

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	64MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	35
Program Memory Size	32KB (16K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	1.5K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 30x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18lf45k22t-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Nu	ımber				
PDIP, SOIC	QFN, UQFN	Pin Name	Pin Type	Buffer Type	Description
9	6	RA7/CLKI/OSC1			
		RA7	I/O	TTL	Digital I/O.
		CLKI	Ι	CMOS	External clock source input. Always associated with pin function OSC1.
		OSC1	Ι	ST	Oscillator crystal input or external clock source input ST buffer when configured in RC mode; CMOS otherwise.
21	18	RB0/INT0/CCP4/FLT0/SRI/SS2/AN12	2		
		RB0	I/O	TTL	Digital I/O.
		ΙΝΤΟ	I	ST	External interrupt 0.
		CCP4	I/O	ST	Capture 4 input/Compare 4 output/PWM 4 output.
		FLTO	I	ST	PWM Fault input for ECCP Auto-Shutdown.
		SRI	I	ST	SR latch input.
		SS2	1	TTL	SPI slave select input (MSSP).
		AN12	I	Analog	Analog input 12.
22	19	RB1/INT1/P1C/SCK2/SCL2/C12IN3-/	'AN10		
		RB1	I/O	TTL	Digital I/O.
		INT1	Ι	ST	External interrupt 1.
		P1C	0	CMOS	Enhanced CCP1 PWM output.
		SCK2	I/O	ST	Synchronous serial clock input/output for SPI mode (MSSP).
		SCL2	I/O	ST	Synchronous serial clock input/output for I ² C mode (MSSP).
		C12IN3-	Ι	Analog	Comparators C1 and C2 inverting input.
		AN10	Ι	Analog	Analog input 10.
23	20	RB2/INT2/CTED1/P1B/SDI2/SDA2/A	N8		
		RB2	I/O	TTL	Digital I/O.
		INT2	Ι	ST	External interrupt 2.
		CTED1	Ι	ST	CTMU Edge 1 input.
		P1B	0	CMOS	Enhanced CCP1 PWM output.
		SDI2	Ι	ST	SPI data in (MSSP).
		SDA2	I/O	ST	I ² C data I/O (MSSP).
		AN8	I	Analog	Analog input 8.
24	21	RB3/CTED2/P2A/CCP2/SDO2/C12IN	2-/AN9)	
		RB3	I/O	TTL	Digital I/O.
		CTED2	Т	ST	CTMU Edge 2 input.
		P2A	0	CMOS	Enhanced CCP2 PWM output.
		CCP2 ⁽²⁾	I/O	ST	Capture 2 input/Compare 2 output/PWM 2 output.
		SDO2	0	—	SPI data out (MSSP).
		C12IN2-	I	Analog	Comparators C1 and C2 inverting input.
		AN9	I	Analog	Analog input 9.
l eaend.					t or output: ST - Schmitt Trigger input with CMOS levels:

Legend: TTL = TTL compatible input CMOS = CMOS compatible input or output; ST = Schmitt Trigger input with CMOS levels; I = Input; O = Output; P = Power.

Note 1: Default pin assignment for P2B, T3CKI, CCP3 and CCP2 when Configuration bits PB2MX, T3CMX, CCP3MX and CCP2MX are set.

2: Alternate pin assignment for P2B, T3CKI, CCP3 and CCP2 when Configuration bits PB2MX, T3CMX, CCP3MX and CCP2MX are clear.

Pin Nu	umber		D '	Duffer								
PDIP, SOIC	QFN, UQFN	Pin Name	Pin Type	Buffer Type	Description							
25	22	RB4/IOC0/P1D/T5G/AN11										
		RB4	I/O	TTL	Digital I/O.							
		IOC0	I	TTL	Interrupt-on-change pin.							
		P1D	0	CMOS	Enhanced CCP1 PWM output.							
		T5G	I	ST	Timer5 external clock gate input.							
		AN11	I	Analog	Analog input 11.							
26	23	RB5/IOC1/P2B/P3A/CCP3/T3CKI/T1	G/AN13	3								
		RB5	I/O	TTL	Digital I/O.							
		IOC1	I	TTL	Interrupt-on-change pin.							
		P2B ⁽¹⁾	0	CMOS	Enhanced CCP2 PWM output.							
		P3A ⁽¹⁾	0	CMOS	Enhanced CCP3 PWM output.							
		CCP3 ⁽¹⁾	I/O	ST	Capture 3 input/Compare 3 output/PWM 3 output.							
		ТЗСКІ ⁽²⁾	I	ST	Timer3 clock input.							
		T1G	I	ST	Timer1 external clock gate input.							
		AN13	I	Analog	Analog input 13.							
27	24	RB6/IOC2/TX2/CK2/PGC										
		RB6	I/O	TTL	Digital I/O.							
		IOC2	I	TTL	Interrupt-on-change pin.							
		TX2	0	_	EUSART asynchronous transmit.							
		CK2	I/O	ST	EUSART synchronous clock (see related RXx/DTx).							
		PGC	I/O	ST	In-Circuit Debugger and ICSP™ programming clock pir							
28	25	RB7/IOC3/RX2/DT2/PGD										
		RB7	I/O	TTL	Digital I/O.							
		IOC3	I	TTL	Interrupt-on-change pin.							
		RX2	I	ST	EUSART asynchronous receive.							
		DT2	I/O	ST	EUSART synchronous data (see related TXx/CKx).							
		PGD	I/O	ST	In-Circuit Debugger and ICSP™ programming data pin							
11	8	RC0/P2B/T3CKI/T3G/T1CKI/SOSCC)									
		RC0	I/O	ST	Digital I/O.							
		P2B ⁽²⁾	0	CMOS	Enhanced CCP1 PWM output.							
		ТЗСКІ ⁽¹⁾	I	ST	Timer3 clock input.							
		T3G	I	ST	Timer3 external clock gate input.							
		T1CKI	I	ST	Timer1 clock input.							
		SOSCO	0	_	Secondary oscillator output.							
12	9	RC1/P2A/CCP2/SOSCI	1	1								
		RC1	I/O	ST	Digital I/O.							
		P2A	0	CMOS	Enhanced CCP2 PWM output.							
		CCP2 ⁽¹⁾	I/O	ST	Capture 2 input/Compare 2 output/PWM 2 output.							
		SOSCI	1	Analog	Secondary oscillator input.							

