

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	64MHz
Connectivity	I²C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	35
Program Memory Size	32KB (16K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	1.5K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 30x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	40-UFQFN Exposed Pad
Supplier Device Package	40-UQFN (5x5)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18lf45k22t-i-mv

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABI	LE 3:	: PIC18(L)F4XK22 PIN SUMMARY														
40-PDIP	40-UQFN	44-TQFP	44-QFN	0/1	Analog	Comparator	СТМИ	SR Latch	Reference	(E)CCP	EUSART	MSSP	Timers	Interrupts	Pull-up	Basic
2	17	19	19	RA0	AN0	C12IN0-										
3	18	20	20	RA1	AN1	C12IN1-										
4	19	21	21	RA2	AN2	C2IN+			VREF- DACOU T							
5	20	22	22	RA3	AN3	C1IN+			VREF+							
6	21	23	23	RA4		C1OUT		SRQ					TOCKI			
7	22	24	24	RA5	AN4	C2OUT		SRNQ	HLVDIN			SS1				
14	29	31	33	RA6												OSC2 CLKO
13	28	30	32	RA7												OSC1 CLKI
33	8	8	9	RB0	AN12			SRI		FLT0				INT0	Υ	
34	9	9	10	RB1	AN10	C12IN3-								INT1	Y	
35	10	10	11	RB2	AN8		CTED1							INT2	Y	
36	11	11	12	RB3	AN9	C12IN2-	CTED2			CCP2 P2A ⁽¹⁾			7-0	10.0	Y	
37	12	14	14	RB4	AN11					0000			15G	100	Y	
38	13	15	15	RB5	AN13					P3A ⁽³⁾			T3CKI ⁽²⁾	100	Y	500
39	14	16	16	RB6										IOC	Y	PGC
40	15	17	17	RB/						DOD(4)			00000	IOC	Y	PGD
15	30	32	34	KCU						F2D, ,			T1CKI T3CKI ⁽²⁾ T3G			
16	31	35	35	RC1						CCP2 ⁽¹⁾ P2A			SOSCI			
17	32	36	36	RC2	AN14		CTPLS			CCP1 P1A			T5CKI			
18	33	37	37	RC3	AN15							SCK1 SCL1				
23	38	42	42	RC4	AN16							SDI1 SDA1				
24	39	43	43	RC5	AN17							SDO1				
25	40	44	44	RC6	AN18						TX1 CK1					
26	1	1	1	RC7	AN19						RX1 DT1					
19	34	38	38	RD0	AN20							SCK2 SCL2				
20	35	39	39	RD1	AN21					CCP4		SDI2 SDA2				
21	36	40	40	RD2	AN22					P2B ⁽⁴⁾						
22	37	41	41	RD3	AN23					P2C		SS2			_	
27	2	2	2	RD4	AN24					P2D		SD02			-	
28	3	3	3	RD5	AN25					P1B	T) (0					
29	4	4	4	RD6	AN26					P1C	CK2					
30	5	5	5	RD7	AN27					P1D	RX2 DT2					
8	23	25	25	RE0	AN5					CCP3 P3A ⁽³⁾						

ABLE 3:	PIC18(L)F4XK22	PIN S	SUMMA	RY
ADEL V.	1 10 10(50 Willin <i>F</i>	

 Note
 1:
 CCP2 multiplexed in fuses.

 2:
 T3CKI multiplexed in fuses.

 3:
 CCP3/P3A multiplexed in fuses.

 4:
 P2B multiplexed in fuses.

2.5.3 LP, XT, HS MODES

The LP, XT and HS modes support the use of quartz crystal resonators or ceramic resonators connected to OSC1 and OSC2 (Figure 2-6). The mode selects a low, medium or high gain setting of the internal inverter-amplifier to support various resonator types and speed.

LP Oscillator mode selects the lowest gain setting of the internal inverter-amplifier. LP mode current consumption is the least of the three modes. This mode is best suited to drive resonators with a low drive level specification, for example, tuning fork type crystals.

XT Oscillator mode selects the intermediate gain setting of the internal inverter-amplifier. XT mode current consumption is the medium of the three modes. This mode is best suited to drive resonators with a medium drive level specification.

