

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	48MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	35
Program Memory Size	32KB (16K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	1.5K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 30x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18lf45k22-e-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Nu	umber				
PDIP, SOIC	QFN, UQFN	Pin Name	Pin Type	Buffer Type	Description
25	22	RB4/IOC0/P1D/T5G/AN11			
		RB4	I/O	TTL	Digital I/O.
		IOC0	Т	TTL	Interrupt-on-change pin.
		P1D	0	CMOS	Enhanced CCP1 PWM output.
		T5G	I	ST	Timer5 external clock gate input.
		AN11	Ι	Analog	Analog input 11.
26	23	RB5/IOC1/P2B/P3A/CCP3/T3CKI/T1	G/AN13	3	
		RB5	I/O	TTL	Digital I/O.
		IOC1	I	TTL	Interrupt-on-change pin.
		P2B ⁽¹⁾	0	CMOS	Enhanced CCP2 PWM output.
		P3A ⁽¹⁾	0	CMOS	Enhanced CCP3 PWM output.
		CCP3 ⁽¹⁾	I/O	ST	Capture 3 input/Compare 3 output/PWM 3 output.
		T3CKI ⁽²⁾	Т	ST	Timer3 clock input.
		T1G	Т	ST	Timer1 external clock gate input.
		AN13	Ι	Analog	Analog input 13.
27	24	RB6/IOC2/TX2/CK2/PGC			
		RB6	I/O	TTL	Digital I/O.
		IOC2	Т	TTL	Interrupt-on-change pin.
		TX2	0	—	EUSART asynchronous transmit.
		CK2	I/O	ST	EUSART synchronous clock (see related RXx/DTx).
		PGC	I/O	ST	In-Circuit Debugger and ICSP [™] programming clock pin.
28	25	RB7/IOC3/RX2/DT2/PGD		-	
		RB7	I/O	TTL	Digital I/O.
		IOC3	I	TTL	Interrupt-on-change pin.
		RX2	I	ST	EUSART asynchronous receive.
		DT2	I/O	ST	EUSART synchronous data (see related TXx/CKx).
		PGD	I/O	ST	In-Circuit Debugger and ICSP™ programming data pin.
11	8	RC0/P2B/T3CKI/T3G/T1CKI/SOSCO			
		RCO	I/O	ST	Digital I/O.
		P2B ⁽²⁾	0	CMOS	Enhanced CCP1 PWM output.
		ТЗСКІ ⁽¹⁾	I	ST	Timer3 clock input.
		T3G	I	ST	Timer3 external clock gate input.
		T1CKI	I	ST	Timer1 clock input.
		SOSCO	0	—	Secondary oscillator output.
12	9	RC1/P2A/CCP2/SOSCI	1	I	1
		RC1	I/O	ST	Digital I/O.
		P2A	0	CMOS	Enhanced CCP2 PWM output.
		CCP2 ⁽¹⁾	I/O	ST	Capture 2 input/Compare 2 output/PWM 2 output.
		SOSCI	Ι	Analog	Secondary oscillator input.
Logond	TTL	TTL compatible input CMOS - CMOS	2 comp	stible inpu	t ar autout, CT Cohmitt Trigger input with CMOC levels

TABLE 1-2: PIC18(L)F2XK22 PINOUT I/O DESCRIPTIONS (CONTINUED)

Legend: TTL = TTL compatible input CMOS = CMOS compatible input or output; ST = Schmitt Trigger input with CMOS levels; I = Input; O = Output; P = Power.

Note 1: Default pin assignment for P2B, T3CKI, CCP3 and CCP2 when Configuration bits PB2MX, T3CMX, CCP3MX and CCP2MX are set.

2: Alternate pin assignment for P2B, T3CKI, CCP3 and CCP2 when Configuration bits PB2MX, T3CMX, CCP3MX and CCP2MX are clear.

2.2 Oscillator Control

The OSCCON, OSCCON2 and OSCTUNE registers (Register 2-1 to Register 2-3) control several aspects of the device clock's operation, both in full-power operation and in power-managed modes.

- Main System Clock Selection (SCS)
- Primary Oscillator Circuit Shutdown (PRISD)
- Secondary Oscillator Enable (SOSCGO)
- Primary Clock Frequency 4x multiplier (PLLEN)
- Internal Frequency selection bits (IRCF, INTSRC)
- Clock Status bits (OSTS, HFIOFS, MFIOFS, LFIOFS. SOSCRUN, PLLRDY)
- Power management selection (IDLEN)

2.2.1 MAIN SYSTEM CLOCK SELECTION

The System Clock Select bits, SCS<1:0>, select the main clock source. The available clock sources are

- Primary clock defined by the FOSC<3:0> bits of CONFIG1H. The primary clock can be the primary oscillator, an external clock, or the internal oscillator block.
- Secondary clock (secondary oscillator)
- Internal oscillator block (HFINTOSC, MFINTOSC and LFINTOSC).