TABLE 1-2: PIC18(L)F2XK22 PINOUT I/O DESCRIPTIONS (CONTINUED)

Legend: TTL = TTL compatible input CMOS = CMOS compatible input or output; ST = Schmitt Trigger input with CMOS levels; I = Input; O = Output; P = Power.

Note 1: Default pin assignment for P2B, T3CKI, CCP3 and CCP2 when Configuration bits PB2MX, T3CMX, CCP3MX and CCP2MX are set.

2: Alternate pin assignment for P2B, T3CKI, CCP3 and CCP2 when Configuration bits PB2MX, T3CMX, CCP3MX and CCP2MX are clear.

TABLE 10-1: PORTA I/O SUMMARY

Pin Name	Function	TRIS Setting	ANSEL Setting	Pin Type	Buffer Type	Description
RA0/C12IN0-/AN0	RA0	0	0	0	DIG	LATA<0> data output; not affected by analog input.
		1	0	Ι	TTL	PORTA<0> data input; disabled when analog input enabled.
	C12IN0-	1	1	Ι	AN	Comparators C1 and C2 inverting input.
	AN0	1	1	I	AN	Analog input 0.
RA1/C12IN1-/AN1	RA1	0	0	0	DIG	LATA<1> data output; not affected by analog input.
		1	0	I	TTL	PORTA<1> data input; disabled when analog input enabled.
	C12IN1-	1	1	I	AN	Comparators C1 and C2 inverting input.
	AN1	1	1	I	AN	Analog input 1.
RA2/C2IN+/AN2/ DACOUT/VREF-	RA2	0	0	0	DIG	LATA<2> data output; not affected by analog input; disabled when DACOUT enabled.
		1	0	Ι	TTL	PORTA<2> data input; disabled when analog input enabled; disabled when DACOUT enabled.
	C2IN+	1	1	Ι	AN	Comparator C2 non-inverting input.
	AN2	1	1	Ι	AN	Analog output 2.
	DACOUT	x	1	0	AN	DAC Reference output.
	VREF-	1	1	Ι	AN	A/D reference voltage (low) input.
RA3/C1IN+/AN3/	RA3	0		0	DIG	LATA<3> data output; not affected by analog input.
VREF+		1	0	I	TTL	PORTA<3> data input; disabled when analog input enabled.
	C1IN+	1	1	I	AN	Comparator C1 non-inverting input.
	AN3	1	1	I	AN	Analog input 3.
	VREF+	1	1	I	AN	A/D reference voltage (high) input.
RA4/CCP5/C1OUT/	RA4	0	—	0	DIG	LATA<4> data output.
RQ/T0CKI		1	_	I	ST	PORTA<4> data input; default configuration on POR.
	CCP5	0	_	0	DIG	CCP5 Compare output/PWM output, takes priority over RA4 output
		1	—	I	ST	Capture 5 input/Compare 5 output/ PWM 5 output.
	C1OUT	0	_	0	DIG	Comparator C1 output.
	SRQ	0	_	0	DIG	SR latch Q output; take priority over CCP 5 output.
	TOCKI	1	_	I	ST	Timer0 external clock input.
RA5/C2OUT/SRNQ/	RA5	0	0	0	DIG	LATA<5> data output; not affected by analog input.
SS1/ HLVDIN/AN4		1	0	I	TTL	PORTA<5> data input; disabled when analog input enabled.
HLVDIN/AN4	C2OUT	0	0	0	DIG	Comparator C2 output.
	SRNQ	0	0	0	DIG	SR latch \overline{Q} output.
	SS1	1	0	I	TTL	SPI slave select input (MSSP1).
	HLVDIN	1	1	I	AN	High/Low-Voltage Detect input.
	AN4	1	1	1	AN	A/D input 4.
RA6/CLKO/OSC2	RA6	0	_	0	DIG	LATA<6> data output; enabled in INTOSC modes when CLKO is no enabled.
		1	—	I	TTL	PORTA<6> data input; enabled in INTOSC modes when CLKO is not enabled.
	CLKO	x	—	0	DIG	In RC mode, OSC2 pin outputs CLKOUT which has 1/4 the fre- quency of OSC1 and denotes the instruction cycle rate.
	OSC2	x	_	0	XTAL	Oscillator crystal output; connects to crystal or resonator in Crystal Oscillator mode.
RA7/CLKI/OSC1	RA7	0	_	0	DIG	LATA<7> data output; disabled in external oscillator modes.
		1	—	Ι	TTL	PORTA<7> data input; disabled in external oscillator modes.
	CLKI	x	—	I	AN	External clock source input; always associated with pin function OSC1.
	OSC1	x		Ι	XTAL	Oscillator crystal input or external clock source input ST buffer wher configured in RC mode; CMOS otherwise.

Legend: AN = Analog input or output; TTL = TTL compatible input; HV = High Voltage; OD = Open Drain; XTAL = Crystal; CMOS = CMOS compatible input or output; ST = Schmitt Trigger input with CMOS levels; I²C = Schmitt Trigger input with I²C.

10.7 Port Analog Control

Most port pins are multiplexed with analog functions such as the Analog-to-Digital Converter and comparators. When these I/O pins are to be used as analog inputs it is necessary to disable the digital input buffer to avoid excessive current caused by improper biasing of the digital input. Individual control of the digital input buffers on pins which share analog functions is provided by the ANSELA, ANSELB, ANSELC, ANSELD and ANSELE registers. Setting an ANSx bit high will disable the associated digital input buffer and cause all reads of that pin to return '0' while allowing analog functions of that pin to operate correctly.

The state of the ANSx bits has no affect on digital output functions. A pin with the associated TRISx bit clear and ANSx bit set will still operate as a digital output but the input mode will be analog. This can cause unexpected behavior when performing readmodify-write operations on the affected port.

All ANSEL register bits default to '1' upon POR and BOR, disabling digital inputs for their associated port pins. All TRIS register bits default to '1' upon POR or BOR, disabling digital outputs for their associated port pins. As a result, all port pins that have an ANSEL register will default to analog inputs upon POR or BOR.

10.8 Port Slew Rate Control

The output slew rate of each port is programmable to select either the standard transition rate or a reduced transition rate of approximately 0.1 times the standard to minimize EMI. The reduced transition time is the default slew rate for all ports.