HS Oscillator mode offers a Medium Power (MP) and a High Power (HP) option selectable by the FOSC<3:0> bits. The MP selections are best suited for oscillator frequencies between 4 MHz and 16 MHz. The HP selection has the highest gain setting of the internal inverter-amplifier and is best suited for frequencies above 16 MHz. HS mode is best suited for resonators that require a high drive setting.

FIGURE 2-6: QUARTZ CRYSTAL OPERATION (LP, XT OR HS MODE)

Note 1: Quartz crystal characteristics vary according to type, package and manufacturer. The user should consult the manufacturer data sheets for specifications and recommended application.

- **2:** Always verify oscillator performance over the VDD and temperature range that is expected for the application.
- **3:** For oscillator design assistance, refer to the following Microchip Application Notes:
 - AN826, "Crystal Oscillator Basics and Crystal Selection for rfPIC[®] and PIC[®] Devices" (DS00826)
 - AN849, "Basic PIC[®] Oscillator Design" (DS00849)
 - AN943, "Practical PIC[®] Oscillator Analysis and Design" (DS00943)
 - AN949, "Making Your Oscillator Work" (DS00949)

CERAMIC RESONATOR OPERATION (XT OR HS MODE)

3: An additional parallel feedback resistor (RP) may be required for proper ceramic resonator operation.

On transitions from RC_RUN mode to PRI_RUN mode, the device continues to be clocked from the INTOSC multiplexer while the primary clock is started. When the primary clock becomes ready, a clock switch to the primary clock occurs (see Figure 3-3). When the clock switch is complete, the HFIOFS or MFIOFS bit is cleared, the OSTS bit is set and the primary clock is providing the device clock. The IDLEN and SCS bits are not affected by the switch. The LFINTOSC source will continue to run if either the WDT or the Fail-Safe Clock Monitor is enabled.

FIGURE 3-1: TRANSITION TIMING FOR ENTRY TO SEC_RUN MODE

FIGURE 3-2: TRANSITION TIMING FROM SEC_RUN MODE TO PRI_RUN MODE (HSPLL)

9.4 INTCON Registers

The INTCON registers are readable and writable registers, which contain various enable, priority and flag bits.

9.5 PIR Registers

The PIR registers contain the individual flag bits for the peripheral interrupts. Due to the number of peripheral interrupt sources, there are five Peripheral Interrupt Request Flag registers (PIR1, PIR2, PIR3, PIR4 and PIR5).

9.6 **PIE Registers**

The PIE registers contain the individual enable bits for the peripheral interrupts. Due to the number of peripheral interrupt sources, there are five Peripheral Interrupt Enable registers (PIE1, PIE2, PIE3, PIE4 and PIE5). When IPEN = 0, the PEIE/GIEL bit must be set to enable any of these peripheral interrupts.

9.7 IPR Registers

The IPR registers contain the individual priority bits for the peripheral interrupts. Due to the number of peripheral interrupt sources, there are five Peripheral Interrupt Priority registers (IPR1, IPR2, IPR3, IPR4 and IPR5). Using the priority bits requires that the Interrupt Priority Enable (IPEN) bit be set.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
PxRSEN				PxDC<6:0>			
bit 7							bit 0
Legend:							
R = Readab	ole bit	W = Writable	bit	U = Unimpler	nented bit, read	d as '0'	
u = Bit is unchanged x = Bit is			nown	-n/n = Value a	at POR and BC	R/Value at all	other Resets
'1' = Bit is s	et	'0' = Bit is clea	ared				
bit 7	PxRSEN: P	WM Restart Ena	ıble bit				
	1 = Upon at the PW	uto-shutdown, th M restarts auton	e CCPxASE I	bit clears automa	atically once the	e shutdown eve	ent goes away;
	0 = Upon a	uto-shutdown, C	CPxASE mus	st be cleared in	software to res	tart the PWM	
bit 6-0	PxDC<6:0>	: PWM Delay Co	ount bits				
	PxDCx = Nt	umber of Fosc/	4 (4 * Tosc)	cycles between	the schedule	d time when a	a PWM signal

