VBOR set to 01 = VBOR set to 00 = VBOR set to BOREN<1:0>: E 11 = Brown-ou 10 = Brown-ou (SBOREN	o 1.9V nominal o 2.2V nominal o 2.5V nominal o 2.85V nominal Brown-out Reset it Reset enabled t Reset enabled N is disabled)	Enable bits ⁽²⁾ in hardware only in hardware only		Sleep mode		
bit 2-1	11 = VBOR set to 10 = VBOR set to 01 = VBOR set to 00 = VBOR set to BOREN<1:0>: E 11 = Brown-ou 10 = Brown-ou (SBOREN	o 1.9V nominal o 2.2V nominal o 2.5V nominal o 2.85V nominal Brown-out Reset it Reset enabled it Reset enabled v is disabled) it Reset enabled	Enable bits ⁽²⁾ in hardware only in hardware only and controlled b	y and disabled in S y software (SBOF	Sleep mode		
	11 = VBOR set to 10 = VBOR set to 01 = VBOR set to 00 = VBOR set to BOREN<1:0>: E 11 = Brown-ou 10 = Brown-ou (SBOREN 01 = Brown-ou	o 1.9V nominal o 2.2V nominal o 2.5V nominal o 2.85V nominal Brown-out Reset tt Reset enabled tt Reset enabled v is disabled) tt Reset enabled tt Reset disabled	Enable bits ⁽²⁾ in hardware only in hardware only and controlled b in hardware and	y and disabled in S y software (SBOF	Sleep mode		
bit 2-1	11 = VBOR set to 10 = VBOR set to 01 = VBOR set to 00 = VBOR set to BOREN<1:0>: F 11 = Brown-ou 10 = Brown-ou (SBOREN 01 = Brown-ou 00 = Brown-ou	o 1.9V nominal o 2.2V nominal o 2.5V nominal o 2.85V nominal Brown-out Reset it Reset enabled it Reset enabled v is disabled) it Reset enabled it Reset disabled er-up Timer Enabled	Enable bits ⁽²⁾ in hardware only in hardware only and controlled b in hardware and	y and disabled in S y software (SBOF	Sleep mode		

2: The Power-up Timer is decoupled from Brown-out Reset, allowing these features to be independently controlled.

24.5.1 PROGRAM MEMORY CODE PROTECTION

The program memory may be read to or written from any location using the table read and table write instructions. The device ID may be read with table reads. The Configuration registers may be read and written with the table read and table write instructions.

In Normal execution mode, the CPn bits have no direct effect. CPn bits inhibit external reads and writes. A block of user memory may be protected from table writes if the WRTn Configuration bit is '0'. The EBTRn bits control table reads. For a block of user memory with the EBTRn bit cleared to '0', a table READ instruction that executes from within that block is allowed to read. A table read instruction that executes from a location outside of that block is not allowed to read and will result in reading '0's. Figures 24-3 through 24-5 illustrate table write and table read protection.

Note:	Code protection bits may only be written
	to a '0' from a '1' state. It is not possible to
	write a '1' to a bit in the '0' state. Code pro-
	tection bits are only set to '1' by a full chip
	erase or block erase function. The full chip
	erase and block erase functions can only
	be initiated via ICSP™ or an external
	programmer.

FIGURE 24-3: TABLE WRITE (WRTn) DISALLOWED

Register Values	Program Memory	Configuration Bit Settings
	000000 0007Ff 000800	WRTB, EBTRB = 11 Th
TBLPTR = 0008FFh	▶┍╼	WRT0, EBTR0 = 01
PC = 001FFEh	TBLWT* 001FFI 002000	
	003FFI	
PC = 005FFEh	TBLWT* 005FFI 006000	
		WRT3, EBTR3 = 11
Results: All table writes di	sabled to Blockn whenever WRTn = 0.	-11