10.9	Register	Definitions –	Port Control
------	----------	----------------------	--------------

REGISTER 10-1: PORTX⁽¹⁾: PORTX REGISTER

| R/W-u/x |
|---------|---------|---------|---------|---------|---------|---------|---------|
| Rx7 | Rx6 | Rx5 | Rx4 | Rx3 | Rx2 | Rx1 | Rx0 |
| bit 7 | | | | | | | bit 0 |
| | | | | | | | |
| Legend: | | | | | | | |

Logona.		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown
-n/n = Value at POR and BO	R/Value at all other Resets	

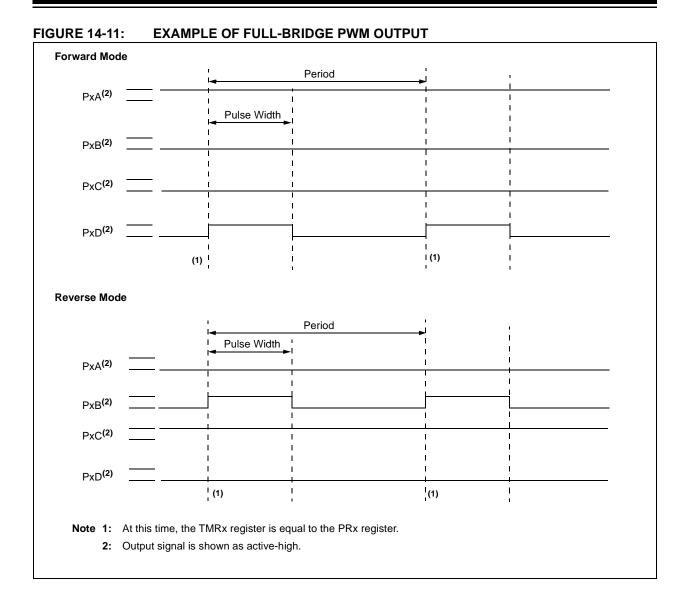
bit 7-0 Rx<7:0>: PORTx I/O bit values⁽²⁾

Note 1: Register Description for PORTA, PORTB, PORTC and PORTD.

2: Writes to PORTx are written to corresponding LATx register. Reads from PORTx register is return of I/O pin values.

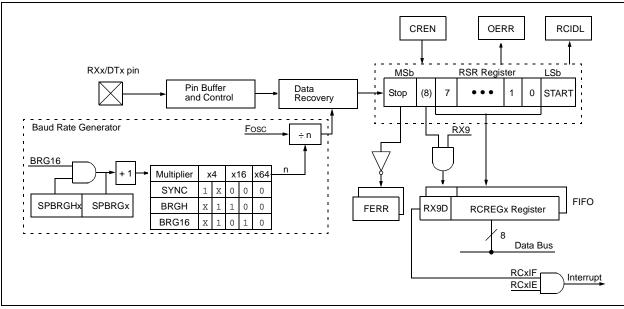
Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
CCP1CON	P1M-	<1:0>	DC1B	<1:0>		CCP1M<	3:0>		198
CCP2CON	P2M-	<1:0>	DC2B	<1:0>		CCP2M<	3:0>		198
CCP3CON	P3M-	<1:0>	DC3B	<1:0>		198			
CCP4CON	—	—	DC4B	4B<1:0> CCP4M<3:0>					198
CCP5CON	—	—	DC5B	<1:0>		CCP5M<	3:0>		198
CCPTMRS0	C3TSE	L<1:0>		C2TS	TSEL<1:0> — C1TSEL<1:0>				
CCPTMRS1	—	—	_	—	C5TSEL	_<1:0>	C4TSE	L<1:0>	201
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INTOIE	RBIE	TMR0IF	INTOIF	RBIF	109
IPR1	—	ADIP	RC1IP	TX1IP	SSP1IP	CCP1IP	TMR2IP	TMR1IP	121
IPR2	OSCFIP	C1IP	C2IP	EEIP	BCL1IP	HLVDIP	TMR3IP	CCP2IP	122
IPR4	—	—	_	—	_	CCP5IP	CCP4IP	CCP3IP	124
PIE1	—	ADIE	RC1IE	TX1IE	SSP1IE	CCP1IE	TMR2IE	TMR1IE	117
PIE2	OSCFIE	C1IE	C2IE	EEIE	BCL1IE	HLVDIE	TMR3IE	CCP2IE	118
PIE4	_	_	_	_	_	CCP5IE	CCP4IE	CCP3IE	120
PIR1	—	ADIF	RC1IF	TX1IF	SSP1IF	CCP1IF	TMR2IF	TMR1IF	112
PIR2	OSCFIF	C1IF	C2IF	EEIF	BCL1IF	HLVDIF	TMR3IF	CCP2IF	113
PIR4	—	—	_	—	_	CCP5IF	CCP4IF	CCP3IF	115
PMD0	UART2MD	UART1MD	TMR6MD	TMR5MD	TMR4MD	TMR3MD	TMR2MD	TMR1MD	52
PMD1	MSSP2MD	MSSP1MD	_	CCP5MD	CCP4MD	CCP3MD	CCP2MD	CCP1MD	53
PR2				Timer2 Per	riod Register				_
PR4				Timer4 Per	riod Register				_
PR6				Timer6 Per	riod Register				_
T2CON	—		T2OU	TPS<3:0>		TMR2ON	T2CKP	S<1:0>	166
T4CON	—		T4OU	TPS<3:0>		TMR4ON	T4CKP	S<1:0>	166
T6CON	—		T6OU ⁻	TPS<3:0>		TMR6ON	T6CKP	S<1:0>	166
TMR2				Timer2	Register				—
TMR4				Timer4	Register				_
TMR6				Timer6	Register				—
TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	151
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	151
TRISD ⁽¹⁾	TRISD7	TRISD6	TRISD5	TRISD4	TRISD3	TRISD2	TRISD1	TRISD0	151
TRISE	WPUE3	—	—	—	_	TRISE2 ⁽¹⁾	TRISE1 ⁽¹⁾	TRISE0 ⁽¹⁾	151

TABLE 14-10: REGISTERS ASSOCIATED WITH STANDARD PWM


Legend: — = Unimplemented location, read as '0'. Shaded bits are not used by Standard PWM mode.

Note 1: These registers/bits are available on PIC18(L)F4XK22 devices.

TABLE 14-11: CONFIGURATION REGISTERS ASSOCIATED WITH STANDARD PWM


Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
CONFIG3H	MCLRE	—	P2BMX	T3CMX	HFOFST	CCP3MX	PBADEN	CCP2MX	348

Legend: — = Unimplemented location, read as '0'. Shaded bits are not used by Standard PWM mode.

© 2010-2016 Microchip Technology Inc.