REGISTER 14-6: PWMxCON: ENHANCED PWM CONTROL REGISTER

REGISTER 14-7: PSTRxCON: PWM STEERING CONTROL REGISTER⁽¹⁾

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-1
—	—		STRxSYNC	STRxD	STRxC	STRxB	STRxA
bit 7							bit 0

should transition active and the actual time it transitions active

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-5	Unimplemented: Read as '0'
bit 4	STRxSYNC: Steering Sync bit 1 = Output steering update occurs on next PWM period 0 = Output steering update occurs at the beginning of the instruction cycle boundary
bit 3	STRxD: Steering Enable bit D 1 = PxD pin has the PWM waveform with polarity control from CCPxM<1:0> 0 = PxD pin is assigned to port pin
bit 2	STRxC: Steering Enable bit C 1 = PxC pin has the PWM waveform with polarity control from CCPxM<1:0> 0 = PxC pin is assigned to port pin
bit 1	STRxB: Steering Enable bit B 1 = PxB pin has the PWM waveform with polarity control from CCPxM<1:0> 0 = PxB pin is assigned to port pin
bit 0	STRxA: Steering Enable bit A 1 = PxA pin has the PWM waveform with polarity control from CCPxM<1:0> 0 = PxA pin is assigned to port pin
Note 1.	The DWM Steering mode is evoluble only when the CCDyCON register hits CCDyM (20) 11 a

Note 1: The PWM Steering mode is available only when the CCPxCON register bits CCPxM<3:2> = 11 and PxM<1:0> = 00.

FIGURE 15-7: SPI DAISY-CHAIN CONNECTION

FIGURE 15-8: SLAVE SELECT SYNCHRONOUS WAVEFORM

15.6.5 I²C MASTER MODE REPEATED START CONDITION TIMING

A Repeated Start condition (Figure 15-27) occurs when the RSEN bit of the SSPxCON2 register is programmed high and the master state machine is no longer active. When the RSEN bit is set, the SCLx pin is asserted low. When the SCLx pin is sampled low, the Baud Rate Generator is loaded and begins counting. The SDAx pin is released (brought high) for one Baud Rate Generator count (TBRG). When the Baud Rate Generator times out, if SDAx is sampled high, the SCLx pin will be deasserted (brought high). When SCLx is sampled high, the Baud Rate Generator is reloaded and begins counting. SDAx and SCLx must be sampled high for one TBRG. This action is then followed by assertion of the SDAx pin (SDAx = 0) for one TBRG while SCLx is high. SCLx is asserted low. Following this, the RSEN bit of the SSPxCON2 register will be automatically cleared and the Baud Rate Generator will not be reloaded, leaving the SDAx pin held low. As soon as a Start condition is detected on the SDAx and SCLx pins, the S bit of the SSPxSTAT register will be set. The SSPxIF bit will not be set until the Baud Rate Generator has timed out.

- Note 1: If RSEN is programmed while any other event is in progress, it will not take effect.
 - **2:** A bus collision during the Repeated Start condition occurs if:
 - SDAx is sampled low when SCLx goes from low-to-high.
 - SCLx goes low before SDAx is asserted low. This may indicate that another master is attempting to transmit a data '1'.

FIGURE 15-27: REPEAT START CONDITION WAVEFORM

15.6.13.2 Bus Collision During a Repeated Start Condition

During a Repeated Start condition, a bus collision occurs if:

- a) A low level is sampled on SDAx when SCLx goes from low level to high level (Case 1).
- SCLx goes low before SDAx is asserted low, indicating that another master is attempting to transmit a data '1' (Case 2).

When the user releases SDAx and the pin is allowed to float high, the BRG is loaded with SSPxADD and counts down to zero. The SCLx pin is then deasserted and when sampled high, the SDAx pin is sampled. If SDAx is low, a bus collision has occurred (i.e., another master is attempting to transmit a data '0', Figure 15-36). If SDAx is sampled high, the BRG is reloaded and begins counting. If SDAx goes from high-to-low before the BRG times out, no bus collision occurs because no two masters can assert SDAx at exactly the same time.

If SCLx goes from high-to-low before the BRG times out and SDAx has not already been asserted, a bus collision occurs. In this case, another master is attempting to transmit a data '1' during the Repeated Start condition, see Figure 15-37.

If, at the end of the BRG time-out, both SCLx and SDAx are still high, the SDAx pin is driven low and the BRG is reloaded and begins counting. At the end of the count, regardless of the status of the SCLx pin, the SCLx pin is driven low and the Repeated Start condition is complete.