The clock source changes immediately after one or more of the bits is written to, following a brief clock transition interval. The SCS bits are cleared to select the primary clock on all forms of Reset.

2.2.2 INTERNAL FREQUENCY SELECTION

The Internal Oscillator Frequency Select bits (IRCF<2:0>) select the frequency output of the internal oscillator block. The choices are the LFINTOSC source (31.25 kHz), the MFINTOSC source (31.25 kHz, 250 kHz or 500 kHz) and the HFINTOSC source (16 MHz) or one of the frequencies derived from the HFINTOSC postscaler (31.25 kHz to 8 MHz). If the internal oscillator block is supplying the main clock, changing the states of these bits will have an immediate change on the internal oscillator's output. On device Resets, the output frequency of the internal oscillator is set to the default frequency of 1 MHz.

2.2.3 LOW FREQUENCY SELECTION

When a nominal output frequency of 31.25 kHz is selected (IRCF<2:0> = 000), users may choose which internal oscillator acts as the source. This is done with the INTSRC bit of the OSCTUNE register and MFIOSEL bit of the OSCCON2 register. See Figure 2-2 and Register 2-1 for specific 31.25 kHz selection. This option allows users to select a 31.25 kHz clock (MFINTOSC or HFINTOSC) that can be tuned using the TUN<5:0> bits in OSCTUNE register, while maintaining power savings with a very low clock speed. LFINTOSC always remains the clock source for features such as the Watchdog Timer and the Fail-Safe Clock Monitor, regardless of the setting of INTSRC and MFIOSEL bits

This option allows users to select the tunable and more precise HFINTOSC as a clock source, while maintaining power savings with a very low clock speed.

2.2.4 POWER MANAGEMENT

The IDLEN bit of the OSCCON register determines whether the device goes into Sleep mode or one of the Idle modes when the SLEEP instruction is executed.

2.8 PLL Frequency Multiplier

A Phase-Locked Loop (PLL) circuit is provided as an option for users who wish to use a lower frequency oscillator circuit or to clock the device up to its highest rated frequency from the crystal oscillator. This may be useful for customers who are concerned with EMI due to high-frequency crystals or users who require higher clock speeds from an internal oscillator.

2.8.1 PLL IN EXTERNAL OSCILLATOR MODES

The PLL can be enabled for any of the external oscillator modes using the OSC1/OSC2 pins by either setting the PLLCFG bit (CONFIG1H<4>), or setting the PLLEN bit (OSCTUNE<6>). The PLL is designed for input frequencies of 4 MHz up to 16 MHz. The PLL then multiplies the oscillator output frequency by four to produce an internal clock frequency up to 64 MHz. Oscillator frequencies below 4 MHz should not be used with the PLL.

2.8.2 PLL IN HFINTOSC MODES

The 4x frequency multiplier can be used with the internal oscillator block to produce faster device clock speeds than are normally possible with the internal oscillator. When enabled, the PLL multiplies the HFINTOSC by four to produce clock rates up to 64 MHz.

Unlike external clock modes, when internal clock modes are enabled, the PLL can only be controlled through software. The PLLEN control bit of the OSCTUNE register is used to enable or disable the PLL operation when the HFINTOSC is used.

The PLL is designed for input frequencies of 4 MHz up to 16 MHz.

3.6 Selective Peripheral Module Control

Idle mode allows users to substantially reduce power consumption by stopping the CPU clock. Even so, peripheral modules still remain clocked, and thus, consume power. There may be cases where the application needs what IDLE mode does not provide: the allocation of power resources to the CPU processing with minimal power consumption from the peripherals. PIC18(L)F2X/4XK22 family devices address this requirement by allowing peripheral modules to be selectively disabled, reducing or eliminating their power consumption. This can be done with control bits in the Peripheral Module Disable (PMD) registers. These bits generically named XXXMD are located in control registers PMD0, PMD1 or PMD2.

Setting the PMD bit for a module disables all clock sources to that module, reducing its power consumption to an absolute minimum. In this state, power to the control and status registers associated with the peripheral is removed. Writes to these registers have no effect and read values are invalid. Clearing a set PMD bit restores power to the associated control and status registers, thereby setting those registers to their default values.