FIGURE 16-2: EUSART RECEIVE BLOCK DIAGRAM

The operation of the EUSART module is controlled through three registers:

- Transmit Status and Control (TXSTAx)
- Receive Status and Control (RCSTAx)
- Baud Rate Control (BAUDCONx)

These registers are detailed in Register 16-1, Register 16-2 and Register 16-3, respectively.

For all modes of EUSART operation, the TRIS control bits corresponding to the RXx/DTx and TXx/CKx pins should be set to '1'. The EUSART control will automatically reconfigure the pin from input to output, as needed.

When the receiver or transmitter section is not enabled then the corresponding RXx/DTx or TXx/CKx pin may be used for general purpose input and output.

		SYNC = 0, BRGH = 1, BRG16 = 0													
BAUD	Fosc = 64.000 MHz			Fosc = 18.432 MHz			Fosc = 16.000 MHz			Fosc = 11.0592 MHz					
RATE	Actual Rate	% Error	SPBRGx value (decimal)	Actual Rate	% Error	SPBRGx value (decimal)	Actual Rate	% Error	SPBRGx value (decimal)	Actual Rate	% Error	SPBRGx value (decimal)			
300	—	—	—		—	—		—	_			—			
1200	_	_	_	—	_	_	_	_	_	_	_	_			
2400	—	—	—	—	—	—	_	_	_	_	_	_			
9600	_	_	_	9600	0.00	119	9615	0.16	103	9600	0.00	71			
10417	—	_	_	10378	-0.37	110	10417	0.00	95	10473	0.53	65			
19.2k	19.23k	0.16	207	19.20k	0.00	59	19.23k	0.16	51	19.20k	0.00	35			
57.6k	57.97k	0.64	68	57.60k	0.00	19	58.82k	2.12	16	57.60k	0.00	11			
115.2k	114.29k	-0.79	34	115.2k	0.00	9	111.1k	-3.55	8	115.2k	0.00	5			

TABLE 16-5: BAUD RATES FOR ASYNCHRONOUS MODES (CONTINUED)

	SYNC = 0, BRGH = 1, BRG16 = 0													
BAUD	Fosc = 8.000 MHz			Fosc = 4.000 MHz			Fosc = 3.6864 MHz			Fosc = 1.000 MHz				
RATE	Actual Rate	% Error	SPBRGx value (decimal)	Actual Rate	% Error	SPBRGx value (decimal)	Actual Rate	% Error	SxBRGx value (decimal)	Actual Rate	% Error	SPBRGx value (decimal)		
300	—	_	_			_	_		_	300	0.16	207		
1200	_	_	_	1202	0.16	207	1200	0.00	191	1202	0.16	51		
2400	2404	0.16	207	2404	0.16	103	2400	0.00	95	2404	0.16	25		
9600	9615	0.16	51	9615	0.16	25	9600	0.00	23	_	_	_		
10417	10417	0.00	47	10417	0.00	23	10473	0.53	21	10417	0.00	5		
19.2k	19231	0.16	25	19.23k	0.16	12	19.2k	0.00	11	_	_	_		
57.6k	55556	-3.55	8	_	_	_	57.60k	0.00	3	—	_	_		
115.2k	_	_	_	_	_	_	115.2k	0.00	1	—	_	_		

	SYNC = 0, BRGH = 0, BRG16 = 1											
BAUD	Fosc = 64.000 MHz			Fosc = 18.432 MHz			Fosc = 16.000 MHz			Fosc = 11.0592 MHz		
RATE	Actual Rate	% Error	SPBRGHx: SPBRGx (decimal)	Actual Rate	% Error	SPBRGHx: SPBRGx (decimal)	Actual Rate	% Error	SPBRGHx :SPBRGx (decimal)	Actual Rate	% Error	SPBRGHx: SPBRGx (decimal)
300	300.0	0.00	13332	300.0	0.00	3839	300.03	0.01	3332	300.0	0.00	2303
1200	1200.1	0.01	3332	1200	0.00	959	1200.5	0.04	832	1200	0.00	575
2400	2399	-0.02	1666	2400	0.00	479	2398	-0.08	416	2400	0.00	287
9600	9592	-0.08	416	9600	0.00	119	9615	0.16	103	9600	0.00	71
10417	10417	0.00	383	10378	-0.37	110	10417	0.00	95	10473	0.53	65
19.2k	19.23k	0.16	207	19.20k	0.00	59	19.23k	0.16	51	19.20k	0.00	35
57.6k	57.97k	0.64	68	57.60k	0.00	19	58.82k	2.12	16	57.60k	0.00	11
115.2k	114.29k	-0.79	34	115.2k	0.00	9	111.11k	-3.55	8	115.2k	0.00	5

17.4 A/D Acquisition Requirements

For the ADC to meet its specified accuracy, the charge holding capacitor (CHOLD) must be allowed to fully charge to the input channel voltage level. The Analog Input model is shown in Figure 17-5. The source impedance (Rs) and the internal sampling switch (Rss) impedance directly affect the time required to charge the capacitor CHOLD. The sampling switch (Rss) impedance varies over the device voltage (VDD), see Figure 17-5. The maximum recommended impedance for analog sources is $3 \ k\Omega$. As the source impedance is decreased, the acquisition time may be decreased. After the analog input channel is selected (or changed), an A/D

acquisition must be done before the conversion can be started. To calculate the minimum acquisition time, Equation 17-1 may be used. This equation assumes that 1/2 LSb error is used (1024 steps for the ADC). The 1/2 LSb error is the maximum error allowed for the ADC to meet its specified resolution.

EQUATION 17-1: ACQUISITION TIME EXAMPLE

Assumptions: Temperature = 50°C and external impedance of 10k
$$\Omega$$
 3.0V VDD

$$TACQ = Amplifier Settling Time + Hold Capacitor Charging Time + Temperature Coefficient
= TAMP + TC + TCOFF
= 5µs + TC + [(Temperature - 25°C)(0.05µs/°C)]
The value for TC can be approximated with the following equations:
$$V_{APPLIED}\left(1 - \frac{1}{2047}\right) = V_{CHOLD} \qquad :[1] V_{CHOLD} charged to within 1/2 lsb
$$V_{APPLIED}\left(1 - e^{-\frac{TC}{RC}}\right) = V_{CHOLD} \qquad :[2] V_{CHOLD} charge response to VAPPLIED
$$V_{APPLIED}\left(1 - e^{-\frac{TC}{RC}}\right) = V_{APPLIED}\left(1 - \frac{1}{2047}\right) \qquad :combining [1] and [2]$$
Solving for Tc:

$$T_{C} = -CHOLD(RIC + RSS + RS) ln(1/2047)$$

$$= -13.5pF(Ik\Omega + 700\Omega + 10k\Omega) ln(0.0004885)$$

$$= 1.20\mu s$$$$$$$$

 $TACQ = 5\mu s + 1.20\mu s + [(50^{\circ}C - 25^{\circ}C)(0.05\mu s/^{\circ}C)]$ = 7.45\mu s

Note 1: The reference voltage (VREF) has no effect on the equation, since it cancels itself out.