FIGURE 15-36: BUS COLLISION DURING A REPEATED START CONDITION (CASE 1)

16.5.1.6 Synchronous Master Reception

Data is received at the RXx/DTx pin. The RXx/DTx pin output driver must be disabled by setting the corresponding TRIS bits when the EUSART is configured for synchronous master receive operation.

In Synchronous mode, reception is enabled by setting either the Single Receive Enable bit (SREN of the RCSTAx register) or the Continuous Receive Enable bit (CREN of the RCSTAx register).

When SREN is set and CREN is clear, only as many clock cycles are generated as there are data bits in a single character. The SREN bit is automatically cleared at the completion of one character. When CREN is set, clocks are continuously generated until CREN is cleared. If CREN is cleared in the middle of a character the CK clock stops immediately and the partial character is discarded. If SREN and CREN are both set, then SREN is cleared at the completion of the first character and CREN takes precedence.

To initiate reception, set either SREN or CREN. Data is sampled at the RXx/DTx pin on the trailing edge of the TXx/CKx clock pin and is shifted into the Receive Shift Register (RSR). When a complete character is received into the RSR, the RCxIF bit is set and the character is automatically transferred to the two character receive FIFO. The Least Significant eight bits of the top character in the receive FIFO are available in RCREGx. The RCxIF bit remains set as long as there are un-read characters in the receive FIFO.

16.5.1.7 Slave Clock

Synchronous data transfers use a separate clock line, which is synchronous with the data. A device configured as a slave receives the clock on the TXx/CKx line. The TXx/CKx pin output driver must be disabled by setting the associated TRIS bit when the device is configured for synchronous slave transmit or receive operation. Serial data bits change on the leading edge to ensure they are valid at the trailing edge of each clock. One data bit is transferred for each clock cycle. Only as many clock cycles should be received as there are data bits.

16.5.1.8 Receive Overrun Error

The receive FIFO buffer can hold two characters. An overrun error will be generated if a third character, in its entirety, is received before RCREGx is read to access the FIFO. When this happens the OERR bit of the RCSTAx register is set. Previous data in the FIFO will not be overwritten. The two characters in the FIFO buffer can be read, however, no additional characters will be received until the error is cleared. The OERR bit can only be cleared by clearing the overrun condition. If the overrun error occurred when the SREN bit is set and CREN is clear then the error is cleared by reading RCREGx.

If the overrun occurred when the CREN bit is set then the error condition is cleared by either clearing the CREN bit of the RCSTAx register or by clearing the SPEN bit which resets the EUSART.

16.5.1.9 Receiving 9-bit Characters

The EUSART supports 9-bit character reception. When the RX9 bit of the RCSTAx register is set the EUSART will shift 9-bits into the RSR for each character received. The RX9D bit of the RCSTAx register is the ninth, and Most Significant, data bit of the top unread character in the receive FIFO. When reading 9-bit data from the receive FIFO buffer, the RX9D data bit must be read before reading the eight Least Significant bits from the RCREGx.

16.5.1.10 Synchronous Master Reception Setup:

- 1. Initialize the SPBRGHx, SPBRGx register pair for the appropriate baud rate. Set or clear the BRGH and BRG16 bits, as required, to achieve the desired baud rate.
- 2. Set the RXx/DTx and TXx/CKx TRIS controls to '1'.
- Enable the synchronous master serial port by setting bits SYNC, SPEN and CSRC. Disable RXx/DTx and TXx/CKx output drivers by setting the corresponding TRIS bits.
- 4. Ensure bits CREN and SREN are clear.
- If using interrupts, set the GIE/GIEH and PEIE/ GIEL bits of the INTCON register and set RCxIE.
- 6. If 9-bit reception is desired, set bit RX9.
- 7. Start reception by setting the SREN bit or for continuous reception, set the CREN bit.
- Interrupt flag bit RCxIF will be set when reception of a character is complete. An interrupt will be generated if the enable bit RCxIE was set.
- 9. Read the RCSTAx register to get the ninth bit (if enabled) and determine if any error occurred during reception.
- 10. Read the 8-bit received data by reading the RCREGx register.
- 11. If an overrun error occurs, clear the error by either clearing the CREN bit of the RCSTAx register or by clearing the SPEN bit which resets the EUSART.