3.7 Register Definitions: Peripheral Module Disable

REGISTER 3-1: PMD0: PERIPHERAL MODULE DISABLE REGISTER 0

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
UART2MD	UART1MD	TMR6MD	TMR5MD	TMR4MD	TMR3MD	TMR2MD	TMR1MD
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7	UART2MD: UART2 Peripheral Module Disable Control bit
	 1 = Module is disabled, Clock Source is disconnected, module does not draw digital power 0 = Module is enabled, Clock Source is connected, module draws digital power
bit 6	UART1MD: UART1 Peripheral Module Disable Control bit
	 1 = Module is disabled, Clock Source is disconnected, module does not draw digital power 0 = Module is enabled, Clock Source is connected, module draws digital power
bit 5	TMR6MD: Timer6 Peripheral Module Disable Control bit
	 1 = Module is disabled, Clock Source is disconnected, module does not draw digital power 0 = Module is enabled, Clock Source is connected, module draws digital power
bit 4	TMR5MD: Timer5 Peripheral Module Disable Control bit
	 1 = Module is disabled, Clock Source is disconnected, module does not draw digital power 0 = Module is enabled, Clock Source is connected, module draws digital power
bit 3	TMR4MD: Timer4 Peripheral Module Disable Control bit
	 1 = Module is disabled, Clock Source is disconnected, module does not draw digital power 0 = Module is enabled, Clock Source is connected, module draws digital power
bit 2	TMR3MD: Timer3 Peripheral Module Disable Control bit
	 1 = Module is disabled, Clock Source is disconnected, module does not draw digital power 0 = Module is enabled, Clock Source is connected, module draws digital power
bit 1	TMR2MD: Timer2 Peripheral Module Disable Control bit
	 1 = Module is disabled, Clock Source is disconnected, module does not draw digital power 0 = Module is enabled, Clock Source is connected, module draws digital power
bit 0	TMR1MD: Timer1 Peripheral Module Disable Control bit
	 1 = Module is disabled, Clock Source is disconnected, module does not draw digital power 0 = Module is enabled, Clock Source is connected, module draws digital power

4.7 Reset State of Registers

Some registers are unaffected by a Reset. Their status is unknown on POR and unchanged by all other Resets. All other registers are forced to a "Reset state" depending on the type of Reset that occurred.

Most registers are not affected by a WDT wake-up, since this is viewed as the resumption of normal operation. Status bits from the RCON register, \overline{RI} , \overline{TO} , \overline{PD} , \overline{POR} and \overline{BOR} , are set or cleared differently in different Reset situations, as indicated in Table 4-3. These bits are used by software to determine the nature of the Reset.

Table 5-2 describes the Reset states for all of the Special Function Registers. The table identifies differences between Power-On Reset (POR)/Brown-Out Reset (BOR) and all other Resets, (i.e., Master Clear, WDT Resets, STKFUL, STKUNF, etc.). Additionally, the table identifies register bits that are changed when the device receives a wake-up from WDT or other interrupts.

TABLE 4-3:	STATUS BITS, THEIR SIGNIFICANCE AND THE INITIALIZATION CONDITION
	FOR RCON REGISTER

Condition	Program		RCC	STKPTR Register					
Condition	Counter	SBOREN	RI	то	PD	POR	BOR	STKFUL	STKUNF
Power-on Reset	0000h	1	1	1	1	0	0	0	0
RESET Instruction	0000h	ս (2)	0	u	u	u	u	u	u
Brown-out Reset	0000h	u (2)	1	1	1	u	0	u	u
MCLR during Power-Managed Run Modes	0000h	u (2)	u	1	u	u	u	u	u
MCLR during Power-Managed Idle Modes and Sleep Mode	0000h	u (2)	u	1	0	u	u	u	u
WDT Time-out during Full Power or Power-Managed Run Mode	0000h	u (2)	u	0	u	u	u	u	u
MCLR during Full Power Execution	0000h	u (2)	u	u	u	u	u	u	u
Stack Full Reset (STVREN = 1)	0000h	u (2)	u	u	u	u	u	1	u
Stack Underflow Reset (STVREN = 1)	0000h	u (2)	u	u	u	u	u	u	1
Stack Underflow Error (not an actual Reset, STVREN = 0)	0000h	u (2)	u	u	u	u	u	u	1
WDT Time-out during Power- Managed Idle or Sleep Modes	PC + 2	u (2)	u	0	0	u	u	u	u
Interrupt Exit from Power- Managed Modes	PC + 2 ⁽¹⁾	u (2)	u	u	0	u	u	u	u

Legend: u = unchanged

Note 1: When the wake-up is due to an interrupt and the GIEH or GIEL bits are set, the PC is loaded with the interrupt vector (008h or 0018h).

2: Reset state is '1' for SBOREN and unchanged for all other Resets when software BOR is enabled (BOREN<1:0> Configuration bits = 01). Otherwise, the Reset state is '0'.

TABLE 4-4:REGISTERS ASSOCIATED WITH RESETS

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
RCON	IPEN	SBOREN	_	RI	TO	PD	POR	BOR	56
STKPTR	STKFUL	STKUNF	_		67				

Legend: — = unimplemented locations, read as '0'. Shaded bits are not used for Resets.