- 2: The charge holding capacitor (CHOLD) is discharged after each conversion.
- **3:** The maximum recommended impedance for analog sources is 10 k Ω . This is required to meet the pin leakage specification.

21.3 Register Definitions: FVR Control

REGISTER	<u> 21-1: VREF</u>	CON0: FIXED		REFERENC	E CONTROL F	REGISTER		
R/W-0	R/W-0	R/W-0	R/W-1	U-0	U-0	U-0	U-0	
FVREN	FVREN FVRST FVRS<1:0>		6<1:0>	—	—	—	—	
bit 7		·		-			bit	
Legend:								
R = Readat	ole bit	W = Writable	bit	U = Unimplei	mented bit, read	as '0'		
u = Bit is ur	nchanged	x = Bit is unk	nown	-n/n = Value	at POR and BO	R/Value at all o	other Resets	
'1' = Bit is s	et	'0' = Bit is cle	ared					
bit 6	0 = Fixed V	ed Voltage Refe oltage Referenc oltage Referenc	e output is no	ot ready or not e	enabled			
bit 5-4	 1 = Fixed Voltage Reference output is ready for use FVRS<1:0>: Fixed Voltage Reference Selection bits 00 = Fixed Voltage Reference Peripheral output is off 01 = Fixed Voltage Reference Peripheral output is 1x (1.024V) 10 = Fixed Voltage Reference Peripheral output is 2x (2.048V)⁽¹⁾ 11 = Fixed Voltage Reference Peripheral output is 4x (4.096V)⁽¹⁾ 							
bit 3-2		Read as '0'. Mai	•	•				
bit 1-0	Unimpleme	nted: Read as '	0'.					
Note 1.	Fixed Voltage B							

REGISTER 21-1: VREFCON0: FIXED VOLTAGE REFERENCE CONTROL REGISTER

Note 1: Fixed Voltage Reference output cannot exceed VDD.

TABLE 21-1: SUMMARY OF REGISTERS ASSOCIATED WITH FIXED VOLTAGE REFERENCE

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
VREFCON0	FVREN	FVRST	FVRS<1:0>		_				332

Legend: — = unimplemented locations, read as '0'. Shaded bits are not used by the FVR module.

24.0 SPECIAL FEATURES OF THE CPU

PIC18(L)F2X/4XK22 devices include several features intended to maximize reliability and minimize cost through elimination of external components. These are:

- Oscillator Selection
- Resets:
 - Power-on Reset (POR)
 - Power-up Timer (PWRT)
 - Oscillator Start-up Timer (OST)
- Brown-out Reset (BOR)
- Interrupts
- Watchdog Timer (WDT)
- Code Protection
- ID Locations
- In-Circuit Serial Programming[™]

The oscillator can be configured for the application depending on frequency, power, accuracy and cost. All of the options are discussed in detail in Section 2.0 "Oscillator Module (With Fail-Safe Clock Monitor)".

A complete discussion of device Resets and interrupts is available in previous sections of this data sheet.

In addition to their Power-up and Oscillator Start-up Timers provided for Resets, PIC18(L)F2X/4XK22 devices have a Watchdog Timer, which is either permanently enabled via the Configuration bits or software controlled (if configured as disabled).

The inclusion of an internal RC oscillator also provides the additional benefits of a Fail-Safe Clock Monitor (FSCM) and Two-Speed Start-up. FSCM provides for background monitoring of the peripheral clock and automatic switchover in the event of its failure. Two-Speed Start-up enables code to be executed almost immediately on start-up, while the primary clock source completes its start-up delays.

All of these features are enabled and configured by setting the appropriate Configuration register bits.

24.1 Configuration Bits

The Configuration bits can be programmed (read as '0') or left unprogrammed (read as '1') to select various device configurations. These bits are mapped starting at program memory location 300000h.

The user will note that address 300000h is beyond the user program memory space. In fact, it belongs to the configuration memory space (300000h-3FFFFFh), which can only be accessed using table reads and table writes.

Programming the Configuration registers is done in a manner similar to programming the Flash memory. The WR bit in the EECON1 register starts a self-timed write to the Configuration register. In Normal operation mode, a TBLWT instruction with the TBLPTR pointing to the Configuration register sets up the address and the data for the Configuration register write. Setting the WR bit starts a long write to the Configuration register. The Configuration registers are written a byte at a time. To write or erase a configuration cell, a TBLWT instruction can write a '1' or a '0' into the cell. For additional details on Flash programming, refer to Section 6.6 "Writing to Flash Program Memory".