23.7 Operation During Sleep

When enabled, the HLVD circuitry continues to operate during Sleep. If the device voltage crosses the trip point, the HLVDIF bit will be set and the device will wake-up from Sleep. Device execution will continue from the interrupt vector address if interrupts have been globally enabled.

23.8 Effects of a Reset

A device Reset forces all registers to their Reset state. This forces the HLVD module to be turned off.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on page	
HLVDCON	VDIRMAG	BGVST	IRVST	HLVDEN		HLVDL<3:0>				
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	109	
IPR2	OSCFIP	C1IP	C2IP	EEIP	BCL1IP	HLVDIP	TMR3IP	CCP2IP	122	
PIE2	OSCFIE	C1IE	C2IE	EEIE	BCL1IE	HLVDIE	TMR3IE	CCP2IE	118	
PIR2	OSCFIF	C1IF	C2IF	EEIF	BCL1IF	HLVDIF	TMR3IF	CCP2IF	113	
TRISA	TRISA7	TRISA6	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	151	

TABLE 23-1: REGISTERS ASSOCIATED WITH HIGH/LOW-VOLTAGE DETECT MODULE

Legend: — = unimplemented locations, read as '0'. Shaded bits are unused by the HLVD module.

24.5.1 PROGRAM MEMORY CODE PROTECTION

The program memory may be read to or written from any location using the table read and table write instructions. The device ID may be read with table reads. The Configuration registers may be read and written with the table read and table write instructions.

In Normal execution mode, the CPn bits have no direct effect. CPn bits inhibit external reads and writes. A block of user memory may be protected from table writes if the WRTn Configuration bit is '0'. The EBTRn bits control table reads. For a block of user memory with the EBTRn bit cleared to '0', a table READ instruction that executes from within that block is allowed to read. A table read instruction that executes from a location outside of that block is not allowed to read and will result in reading '0's. Figures 24-3 through 24-5 illustrate table write and table read protection.

Note:	Code protection bits may only be written						
	to a '0' from a '1' state. It is not possible to						
	write a '1' to a bit in the '0' state. Code pro-						
	tection bits are only set to '1' by a full chip						
	erase or block erase function. The full chip						
	erase and block erase functions can only						
	be initiated via ICSP™ or an external						
	programmer.						

FIGURE 24-3: TABLE WRITE (WRTn) DISALLOWED

Register Values	Program Memory	ry Configuration Bit Settings	
		000000h WRTB, EBTRB = 11 0007FFh 000800h	
TBLPTR = 0008FFh	▶┌►	WRT0, EBTR0 = 01	
PC = 001FFEh	TBLWT*	001FFFh 002000h	
		WRT1, EBTR1 = 11 003FFFh 004000h	
PC = 005FFEh	TBLWT*	WRT2, EBTR2 = 11 005FFFh	
		WRT3, EBTR3 = 11	
Results: All table writes d	sabled to Blockn whenever WRT	Tn = 0.	

SUBWFB	S	ubtract	W from	f with	n Borrow
Syntax:	SI	JBWFB	f {,d {,a	n}}	
Operands:	0 : d a	≤ f ≤ 255 ∈ [0,1] ∈ [0,1]			
Operation:	(f)	– (W) –	$(\overline{C}) \rightarrow de$	st	
Status Affected:	N,	OV, C, E	DC, Z		
Encoding:		0101	10da	fff	f ffff
Description:	Su (b) sta sta sta If ' GI If ' se in ma Se Bi	ubtract W orrow) fro ent metho bred in W bred back a' is '0', 1 PR bank. a' is '0' a ti s enab Indexed bode where ection 25 t-Oriente teral Official	and the form register $(-1)^{-1}$ and the form register $(-1)^{-1}$. If $(-1)^{-1}$ is $(-1)^{-1}$, if $(-1)^{-1}$ is $(-1)^{-1}$, if $(-1)^{-1}$ is $(-1)^{-1}$. The Access th	CARR er 'f' (2 is '0', t 1', the er 'f' (0 is Ban s used attende nstruct fset Ao 95 (5F a-Oria ctions " for o	Y flag 2's comple- the result is default). k is selected. I to select the d instruction tion operates ddressing h). See ented and s in Indexed details.
Words:	1				
Cvcles:	1				
Q Cycle Activity:					
Q1		Q2	Q	3	Q4
Decode		Read	Proce	ess	Write to
	re	gister 'f'	Dat	a	destination
Example 1:	5	SUBWFB	REG, 1	, 0	
Before Instruc REG W C	tion = = =	19h 0Dh 1	(000)	1 100 0 110	01) 01)
After Instructio REG W C Z	n = = =	0Ch 0Dh 1 0	(000)	0 110 0 110	00) 01)
Ν	=	0	; resu	lt is po	sitive
Example 2:	S	SUBWFB	REG, 0	, 0	
Before Instruc REG W C	tion = = =	1Bh 1Ah 0	(000)	1 101 1 101	.1) .0)
After Instructic REG W C	n = =	1Bh 00h 1	(000)	1 101	1)
Ž N	= =	1 0	; resu	lt is ze	ro
Example 3:	5	SUBWFB	REG, 1	, 0	
Before Instruc REG W C	tion = = =	03h 0Eh 1	(000)	0 001 0 111	.1) .0)
After Instructio REG	n = =	F5h 0Eh	(111); ; [2's ((000)	1 010 comp] 0 111	01) .0)
C Z N	= = =	0 0 1	; resu	lt is ne	egative