FIGURE 12-5: TIMER1/3/5 GATE TOGGLE MODE

TMRxGE	_
TxGPOL	
TxGTM	
TxTxG_IN	-ii
TxGVAL	
TIMER1/3/5 N $(N+1)(N+2)(N+3)(N+4)$	$\frac{1}{\sqrt{N+5}\sqrt{N+6}\sqrt{N+7}\sqrt{N+8}}$

FIGURE 12-6: TIMER1/3/5 GATE SINGLE-PULSE MODE

Register Definitions: ECCP Control 14.5

REGISTER 14-1: CCPxCON: STANDARD CCPx CONTROL REGISTER

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
—	—	DCxE	8<1:0>		CCPx	M<3:0>					
bit 7							bit 0				
Legend:											
R = Readable	bit	W = Writable	bit	U = Unimplen	nented bit, read	d as '0'					
u = Bit is unch	anged	x = Bit is unkr	nown	-n/n = Value a	at POR and BC	R/Value at all	other Reset				
'1' = Bit is set		'0' = Bit is clea	ared								
bit 7-6	Unused										
bit 5-4	DCxB<1:0>:	: PWM Duty Cyo	cle Least Sign	ificant bits							
	Capture moc Unused	<u>le:</u>									
	Compare mo	ode:									
	Unused										
	PWM mode:										
	These bits a	re the two LSbs	of the PWM of	duty cycle. The	eight MSbs are	e found in CCP	RxL.				
bit 3-0	CCPxM<3:0	>: ECCPx Mode	e Select bits								
	0000 = Capt	ure/Compare/PWM off (resets the module)									
	0001 = Rest 0010 = Com	npare mode: tog	iveu pare mode: toggle output on match								
	0011 = Rese	erved	9.0 0 atp at on								
	0100 = Capi	ture mode: ever	y falling edge								
	0101 = Cap	ture mode: ever	y rising edge								
	0110 = Capt	ture mode: ever	y 4th rising ec	dge							
	0111 = Capture mode: every 16th rising edge										
	1000 = Com	pare mode: set	output on cor	mpare match (C	CPx pin is set,	CCPxIF is set)				
	1001 = Com	npare mode: cle	ar output on c	ompare match ((CCPx pin is cl	eared, CCPxIF	is set)				
	1010 = Com CCP	npare mode: ge PxIF is set)	are mode: generate software interrupt on compare match (CCPx pin is unaffected, IF is set)								
	1011 = Com	npare mode: Spe	ecial Event Tr	igger (CCPx pin	is unaffected,	CCPxIF is set))				
		Time	rX (selected b	y CxTSEL bits)	is reset	ila ia anahia il	1)				
	11xx = PW/I	ADO M mode	in is set, starti	ng A/D convers	ION IT A/D MOD	ule is enabled.	,				
Note 1. Thi			5 oply								

Note 1: This feature is available on CCP5 only.

FIGURE 15-21: I²C SLAVE, 10-BIT ADDRESS, RECEPTION (SEN = 0, AHEN = 1, DHEN = 0)

PIC18(L)F2X/4XK22

15.6.8 ACKNOWLEDGE SEQUENCE TIMING

An Acknowledge sequence is enabled by setting the Acknowledge Sequence Enable bit, ACKEN, of the SSPxCON2 register. When this bit is set, the SCLx pin is pulled low and the contents of the Acknowledge data bit are presented on the SDAx pin. If the user wishes to generate an Acknowledge, then the ACKDT bit should be cleared. If not, the user should set the ACKDT bit before starting an Acknowledge sequence. The Baud Rate Generator then counts for one rollover period (TBRG) and the SCLx pin is deasserted (pulled high). When the SCLx pin is sampled high (clock arbitration), the Baud Rate Generator counts for TBRG. The SCLx pin is then pulled low. Following this, the ACKEN bit is automatically cleared, the Baud Rate Generator is turned off and the MSSPx module then goes into Idle mode (Figure 15-30).

15.6.8.1 WCOL Status Flag

If the user writes the SSPxBUF when an Acknowledge sequence is in progress, then WCOL is set and the contents of the buffer are unchanged (the write does not occur).

15.6.9 STOP CONDITION TIMING

A Stop bit is asserted on the SDAx pin at the end of a receive/transmit by setting the Stop Sequence Enable bit, PEN, of the SSPxCON2 register. At the end of a receive/transmit, the SCLx line is held low after the falling edge of the ninth clock. When the PEN bit is set, the master will assert the SDAx line low. When the SDAx line is sampled low, the Baud Rate Generator is reloaded and counts down to '0'. When the Baud Rate Generator times out, the SCLx pin will be brought high and one TBRG (Baud Rate Generator rollover count) later, the SDAx pin will be deasserted. When the SDAx pin is sampled high while SCLx is high, the P bit of the SSPxSTAT register is set. A TBRG later, the PEN bit is cleared and the SSPxIF bit is set (Figure 15-31).

15.6.9.1 WCOL Status Flag

If the user writes the SSPxBUF when a Stop sequence is in progress, then the WCOL bit is set and the contents of the buffer are unchanged (the write does not occur).