BTFSC	BTFSC Bit Test File, Skip if Clear			BTFSS	Bit Test File, Skip if Set			
Syntax:	BTFSC f, b	{,a}		Syntax:	BTFSS f, b {	{,a}		
Operands:	$\begin{array}{l} 0 \leq f \leq 255 \\ 0 \leq b \leq 7 \\ a \in [0,1] \end{array}$			Operands:	$0 \le f \le 255$ $0 \le b < 7$ $a \in [0,1]$			
Operation:	skip if (f)	= 0		Operation:	skip if (f) = 1			
Status Affected:	None			Status Affected:	None			
Encoding:	1011	bbba ff	ff ffff	Encoding:	1010 bbba ffff ffff			
Description:	If bit 'b' in register 'f' is '0', then the nextDescription:If bit 'b'If bit 'b' in register 'f' is '0', then the nextDescription:If bit 'b'instruction is skipped. If bit 'b' is '0', theninstructthe next instruction fetched during thethe nextcurrent instruction execution is discardedcurrentand a NOP is executed instead, makingand a Nthis a 2-cycle instruction.this a 2If 'a' is '0', the Access Bank is selected. IfIf 'a' is '1''a' is '1', the BSR is used to select the'a' is '1'GPR bank.GPR baIf 'a' is '0' and the extended instructionIf 'a' is 'e'set is enabled, this instruction operates inset is enabled, this instruction operates inndexed Literal Offset Addressingin Indexmode whenever f ≤ 95 (5Fh).mode wSee Section 25.2.3 "Byte-Oriented andSee SeBit-Oriented Instructions in IndexedBit-Oriented			instruction is the next instru- current instru and a NOP is this a 2-cycle If 'a' is '0', the 'a' is '1', the E GPR bank. If 'a' is '0' and set is enabled in Indexed Lit mode wheney See Section Bit-Oriented	If bit 'b' in register 'f' is '1', then the next instruction is skipped. If bit 'b' is '1', then the next instruction fetched during the current instruction execution is discarded and a NOP is executed instead, making this a 2-cycle instruction. If 'a' is '0', the Access Bank is selected. If 'a' is '1', the BSR is used to select the GPR bank. If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever $f \le 95$ (5Fh). See Section 25.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed Literal Offset Mode" for details.			
Words:	1			Words:	1			
Cycles:	•	cles if skip and 2-word instruc		Cycles:		les if skip and 2-word instruc		
Q Cycle Activity:				Q Cycle Activity:				
Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	
Decode	Read	Process	No	Decode	Read	Process	No	
If akin:	register 'f'	Data	operation		register 'f'	Data	operation	
If skip:	02	02	04	If skip:	02	02	04	
Q1 No	Q2 No	Q3 No	Q4 No	Q1 No	Q2 No	Q3 No	Q4 No	
operation	operation	operation	operation	operation	operation	operation	operation	
If skip and followed	by 2-word inst	truction:		If skip and followe	d by 2-word in	struction:	<u> </u>	
Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	
No	No	No	No	No	No	No	No	
operation	operation	operation	operation	operation	operation	operation	operation	
No operation	No operation	No operation	No operation	No	No	No operation	No	
operation	operation	operation	operation	operation	operation	operation	operation	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$)			

CNT Z C DC

After Instruction

CNT Z C DC

FFh 0 ? ?

00h

= = = =

= = = 1 1 1

GOTO	Uncondit	ional Bran	ch		INCF	Incremen	t f		
Syntax:	GOTO k				Syntax:	INCF f{,c	INCF f {,d {,a}}		
Operands:	$0 \le k \le 104$	8575			Operands:	$0 \leq f \leq 255$			
Operation:	$k \rightarrow PC < 20$):1>				d ∈ [0,1] a ∈ [0,1]			
Status Affected:	None				Operation:	$a \in [0, 1]$ (f) + 1 \rightarrow de	act		
Encoding:					Status Affected:	$(1) \neq 1 \rightarrow 0$ C, DC, N,			
1st word (k<7:0>) 2nd word(k<19:8>)	1110 1111		7kkk kkk	kkkk ₀ kkkk ₈	Encoding:	0010	10da ff	ff ffff	
Description: GOTO allows an unconditional branch anywhere within entire 2-Mbyte memory range. The 20-bit value 'k' is loaded into PC<20:1>. GOTO is always a 2-cycle instruction.			Description:	Description: The contents of register 'f' are incremented. If 'd' is '0', the re placed in W. If 'd' is '1', the re placed back in register 'f' (def If 'a' is '0', the Access Bank is If 'a' is '1', the BSR is used to					
Words:	2					GPR bank. If 'a' is '0' and the extended instruction set is enabled, this instruction operates			
Cycles:	2								
Q Cycle Activity:						in Indexed Literal Offset Addressing			
Q1	Q2	Q3		Q4			never f ≤ 95 (5 5 .2.3 "Byte-Or		
Decode	Read literal 'k'<7:0>,	No operation	'k'	ad literal 2<19:8>, rite to PC		Bit-Oriente	ed Instruction set Mode" for	s in Indexed	
No	No	No		No	Words:	1			
operation	operation	operation	op	peration	Cycles:	1			
					Q Cycle Activity:				
Example:	GOTO THE	RE			Q1	Q2	Q3	Q4	
After Instruction PC =	on Address (T	HERE)			Decode	Read register 'f'	Process Data	Write to destination	
					Example:	INCF	CNT, 1, 0		
						ction			

25.2.2 EXTENDED INSTRUCTION SET

ADD	FSR	Add Lite	Add Literal to FSR						
Synta	Syntax: ADDFSR f, k								
Oper	ands:		$0 \leq k \leq 63$						
		f ∈ [0, 1,	2]						
Oper	ation:	FSR(f) + k	$s \rightarrow FSR($	f)					
Statu	s Affected:	None	None						
Enco	ding:	1110	1000	ffk	k	kkkk			
Desc	ription:	The 6-bit	The 6-bit literal 'k' is added to the						
		contents of	contents of the FSR specified by 'f'.						
Word	ls:	1	1						
Cycle	es:	1	1						
QC	ycle Activity:								
	Q1	Q2	Q3		Q4				
	Decode	Read	Proce	SS	Write to				
		literal 'k'	Data		FSR				

Example:	ADDFSR	2.	23h

Before Instru		
FSR2	=	03FFh
After Instruct		
FSR2	=	0422h

ADDULNK	ADDULNK Add Literal to FSR2 and Return						
Syntax:	ADDULNK k						
Operands:	$0 \le k \le 63$						
Operation:	$FSR2 + k \rightarrow FSR2$,						
	$(TOS) \rightarrow PC$						
Status Affected:	None						
Encoding:	1110 1000 11kk kkkk						
Description:	The 6-bit literal 'k' is added to the contents of FSR2. A RETURN is then executed by loading the PC with the TOS. The instruction takes two cycles to execute; a NOP is performed during the second cycle. This may be thought of as a special case of the ADDFSR instruction, where f = 3 (binary '11'); it operates only on FSR2.						
Words:	1						
Cycles:	2						
O Cycle Activity:							

Q Cycle Activity:

Q1	Q2	Q3	Q4
Decode	Read	Process	Write to
	literal 'k'	Data	FSR
No	No	No	No
Operation	Operation	Operation	Operation

0422h

(TOS)

Example: ADDULNK 23h

=

=

Before Instru	ction	
FSR2	=	03FFh
PC	=	0100h
After Instructi	ion	

FSR2

PC

Note: All PIC18 instructions may take an optional label argument preceding the instruction mnemonic for use in symbolic addressing. If a label is used, the instruction syntax then becomes: {label} instruction argument(s).