SWAPF	Swap f						
Syntax:	SWAPF 1	{,d {,a}}					
Operands:	0 ≤ f ≤ 255 d ∈ [0,1] a ∈ [0,1]	0 ≤ f ≤ 255 d ∈ [0,1] a ∈ [0,1]					
Operation:	(f<3:0>) → (f<7:4>) →	→ dest<7:4 → dest<3:0	l>,)>				
Status Affected:	None						
Encoding:	0011	10da	ffff	ffff			
Dooolpiion	'f' are exch is placed in r placed in r If 'a' is '0', If 'a' is '1', GPR bank If 'a' is '0'; set is enak in Indexed mode whe Section 2 Bit-Orient Literal Off	hanged. If n W. If 'd' register 'f' the Access the BSR i and the e: bled, this i Literal O never $f \le$ 5.2.3 "By red Instruction fset Mode	'd' is '0', t is '1', the (default). ss Bank is is used to struction ffset Addre 95 (5Fh). te-Oriente ictions in e" for deta	he result result is selected. select the struction operates sessing See ed and Indexed ils.			
Words:	1						
Cycles:	1	1					
Q Cycle Activity:							
Q1	Q2	Q3	3	Q4			

Decode	Read	Process	Write to	
	register 'f'	Data	destination	

REG, 1, 0

Example:

SWAPF

Before Instruction REG = 53h After Instruction REG = 35h

27.10 Analog Characteristics

TABLE 27-1:	COMPARATOR SPECIFICATIONS

Operating Conditions: 1.8V < VDD < 5.5V, -40°C < TA < +125°C (unless otherwise stated)									
Param No.	Sym	Characteristics	Min	Тур	Мах	Units	Comments		
CM01	VIOFF	Input Offset Voltage	_	3	40	mV	High-Power mode VREF = VDD/2		
			—	4	60	mV	Low-Power mode VREF = VDD/2		
CM02	VICM	Input Common-mode Voltage	Vss	_	Vdd	V			
CM04*	TRESP	Response Time ⁽¹⁾	—	200	400	ns	High-Power mode		
			—	600	3500	ns	Low-Power mode		
CM05*	TMC20V	Comparator Mode Change to Output Valid	_	_	10	μS			

These parameters are characterized but not tested. *

Note 1: Response time measured with one comparator input at VDD/2, while the other input transitions from Vss to VDD.