FIGURE 15-30: ACKNOWLEDGE SEQUENCE WAVEFORM

	SYNC = 0, BRGH = 0, BRG16 = 1											
BAUD RATE	Fo	sc = 8.00	0 MHz	Fosc = 4.000 MHz			Fosc = 3.6864 MHz			Fosc = 1.000 MHz		
	Actual Rate	% Error	SPBRGHx: SPBRGx (decimal)	Actual Rate	% Error	SPBRGHx: SPBRGx (decimal)	Actual Rate	% Error	SPBRGHx :SPBRGx (decimal)	Actual Rate	% Error	SPBRGHx: SPBRGx (decimal)
300	299.9	-0.02	1666	300.1	0.04	832	300.0	0.00	767	300.5	0.16	207
1200	1199	-0.08	416	1202	0.16	207	1200	0.00	191	1202	0.16	51
2400	2404	0.16	207	2404	0.16	103	2400	0.00	95	2404	0.16	25
9600	9615	0.16	51	9615	0.16	25	9600	0.00	23	_	_	_
10417	10417	0.00	47	10417	0.00	23	10473	0.53	21	10417	0.00	5
19.2k	19.23k	0.16	25	19.23k	0.16	12	19.20k	0.00	11	_	_	_
57.6k	55556	-3.55	8	—	_	_	57.60k	0.00	3	—	_	_
115.2k	_	_	_	_	_	_	115.2k	0.00	1	_	_	_

TABLE 16-5: BAUD RATES FOR ASYNCHRONOUS MODES (CONTINUED)

	SYNC = 0, BRGH = 1, BRG16 = 1 or SYNC = 1, BRG16 = 1											
BAUD	Fosc = 64.000 MHz			Fosc = 18.432 MHz			Fos	c = 16.00	0 MHz	Fosc = 11.0592 MHz		
RATE	Actual Rate	% Error	SPBRGHx: SPBRGx (decimal)	Actual Rate	% Error	SPBRGHx: SPBRGx (decimal)	Actual Rate	% Error	SPBRGHx :SPBRGx (decimal)	Actual Rate	% Error	SPBRGHx: SPBRGx (decimal)
300	300	0.00	53332	300.0	0.00	15359	300.0	0.00	13332	300.0	0.00	9215
1200	1200	0.00	13332	1200	0.00	3839	1200.1	0.01	3332	1200	0.00	2303
2400	2400	0.00	6666	2400	0.00	1919	2399.5	-0.02	1666	2400	0.00	1151
9600	9598.1	-0.02	1666	9600	0.00	479	9592	-0.08	416	9600	0.00	287
10417	10417	0.00	1535	10425	0.08	441	10417	0.00	383	10433	0.16	264
19.2k	19.21k	0.04	832	19.20k	0.00	239	19.23k	0.16	207	19.20k	0.00	143
57.6k	57.55k	-0.08	277	57.60k	0.00	79	57.97k	0.64	68	57.60k	0.00	47
115.2k	115.11k	-0.08	138	115.2k	0.00	39	114.29k	-0.79	34	115.2k	0.00	23

		SYNC = 0, BRGH = 1, BRG16 = 1 or SYNC = 1, BRG16 = 1										
BAUD	Fosc = 8.000 MHz			Fosc = 4.000 MHz			Fosc = 3.6864 MHz			Fosc = 1.000 MHz		
RATE	Actual Rate	% Error	SPBRGHx: SPBRGx (decimal)	Actual Rate	% Error	SPBRGHx: SPBRGx (decimal)	Actual Rate	% Error	SPBRGHx :SPBRGx (decimal)	Actual Rate	% Error	SPBRGHx: SPBRGx (decimal)
300	300.0	0.00	6666	300.0	0.01	3332	300.0	0.00	3071	300.1	0.04	832
1200	1200	-0.02	1666	1200	0.04	832	1200	0.00	767	1202	0.16	207
2400	2401	0.04	832	2398	0.08	416	2400	0.00	383	2404	0.16	103
9600	9615	0.16	207	9615	0.16	103	9600	0.00	95	9615	0.16	25
10417	10417	0.00	191	10417	0.00	95	10473	0.53	87	10417	0.00	23
19.2k	19.23k	0.16	103	19.23k	0.16	51	19.20k	0.00	47	19.23k	0.16	12
57.6k	57.14k	-0.79	34	58.82k	2.12	16	57.60k	0.00	15	—	_	_
115.2k	117.6k	2.12	16	111.1k	-3.55	8	115.2k	0.00	7	—	_	_

19.3 Calibrating the CTMU Module

The CTMU requires calibration for precise measurements of capacitance and time, as well as for accurate time delay. If the application only requires measurement of a relative change in capacitance or time, calibration is usually not necessary. An example of this type of application would include a capacitive touch switch, in which the touch circuit has a baseline capacitance, and the added capacitance of the human body changes the overall capacitance of a circuit.

If actual capacitance or time measurement is required, two hardware calibrations must take place: the current source needs calibration to set it to a precise current, and the circuit being measured needs calibration to measure and/or nullify all other capacitance other than that to be measured.