PIC18LF2X/4XK22		Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +125^{\circ}C$								
PIC18F2	Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +125^{\circ}C$									
Param No.	Device Characteristics	Тур	Max	Units		Conditions				
D055		0.25	0.40	mA	-40°C to +125°C	Vdd = 1.8V	Fosc = 1 MHz			
D056		0.35	0.50	mA	-40°C to +125°C	VDD = 3.0V	(RC_IDLE mode, HFINTOSC source)			
D057		0.30	0.45	mA	-40°C to +125°C	VDD = 2.3V	Fosc = 1 MHz			
D058		0.40	0.50	mA	-40°C to +125°C	VDD = 3.0V	(RC_IDLE mode, HFINTOSC source)			
D059		0.45	0.60	mA	-40°C to +125°C	VDD = 5.0V				
D060		0.50	0.7	mA	-40°C to +125°C	VDD = 1.8V	Fosc = 16 MHz			
D061		0.80	1.1	mA	-40°C to +125°C	VDD = 3.0V	(RC_IDLE mode, HFINTOSC source)			
D062		0.65	1.0	mA	-40°C to +125°C	VDD = 2.3V	Fosc = 16 MHz			
D063		0.80	1.1	mA	-40°C to +125°C	VDD = 3.0V	(RC_IDLE mode, HFINTOSC source)			
D064		0.95	1.2	mA	-40°C to +125°C	VDD = 5.0V				
D066		2.5	3.5	mA	-40°C to +125°C	VDD = 3.0V	Fosc = 64 MHz (RC_IDLE mode, HFINTOSC + PLL source)			
D068		2.5	3.5	mA	-40°C to +125°C	VDD = 3.0V	Fosc = 64 MHz			
D069		3.0	4.5	mA	-40°C to +125°C	VDD = 5.0V	(RC_IDLE mode, HFINTOSC + PLL source)			

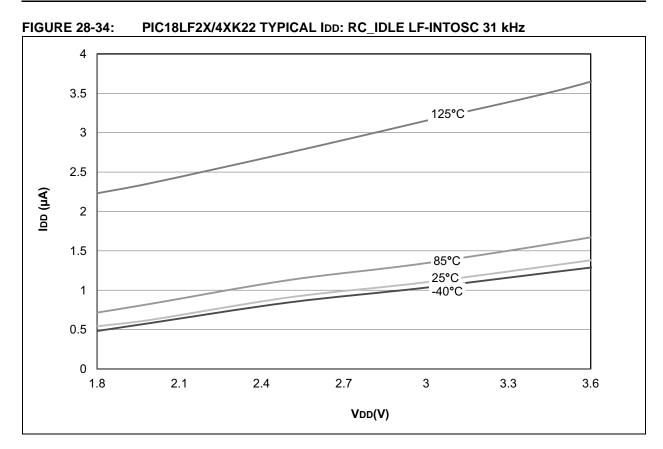
27.4 DC Characteristics: RC Idle Supply Current, PIC18(L)F2X/4XK22 (Continued)

Note 1: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on the current consumption.

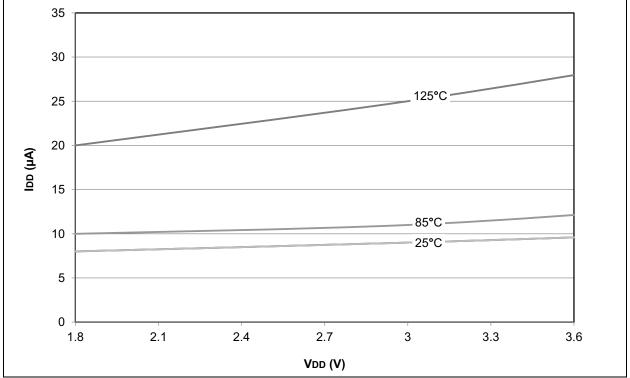
Test condition: All Peripheral Module Control bits in PMD0, PMD1 and PMD2 set to '1'.

2: The test conditions for all IDD measurements in active operation mode are:

All I/O pins set as outputs driven to Vss;


OSC1 = external square wave, from rail-to-rail (PRI_RUN and PRI_IDLE only).

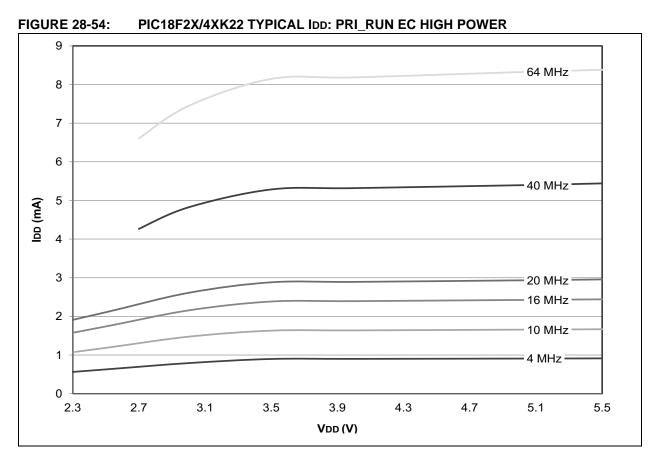
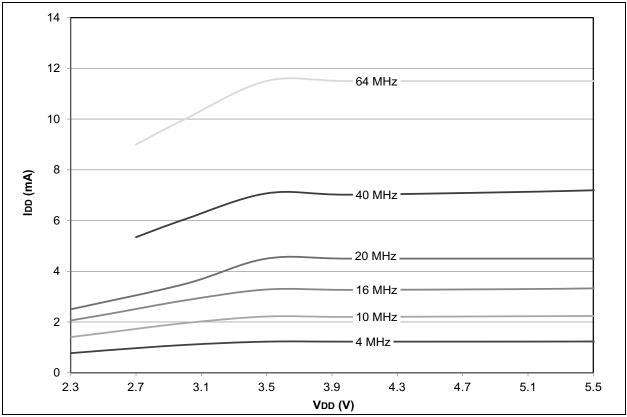
Param. No.	Symbol	Charact	eristic	Min	Max	Units μs	Conditions	
100	Тнідн	Clock High Time	100 kHz mode	4.0	—		Must operate at a minimum of 1.5 MHz	
			400 kHz mode	0.6	—	μS	Must operate at a minimum of 10 MHz	
			SSP Module	1.5 TCY	—			
101	TLOW	Clock Low Time	100 kHz mode	4.7	—	μS	Must operate at a minimum of 1.5 MHz	
			400 kHz mode	1.3	—	μS	Must operate at a minimum of 10 MHz	
			SSP Module	1.5 TCY	—			
102	TR	SDA and SCL Rise Time	100 kHz mode	—	1000	ns		
			400 kHz mode	20 + 0.1 Св	300	ns	CB is specified to be from 10 to 400 pF	
103	TF	SDA and SCL Fall Time	100 kHz mode	—	300	ns		
			400 kHz mode	20 + 0.1 Св	300	ns	CB is specified to be from 10 to 400 pF	
90	TSU:STA	Start Condition Setup Time	100 kHz mode	4.7	_	μS	Only relevant for Repeated	
			400 kHz mode	0.6	_	μS	Start condition	
91	THD:STA	Start Condition Hold Time	100 kHz mode	4.0	—	μS	After this period, the first	
			400 kHz mode	0.6	—	μS	clock pulse is generated	
106	THD:DA T	Data Input Hold Time	100 kHz mode	0	—	ns		
			400 kHz mode	0	0.9	μS		
107	TSU:DAT	Data Input Setup Time	100 kHz mode	250	—	ns	(Note 2)	
			400 kHz mode	100	—	ns		
92	Tsu:sto	Stop Condition Setup Time	100 kHz mode	4.7	_	μS		
			400 kHz mode	0.6	—	μS		
109	ΤΑΑ	Output Valid from Clock	100 kHz mode	—	3500	ns	(Note 1)	
			400 kHz mode	—	—	ns		
110	TBUF	Bus Free Time	100 kHz mode	4.7	_	μS	Time the bus must be free	
			400 kHz mode	1.3	—	μS	before a new transmission can start	
D102	Св	Bus Capacitive Load	ding	—	400	pF		