TABLE 27-2: DIGITAL-TO-ANALOG CONVERTER (DAC) SPECIFICATIONS

Operating Conditions: 2.0V < VDD < 5.5V, -40°C < TA < +125°C (unless otherwise stated)									
Sym	Characteristics	Min	Тур	Мах	Units	Comments			
CLSB	Step Size ⁽²⁾	_	Vdd/32	_	V				
CACC	Absolute Accuracy	—	—	± 1/2	LSb	$\Delta V \text{SRC} \ge 2.0 V$			
CR	Unit Resistor Value (R)		5k	_	Ω				
CST	Settling Time ⁽¹⁾	_	_	10	μS				
VSRC+	DAC Positive Reference	VSRC-+2		Vdd	V				
VSRC-	DAC Negative Reference	Vss		VSRC+ -2	V				
$\Delta V SRC$	DAC Reference Range (VSRC+ - VSRC-)	2	_	Vdd	V				
	Sym CLSB CACC CR CST VSRC+ VSRC- AVSRC	Sym Characteristics CLSB Step Size ⁽²⁾ CACC Absolute Accuracy CR Unit Resistor Value (R) CST Settling Time ⁽¹⁾ VSRC+ DAC Positive Reference VSRC- DAC Negative Reference ΔVSRC DAC Reference Range (VSRC+ - VSRC-)	SymCharacteristicsMinCLSBStep Size ⁽²⁾ —CACCAbsolute Accuracy—CRUnit Resistor Value (R)—CSTSettling Time ⁽¹⁾ —VSRC+DAC Positive ReferenceVSRC- +2VSRC-DAC Negative ReferenceVSS△VSRCDAC Reference Range (VSRC+ - VSRC-)2	SymCharacteristicsMinTypCLSBStep Size ⁽²⁾ —VDD/32CACCAbsolute Accuracy——CRUnit Resistor Value (R)—5kCSTSettling Time ⁽¹⁾ ——VSRC+DAC Positive ReferenceVSRC-+2—VSRC-DAC Negative ReferenceVSS—△VSRCDAC Reference Range2—Open parameters are characterized but not testedParameters are characterized but not tested	SymCharacteristicsMinTypMaxCLSBStep Size ⁽²⁾ —VDD/32—CACCAbsolute Accuracy——± 1/2CRUnit Resistor Value (R)—5k—CSTSettling Time ⁽¹⁾ ——10VSRC+DAC Positive ReferenceVSRC-+2—VDDVSRC-DAC Negative ReferenceVSS—VSRC+-2 Δ VSRCDAC Reference Range2—VDD	SymCharacteristicsMinTypMaxUnitsCLSBStep Size ⁽²⁾ — V DD/32— V CACCAbsolute Accuracy—— \pm 1/2LSbCRUnit Resistor Value (R)— $5k$ — Ω CSTSettling Time ⁽¹⁾ ——10 μ sVSRC+DAC Positive ReferenceVSRC-+2—VDDV Δ VSRCDAC Reference Range2—VDDV			

These parameters are characterized but not tested.

Note 1: Settling time measured while CVRR = 1 and CVR3:CVR0 transitions from '0000' to '1111'.

2: See Section 22.0 "Digital-to-Analog Converter (DAC) Module" for more information.

TABLE 27-5: HIGH/LOW-VOLTAGE DETECT CHARACTERISTICS

Г

Standard Operating Conditions (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +125^{\circ}C$									
Param No.	Symbol	Characteristic	HLVDL<3:0>	Min	Тур†	Max	Units	Conditions	
		HLVD Voltage on VDD	0000	1.69	1.84	1.99	V		
	Transition High-to-Lo	Transition High-to-Low	0001	1.92	2.07	2.22	V		
			0010	2.08	2.28	2.48	V		
			0011	2.24	2.44	2.64	V		
			0100	2.34	2.54	2.74	V		
			0101	2.54	2.74	2.94	V		
			0110	2.62	2.87	3.12	V		
			0111	2.76	3.01	3.26	V		
			1000	3.00	3.30	3.60	V		
			1001	3.18	3.48	3.78	V		
			1010	3.44	3.69	3.94	V		
			1011	3.66	3.91	4.16	V		
			1100	3.90	4.15	4.40	V		
			1101	4.11	4.41	4.71	V		
			1110	4.39	4.74	5.09	V		
			1111	V(H	ILVDIN p	oin)	v		

† Production tested at TAMB = 25°C. Specifications over temperature limits ensured by characterization.