19.3.1 CURRENT SOURCE CALIBRATION

The current source on the CTMU module is trimable. Therefore, for precise measurements, it is possible to measure and adjust this current source by placing a high precision resistor, RCAL, onto an unused analog channel. An example circuit is shown in Figure 19-2. The current source measurement is performed using the following steps:

- 1. Initialize the A/D Converter.
- 2. Initialize the CTMU.
- Enable the current source by setting EDG1STAT (CTMUCONL<0>).
- 4. Issue settling time delay.
- 5. Perform A/D conversion.
- 6. Calculate the current source current using I = V/RCAL, where RCAL is a high precision resistance and *V* is measured by performing an A/D conversion.

The CTMU current source may be trimmed with the trim bits in CTMUICON using an iterative process to get an exact desired current. Alternatively, the nominal value without adjustment may be used; it may be stored by the software for use in all subsequent capacitive or time measurements.

To calculate the value for *RCAL*, the nominal current must be chosen, and then the resistance can be calculated. For example, if the A/D Converter reference voltage is 3.3V, use 70% of full scale, or 2.31V as the desired approximate voltage to be read by the A/D Converter. If the range of the CTMU current source is selected to be 0.55 μ A, the resistor value needed is calculated as *RCAL* = 2.31V/0.55 μ A, for a value of 4.2 MΩ. Similarly, if the current source is chosen to be 5.5 μ A, *RCAL* would be 420,000Ω, and 42,000Ω if the current source is set to 55 μ A.

FIGURE 19-2: CTMU CURRENT SOURCE CALIBRATION CIRCUIT

A value of 70% of full-scale voltage is chosen to make sure that the A/D Converter was in a range that is well above the noise floor. Keep in mind that if an exact current is chosen, that is to incorporate the trimming bits from CTMUICON, the resistor value of RCAL may need to be adjusted accordingly. RCAL may also be adjusted to allow for available resistor values. RCAL should be of the highest precision available, keeping in mind the amount of precision needed for the circuit that the CTMU will be used to measure. A recommended minimum would be 0.1% tolerance.

The following examples show one typical method for performing a CTMU current calibration. Example 19-1 demonstrates how to initialize the A/D Converter and the CTMU; this routine is typical for applications using both modules. Example 19-2 demonstrates one method for the actual calibration routine.

R/P-1	U-0	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1
MCLR	E —	P2BMX	T3CMX	HFOFST	CCP3MX	PBADEN	CCP2MX
bit 7							bit (
Legend:							
R = Read	able bit	P = Programr	nable bit	U = Unimpler	mented bit. read	d as '0'	
-n = Value	e when device is	unprogrammed		x = Bit is unk	nown		
bit 7	MCLRE: M	ICLR Pin Enable	bit				
	$1 = \overline{MCLR}$	pin enabled; RE3	input pin disa	bled			
1.11.0	0 = RE3 inj	put pin enabled; I	VICLR disable	d			
bit 6	Unimplem	ented: Read as '	0'				
bit 5	P2BMX: P2	2B Input MUX bit					
	I = P2B is	on RD2 ⁽²⁾					
	0 = P2B is	on RC0					
bit 4	T3CMX: Ti	mer3 Clock Input	MUX bit				
	1 = T3CKI	is on RC0					
	0 = 13CKI	IS ON RB5					
bit 3		IFINTOSC Fast	Start-up bit	· · · · · · · · · · · · · · · · · · ·		4 4 - h : l'	
	1 = HFINI(0 - The system	JSC starts clocki stem clock is held	ng the CPU w 1 off until the H	ITENTOSC is st	or the oscillator	to stabilize	
hit 2	CCP3MX:	CCP3 MUX hit					
	1 = CCP3 i	nput/output is mu	ultiplexed with	RB5			
	0 = CCP3 i	nput/output is mu	ltiplexed with	RC6 ⁽¹⁾			
	CCP3 i	nput/output is mu	Itiplexed with	RE0 ⁽²⁾			
bit 1	PBADEN:	PORTB A/D Ena	ble bit				
	1 = ANSEL 0 = ANSEL	B<5:0> resets to B<5:0> resets to	1, PORTB<5: 0, PORTB<4:	0> pins are co 0> pins are co	nfigured as ana nfigured as digi	log inputs on F tal I/O on Rese	Reset et
bit 0	CCP2MX:	CCP2 MUX bit					
	1 = CCP2 i	nput/output is mu	Itiplexed with	RC1			
	0 = CCP2 i	nput/output is mu	Itiplexed with	RB3			
Note 1:	PIC18(L)F2XK2	2 devices only.					
2:	PIC18(L)F4XK2	2 devices only.					

REGISTER 24-4: CONFIG3H: CONFIGURATION REGISTER 3 HIGH

24.3.1 CONTROL REGISTER

Register 24-14 shows the WDTCON register. This is a readable and writable register which contains a control bit that allows software to control the WDT when the SWDTEN configuration bits select the software control mode.