PIC18(L)F2X/4XK22

SUBLW	Subtract W from literal	SUBWF	Subt	Subtract W from f			
Syntax:	SUBLW k			Syntax:	SUBW	/F f {,d {,a}}	
Operands:	$0 \le k \le 255$			Operands:	$0 \le f \le$	255	
Operation:	$k - (W) \rightarrow V$	W			d ∈ [0	-	
Status Affected:	N, OV, C, E	DC, Z		Operation:	a ∈ [0 /f) ()		
Encoding:	0000	1000 kkł	k kkkk	Status Affect		V) \rightarrow dest	
Description		acted from the		Encoding:		C, DC, Z	ff ffff
	literal 'k'. Tl	he result is pla	aced in W.	Description:		ct W from registe	
Words:	1			Description.		ement method). I	
Cycles:	1					s stored in W. If	
Q Cycle Activity:					result (defau	is stored back in It)	register 'f'
Q1	Q2	Q3	Q4		lf 'a' is	'0', the Access E	
Decode	Read literal 'k'	Process Data	Write to W		to sele	ed. If 'a' is '1', the ect the GPR bank	
Example 1:	SUBLW 0	2h				'0' and the exten enabled, this instr	
Before Instruc						es in Indexed Lite	
W C	= 01h = ?					ssing mode wher	
After Instructi W	on = 01h					(5Fh). See Section Oriented and Bit	
С	= 1 ; res	sult is positive	•		Instru	ctions in Indexed	
Z N	= 0 = 0					' for details.	
Example 2:	SUBLW 0	2h		Words:	1		
Before Instruc				Cycles:	1		
W C	= 02h = ?			Q Cycle Ac	-	03	04
After Instructi				1	Q1 Q2 code Read	Q3 Process	Q4 Write to
W C	= 00h = 1 ; res	sult is zero		200	register		destination
ZN	= 1 = 0			Example 1:	SUBWI	REG, 1, 0	
Example 3:	SUBLW 0	2h			Instruction		
Before Instruc	ction			R W	EG = 3 / = 2		
W C	= 03h = ?			C After Ir	= ?		
After Instructi	on			R	EG = 1		
W C		2's complement sult is negative		W C		; result is positiv	/e
Z N	= 0 = 1	5		Z	= 0	· · ·	
				Example 2:	-	REG, 0, 0	
				Before	Instruction		
				R W	EG = 2 / = 2		
				С	= ?		
					nstruction EG = 2		
				W C		; result is zero	
				Z	= 1	,	
				Example 3:	-	REG, 1, 0	
					Instruction	<u>ла</u> с, т, О	
				R W C			
				After Ir	nstruction		
				R	EG = FFh	;(2's compleme	nt)
				C	= 0	; result is negat	ve

27.4 DC Characteristics: RC Idle Supply Current, PIC18(L)F2X/4XK22

PIC18LF2X/4XK22		Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +125^{\circ}C$							
PIC18F2X/4XK22		$\begin{array}{llllllllllllllllllllllllllllllllllll$							
Param Device Characteristics		Typ Max Units Condition				5			
D045	Supply Current (IDD)(1),(2)	0.5	18	μΑ	-40°C	VDD = 1.8V	Fosc = 31 kHz		
		0.6	18	μΑ	+25°C		(RC_IDLE mode, LFINTOSC source)		
		0.7	—	μΑ	+60°C		LFINTOSC Source)		
		0.75	20	μΑ	+85°C				
		2.3	22	μΑ	+125°C				
D046		1.1	20	μΑ	-40°C	VDD = 3.0V			
		1.2	20	μΑ	+25°C				
		1.3	—	μΑ	+60°C				
		1.4	22	μΑ	+85°C				
		3.2	25	μΑ	+125°C				
D047		17	30	μΑ	-40°C	VDD = 2.3V	Fosc = 31 kHz		
		13	30	μΑ	+25°C		(RC_IDLE mode, LFINTOSC source)		
		14	30	μΑ	+85°C				
		15	45	μΑ	+125°C				
D048		19	35	μΑ	-40°C	VDD = 3.0V			
		15	35	μΑ	+25°C				
		16	35	μΑ	+85°C				
		17	50	μΑ	+125°C				
D049		21	40	μΑ	-40°C	VDD = 5.0V			
		15	40	μΑ	+25°C				
		16	40	μΑ	+85°C				
		18	60	μΑ	+125°C				
D050		0.11	0.20	mA	-40°C to +125°C	VDD = 1.8V	Fosc = 500 kHz		
D051		0.12	0.25	mA	-40°C to +125°C	VDD = 3.0V	(RC_IDLE mode, MFINTOSC source)		
D052		0.14	0.21	mA	-40°C to +125°C	VDD = 2.3V	Fosc = 500 kHz		
D053		0.15	0.25	mA	-40°C to +125°C	VDD = 3.0V	(RC_IDLE mode, MFINTOSC source)		
D054		0.20	0.31	mA	-40°C to +125°C	VDD = 5.0V			

Note 1: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on the current consumption.