Param. No.	Symbol	Charac	Characteristic		Max	Units	Conditions
100	Thigh	Clock High Time	100 kHz mode	2(Tosc)(BRG + 1)	—	ms	
			400 kHz mode	2(Tosc)(BRG + 1)	_	ms	
			1 MHz mode ⁽¹⁾	2(Tosc)(BRG + 1)	_	ms	
101	TLOW	Clock Low Time	100 kHz mode	2(Tosc)(BRG + 1)	_	ms	
			400 kHz mode	2(Tosc)(BRG + 1)	_	ms	
			1 MHz mode ⁽¹⁾	2(Tosc)(BRG + 1)	_	ms	
102	TR	SDA and SCL	100 kHz mode	—	1000	ns	CB is specified to be
		Rise Time	400 kHz mode	20 + 0.1 Св	300	ns	from
			1 MHz mode ⁽¹⁾		300	ns	10 to 400 pr
103	TF	SDA and SCL	100 kHz mode		300	ns	CB is specified to be
		Fall Time	400 kHz mode	20 + 0.1 Св	300	ns	from
			1 MHz mode ⁽¹⁾		100	ns	10 to 400 pr
90	TSU:STA	SU:STA Start Condition Setup Time	100 kHz mode	2(Tosc)(BRG + 1)	—	ms	Only relevant for
			400 kHz mode	2(Tosc)(BRG + 1)	_	ms	Repeated Start
			1 MHz mode ⁽¹⁾	2(Tosc)(BRG + 1)	_	ms	condition
91	THD:STA	STA Start Condition Hold Time	100 kHz mode	2(Tosc)(BRG + 1)	_	ms	After this period, the first
			400 kHz mode	2(Tosc)(BRG + 1)	_	ms	clock pulse is generated
			1 MHz mode ⁽¹⁾	2(Tosc)(BRG + 1)	_	ms	
106	Thd:dat	Data Input Hold Time	100 kHz mode	0	—	ns	
			400 kHz mode	0	0.9	ms	
107	TSU:DAT	Data Input	100 kHz mode	250	—	ns	(Note 2)
		Setup Time	400 kHz mode	100	—	ns	
92	TSU:STO	Stop Condition	100 kHz mode	2(Tosc)(BRG + 1)	—	ms	
		Setup Time	400 kHz mode	2(Tosc)(BRG + 1)	—	ms	
			1 MHz mode ⁽¹⁾	2(Tosc)(BRG + 1)	_	ms	
109	ΤΑΑ	Output Valid	100 kHz mode	—	3500	ns	
		from Clock	400 kHz mode	—	1000	ns	
			1 MHz mode ⁽¹⁾	—	_	ns	
110	TBUF	Bus Free Time	100 kHz mode	4.7	_	ms	Time the bus must be
			400 kHz mode	1.3	—	ms	free before a new trans- mission can start
D102	Св	Bus Capacitive L	oading	—	400	pF	

Note 1: Maximum pin capacitance = 10 pF for all I^2C pins.

^{2:} A fast mode I²C bus device can be used in a standard mode I²C bus system, but parameter 107 ≥ 250 ns must then be met. This will automatically be the case if the device does not stretch the Low period of the SCL signal. If such a device does stretch the Low period of the SCL signal, it must output the next data bit to the SDA line, parameter 102 + parameter 107 = 1000 + 250 = 1250 ns (for 100 kHz mode), before the SCL line is released.

FIGURE 28-21: PIC18LF2X/4XK22 MAXIMUM IDD: RC_RUN LF-INTOSC 31 kHz

29.0 PACKAGING INFORMATION

29.1 Package Marking Information

Legend	: XXX Y YY WW NNN @3 *	Customer-specific information or Microchip part number Year code (last digit of calendar year) Year code (last 2 digits of calendar year) Week code (week of January 1 is week '01') Alphanumeric traceability code Pb-free JEDEC [®] designator for Matte Tin (Sn) This package is Pb-free. The Pb-free JEDEC designator (e3) can be found on the outer packaging for this package.				
Note:	te: In the event the full Microchip part number cannot be marked on one line, be carried over to the next line, thus limiting the number of ava characters for customer-specific information.					

28-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-052C Sheet 1 of 2

28-Lead Plastic Quad Flat, No Lead Package (ML) – 6x6 mm Body [QFN] with 0.55 mm Contact Length

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

		MILLIMETERS							
Dimension	MIN	NOM	MAX						
Contact Pitch		0.65 BSC							
Optional Center Pad Width	W2			4.25					
Optional Center Pad Length	T2			4.25					
Contact Pad Spacing	C1		5.70						
Contact Pad Spacing	C2		5.70						
Contact Pad Width (X28)	X1			0.37					
Contact Pad Length (X28)	Y1			1.00					
Distance Between Pads	G	0.20							

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2105A