24.4 Register Definitions: WDT Control

REGISTER 24-14: WDTCON: WATCHDOG TIMER CONTROL REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0
—	—	—	—	—	—	—	SWDTEN ⁽¹⁾
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	1 as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-1 Unimplemented: Read as '0'

bit 0 SWDTEN: Software Enable or Disable the Watchdog Timer bit⁽¹⁾

1 = WDT is turned on

0 = WDT is turned off (Reset value)

Note 1: This bit has no effect if the Configuration bits WDTEN <1,0> are not equal to '10'.

TABLE 24-3: REGISTERS ASSOCIATED WITH WATCHDOG TIMER

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on Page
RCON	IPEN	SBOREN		RI	TO	PD	POR	BOR	56
WDTCON		—	_	_	_	_	_	SWDTEN	355

Legend: — = unimplemented, read as '0'. Shaded bits are not used by the Watchdog Timer.

TABLE 24-4: CONFIGURATION REGISTERS ASSOCIATED WITH WATCHDOG TIMER

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on Page
CONFIG2H			WDPS<3:0>			WDTE	N<1:0>	347	

Legend: — = unimplemented, read as '0'. Shaded bits are not used by the Watchdog Timer.

LFS	R	Load FSR M		MOVF	Move f				
Synt	ax:	LFSR f, k			Syntax:	MOVF f{,	d {,a}}		
Opei	ands:	$\begin{array}{l} 0 \leq f \leq 2 \\ 0 \leq k \leq 409 \end{array}$	5		Operands:	$\begin{array}{l} 0 \leq f \leq 255 \\ d \in [0,1] \end{array}$	$0 \le f \le 255$ $d \in [0,1]$		
Opei	ation:	$k \to FSRf$				a ∈ [0,1]			
Statu	is Affected:	None			Operation:	$f \rightarrow dest$			
Enco	oding:	1110 1111	1110 00 0000 k ₇ k	ff k ₁₁ kkk kk kkkk	Status Affected: Encoding:	N, Z	00da ff:	ff ffff	
Desc	cription:	The 12-bit File Select	literal 'k' is loa Register point	ded into the ted to by 'f'.	Description:	The content a destinatio	s of register 'f n dependent u	' are moved to upon the	
Word	ls:	2				status of 'd'	If 'd' is '0', th	e result is	
Cycle	es:	2				placed in vi	. If 'd' IS '⊥', th in reaister 'f'	ie result is (default).	
QC	ycle Activity:					Location 'f'	can be anywh	ere in the	
	Q1	Q2	Q3	Q4		256-byte ba	nk.	ak is colocted	
	Decode	Read literal 'k' MSB	Process Data	Write literal 'k' MSB to		If 'a' is '1', ti GPR bank. If 'a' is '0' a	If a is 0, the Access Bank is selected. If 'a' is '1', the BSR is used to select the GPR bank. If 'a' is '0' and the extended instruction		
	Decode	Read literal 'k' LSB	Process Data	Write literal 'k' to FSRfL		set is enabl in Indexed I mode when	ed, this instruct Literal Offset A ever $f \le 95$ (5)	ction operates Addressing Fh). See	
Exar	nple:	LFSR 2,	3ABh			Bit-Oriente	d Instruction	s in Indexed details.	
	After Instructio	on _ 02	h		Words:	1			
	FSR2L	= AE	3h		Cycles:	1			
					Q Cycle Activity:				
					Q1	Q2	Q3	Q4	
					Decode	Read register 'f'	Process Data	Write W	
					Example:	MOVF RI	G, 0, 0		
					Before Instru REG W	uction = 22 = FF	n h		
					After Instruct	tion			

RCALL	Relative	Call				
Syntax:	RCALL r	۱				
Operands:	-1024 ≤ n :	≤ 1023				
Operation:	$(PC) + 2 \rightarrow TOS,$ $(PC) + 2 + 2n \rightarrow PC$					
Status Affected:	None					
Encoding:	1101	1nnn	nnnn	nnnn		
Description:	Subroutine call with a jump up to 1K from the current location. First, return address (PC + 2) is pushed onto the stack. Then, add the 2's complement number '2n' to the PC. Since the PC will have incremented to fetch the next instruction, the new address will be PC + 2 + 2n. This instruction is a 2-cycle instruction					
Words:	1					
Cycles:	2					
Q Cycle Activity:						

Q1	Q2	Q3	Q4
Decode	Read literal 'n' PUSH PC to stack	Process Data	Write to PC
No operation	No operation	No operation	No operation

Example: HERE RCALL Jump

Before Instruction

PC = Address (HERE)

After Instruction

PC = Address (Jump) TOS = Address (HERE + 2)