Test condition: All Peripheral Module Control bits in PMD0, PMD1 and PMD2 set to '1'.

2: The test conditions for all IDD measurements in active operation mode are:

All I/O pins set as outputs driven to Vss;

 $\overline{MCLR} = VDD;$

OSC1 = external square wave, from rail-to-rail (PRI_RUN and PRI_IDLE only).

27.11 AC (Timing) Characteristics

27.11.1 TIMING PARAMETER SYMBOLOGY

The timing parameter symbols have been created using one of the following formats:

1. TppS2p	pS	3. Tcc:st	(I ² C specifications only)
2. TppS		4. Ts	(I ² C specifications only)
Т			
F	Frequency	Т	Time
Lowercase	e letters (pp) and their meanings:		
рр			
сс	CCP1	osc	OSC1
ck	CLKOUT	rd	RD
cs	CS	rw	RD or WR
di	SDI	sc	SCK
do	SDO	SS	SS
dt	Data in	tO	ТОСКІ
io	I/O port	t1	T13CKI
mc	MCLR	wr	WR
Uppercase	e letters and their meanings:		
S			
F	Fall	Р	Period
Н	High	R	Rise
1	Invalid (High-impedance)	V	Valid
L	Low	Z	High-impedance
I ² C only			
AA	output access	High	High
BUF	Bus free	Low	Low
TCC:ST (I ² C	Specifications only)		
CC			
HD	Hold	SU	Setup
ST			
DAT	DATA input hold	STO	Stop condition
STA	Start condition		

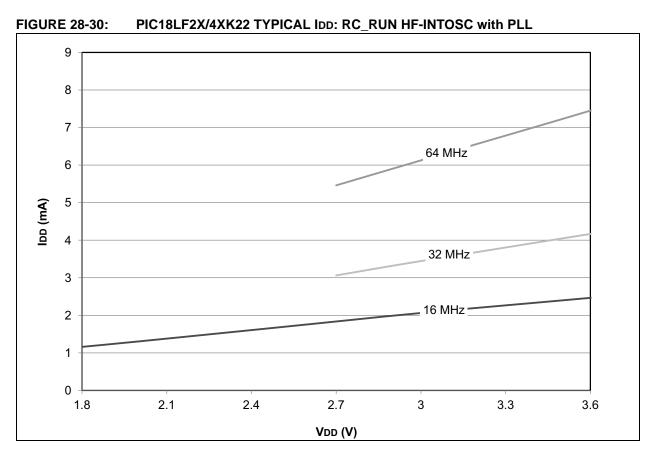
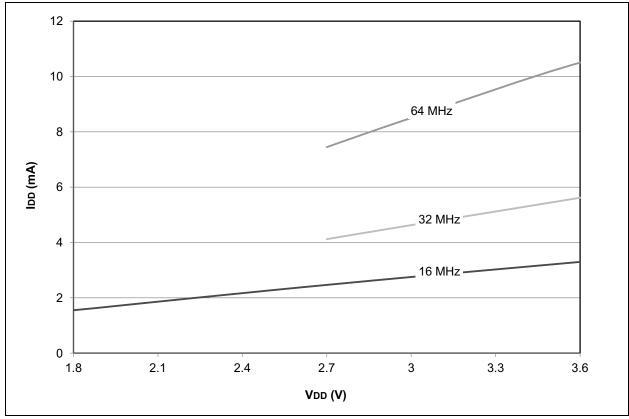
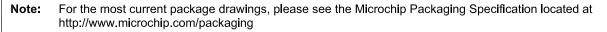