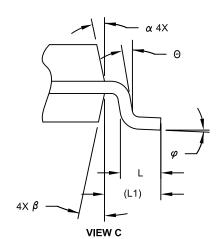

TABLE 27-16:	I ² C BUS DATA	REQUIREMENTS	(SLAVE MODE)
--------------	---------------------------	--------------	--------------

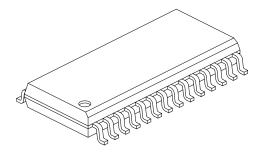
Note 1: As a transmitter, the device must provide this internal minimum delay time to bridge the undefined region (min. 300 ns) of the falling edge of SCL to avoid unintended generation of Start or Stop conditions.

2: A fast mode I²C bus device can be used in a standard mode I²C bus system but the requirement, TSU:DAT ≥ 250 ns, must then be met. This will automatically be the case if the device does not stretch the LOW period of the SCL signal. If such a device does stretch the LOW period of the SCL signal, it must output the next data bit to the SDA line, TR max. + TSU:DAT = 1000 + 250 = 1250 ns (according to the standard mode I²C bus specification), before the SCL line is released.

© 2010-2016 Microchip Technology Inc.


FIGURE 28-55: PIC18F2X/4XK22 MAXIMUM IDD: PRI_RUN EC HIGH POWER



© 2010-2016 Microchip Technology Inc.

28-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS					
Dimension	Limits	MIN	NOM	MAX		
Number of Pins	N	28				
Pitch	е	1.27 BSC				
Overall Height	A			2.65		
Molded Package Thickness	A2	2.05	-	-		
Standoff §	A1	0.10	-	0.30		
Overall Width	E	10.30 BSC				
Molded Package Width	E1	7.50 BSC				
Overall Length	D	17.90 BSC				
Chamfer (Optional)	h	0.25	-	0.75		
Foot Length	L	0.40	-	1.27		
Footprint	L1	1.40 REF				
Lead Angle	Θ	0°	-	-		
Foot Angle	φ	0°	-	8°		
Lead Thickness	С	0.18	-	0.33		
Lead Width	b	0.31	-	0.51		
Mold Draft Angle Top	α	5°	-	15°		
Mold Draft Angle Bottom	β	5°	-	15°		

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. § Significant Characteristic
- 3. Dimension D does not include mold flash, protrusions or gate burrs, which shall not exceed 0.15 mm per end. Dimension E1 does not include interlead flash or protrusion, which shall not exceed 0.25 mm per side.
- Dimensioning and tolerancing per ASME Y14.5M BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only.
- 5. Datums A & B to be determined at Datum H.

Microchip Technology Drawing C04-052C Sheet 2 of 2

APPENDIX B: DEVICE DIFFERENCES

The differences between the devices listed in this data sheet are shown in Table B-1.

								1
Features ⁽¹⁾	PIC18F23K22 PIC18LF23K2 2	PIC18F24K22 PIC18LF24K2 2	PIC18F25K22 PIC18LF25K22	PIC18F26K22 PIC18LF26K22	PIC18F43K22 PIC18LF43K22	PIC18F44K22 PIC18LF44K22	PIC18F45K22 PIC18LF45K22	PIC18F46K22 PIC18LF46K22
Program Memory (Bytes)	8192	16384	32768	65536	8192	16384	32768	65536
SRAM (Bytes)	512	768	1536	3896	512	768	1536	3896
EEPROM (Bytes)	256	256	256	1024	256	256	256	1024
Interrupt Sources	26	26	33	33	26	26	33	33
I/O Ports	Ports A, B, C, (E)	Ports A, B, C, (E)	Ports A, B, C, (E)	Ports A, B, C, (E)	Ports A, B, C, D, E			
Capture/Compare/PWM Modules (CCP)	2	2	2	2	2	2	2	2
Enhanced CCP Modules (ECCP) Full Bridge	1	1	1	1	2	2	2	2
ECCP Module Half Bridge	2	2	2	2	1	1	1	1
10-bit Analog-to-Digital Module	17 input channels	17 input channels	17 input channels	17 input channels	28 input channels	28 input channels	28 input channels	28 input channels
Packages	28-pin PDIP 28-pin SOIC 28-pin SSOP 28-pin QFN 28-pin UQFN	28-pin PDIP 28-pin SOIC 28-pin SSOP 28-pin QFN 28-pin UQFN	28-pin PDIP 28-pin SOIC 28-pin SSOP 28-pin QFN	28-pin PDIP 28-pin SOIC 28-pin SSOP 28-pin QFN	40-pin PDIP 40-pin UQFN 44-pin TQFP 44-pin QFN			

TABLE B-1: DEVICE DIFFERENCES

Note 1: PIC18FXXK22: operating voltage, 2.3V-5.5V. PIC18LFXXK22: operating voltage, 1.8V-3.6V.