RESET Reset Syntax: RESET Operands: None Operation: Reset all registers and flags that are affected by a MCLR Reset. Status Affected: All Encoding: 0000 0000 1111 1111 Description: This instruction provides a way to execute a MCLR Reset by software. Words: 1 Cycles: 1 Q Cycle Activity: Q1 Q2 Q3 Q4 Decode Start No No Reset operation operation

After Instruction

Registers =	Reset Value
Flags* =	Reset Value

RESET

TBLWT	Table W	rite						
Syntax:	TBLWT (*	*; *+; *-; +*	r)					
Operands:	None							
Operation:	if TBLWT*, (TABLAT) \rightarrow Holding Register; TBLPTR – No Change; if TBLWT*+, (TABLAT) \rightarrow Holding Register; (TBLPTR) + 1 \rightarrow TBLPTR; if TBLWT*-, (TABLAT) \rightarrow Holding Register; (TBLPTR) – 1 \rightarrow TBLPTR; if TBLWT+*, (TBLPTR) + 1 \rightarrow TBLPTR; (TBLPTR) + 1 \rightarrow TBLPTR;							
Status Affected:	None							
Encoding:	0000	0000	0000	11nn nn=0 * =1 *+ =2 *- =3 +*				
Description:	This instru TBLPTR to holding rep The holding the conter (Refer to S Memory" programm The TBLP each byte TBLPTR F The LSb or byte of the access. TBLF TBLF The TBLW value of T • no char • post-inc	rruction uses the three LSBs of to determine which of the eight registers the TABLAT is written to. ling registers are used to program ents of Program Memory (P.M.). o Section 6.0 "Flash Program " for additional details on ming Flash memory.) .PTR (a 21-bit pointer) points to te in the program memory. thas a 2-MByte address range. o of the TBLPTR selects which he program memory location to LPTR[0] = 0: Least Significant Byte of Program Memory Word LPTR[0] = 1: Most Significant Byte of Program Memory Word LPTR as follows: ange ncrement						
Words:	1							
Cycles:	2							
Q Cycle Activity:	04	00	00	0.4				
	Q1	Q2	Q3	Q4				
	Decode	N0 operation	N0 operation	N0 operation				
	No	No	No	No				
	operation	operation (Read	operation	operation (Write to				

TBLWT Table Write (Continued)

Example1:	TBLWT *+;					
Before Instruction						
TABLAT TBLPTR HOLDIN		= =	55h 00A356h			
(00A35	6h)	=	FFh			
After Instructi	ons (table write	completion)				
TABLAT		=	55h			
		=	00A357h			
(00A35	i6h)	=	55h			
Example 2:	TBLWT +*;					
Before Instrue	ction					
TABLAT		=	34h			
		=	01389Ah			
(01389 HOLDIN	9Ah) NG REGISTER	=	FFh			
(01389	Bh)	=	FFh			
After Instructi	on (table write c	omple	etion)			
TABLAT		=	34h			
		=	01389Bh			
(01389 HOLDIN	Ah) IG REGISTER	=	FFh			
(01389	Bh)	=	34h			

TABLAT)

Holding Register)

TABLE 27-3: FIXED VOLTAGE REFERENCE (FVR) SPECIFICATIONS

Operating Conditions: -40°C < TA < +125°C (unless otherwise stated)							
Param No.	Sym	Characteristics	Min	Тур	Max	Units	Comments
VR01 V	VROUT	VR voltage output to ADC	0.973	1.024	1.085	V	$1x$ output, VDD $\ge 2.5V$
			1.946	2.048	2.171	V	$2\mathbf{x}$ output, VDD $\geq 2.5V$
			3.891	4.096	4.342	V	$4x$ output, VDD \ge 4.75V (PIC18F2X/4XK22)
VR02	VROUT	VR voltage output all other modules	0.942	1.024	1.096	V	\texttt{lx} output, $V\text{DD} \geq 2.5V$
			1.884	2.048	2.191	V	$2x$ output, VDD $\ge 2.5V$
			3.768	4.096	4.383	V	$4x$ output, VDD \geq 4.75V (PIC18F2X/4XK22)
VR04*	TSTABLE	Settling Time	_	25	100	μS	0 to 125°C

* These parameters are characterized but not tested.

TABLE 27-4: CHARGE TIME MEASUREMENT UNIT (CTMU) SPECIFICATIONS

Operating Conditions: 1.8V < VDD < 5.5V, -40°C < TA < +125°C (unless otherwise stated)							
Param No.	Sym	Characteristics	Min	Typ ⁽¹⁾	Max	Units	Comments
CT01	Ιουτ1	CTMU Current Source, Base Range		0.55	_	μA	IRNG<1:0>=01
CT02	Ιουτ2	CTMU Current Source, 10X Range	—	5.5	—	μA	IRNG<1:0>=10
CT03	Ιουτ3	CTMU Current Source, 100X Range	—	55	—	μΑ	IRNG<1:0>=11 VDD ≥ 3.0V

Note 1: Nominal value at center point of current trim range (CTMUICON<7:2>=000000).

VDD (V)