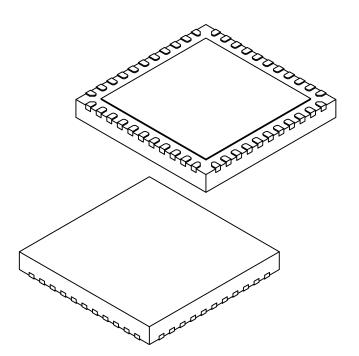
FIGURE 28-31: PIC18LF2X/4XK22 MAXIMUM IDD: RC_RUN HF-INTOSC with PLL

© 2010-2016 Microchip Technology Inc.

28-Lead Ultra Thin Plastic Quad Flat, No Lead Package (MV) - 4x4 mm Body [UQFN] With 0.40 mm Contact Length

	MILLIMETERS			
Dimension	MIN	NOM	MAX	
Contact Pitch	Е		0.40 BSC	
Optional Center Pad Width	W2			2.35
Optional Center Pad Length	T2			2.35
Contact Pad Spacing	C1		4.00	
Contact Pad Spacing	C2		4.00	
Contact Pad Width (X28)	X1			0.20
Contact Pad Length (X28)	Y1			0.80
Distance Between Pads	G	0.20		

Notes:


1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2152A

44-Lead Plastic Quad Flat, No Lead Package (ML) - 8x8 mm Body [QFN or VQFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS			
Dimension	MIN	NOM	MAX	
Number of Pins	N		44	
Pitch	е		0.65 BSC	
Overall Height	Α	0.80	0.90	1.00
Standoff	A1	0.00	0.02	0.05
Terminal Thickness	A3		0.20 REF	
Overall Width	E		8.00 BSC	
Exposed Pad Width	E2	6.25	6.45	6.60
Overall Length	D		8.00 BSC	
Exposed Pad Length	D2	6.25	6.45	6.60
Terminal Width	b	0.20	0.30	0.35
Terminal Length	L	0.30	0.40	0.50
Terminal-to-Exposed-Pad	K	0.20	-	-

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. Package is saw singulated
- 3. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-103D Sheet 2 of 2

APPENDIX A: REVISION HISTORY

Revision A (February 2010)

Initial release of this document.

Revision B (April 2010)

Updated Figures 2-4, 12-1 and 18-2; Updated Registers 2-2, 10-4, 10-5, 10-7, 17-2, 24-1 and 24-5; Updated Sections 10.3.2, 18.8.4, Synchronizing Comparator Output to Timer1; Updated Sections 27.2, 27-3, 27-4, 27-5, 27-6, 27-7 and 27-9; Updated Tables 27-2, 27-3, 27-4 and 27-7; Other minor corrections.

Revision C (July 2010)

Added 40-pin UQFN diagram; Updated Table 2 and Table 1-3 to add 40-UQFN column; Updated Table 1-1 to add "40-pin UQFN"; Updated Figure 27-1; Added Figure 27-2; Updated Table 27-6; Added 40-Lead UQFN Package Marking Information and Details; Updated Packaging Information section; Updated Table B-1 to add "40-pin UQFN"; Updated Product Identification System section; Other minor corrections.

Revision D (November 2010)

Updated the data sheet to new format; Revised Tables 1-2, 1-3, 5-2, 10-1, 10-5, 10-6, 10-8, 10-9, 10-11, 10-14, 14-13 and Register 14-5; Updated the Electrical Characteristics section.

Revision E (January 2012)

Updated Section 2.5.2, EC Mode; Updated Table 3-2; Removed Table 3-3; Updated Section 14.4.8; Removed CM2CON Register; Updated the Electrical Characteristics section; Updated the Packaging Information section; Updated the Char. Data section; Other minor corrections.

Revision F (May 2012)

Minor corrections; release of Final data sheet.

Revision G (August 2016)

Minor corrections to Tables 1-2, 17-1, 27-11, 27-14, 27-22, Section 2.6.1, Example 7-3, Registers 9-4, 9-5, 9-11, 14-5, Figures 10-1, 17-3, 17-4, 27-23; Updated Packaging Information Section.