

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	48MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	35
Program Memory Size	64KB (32K x 16)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	3.8K × 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 30x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	44-VQFN Exposed Pad
Supplier Device Package	44-QFN (8x8)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18lf46k22-e-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Number		ımber		Din	Buffor		
	PDIP, QFN, SOIC UQFN		Pin Name	Туре	Туре	Description	
ľ	20	17	Vdd	P — Positive supply for logic and I/O pins.		Positive supply for logic and I/O pins.	
	8, 19	5, 16	Vss	Р	-	Ground reference for logic and I/O pins.	

TABLE 1-2: PIC18(L)F2XK22 PINOUT I/O DESCRIPTIONS (CONTINUED)

Legend: TTL = TTL compatible input CMOS = CMOS compatible input or output; ST = Schmitt Trigger input with CMOS levels; I = Input; O = Output; P = Power.

Note 1: Default pin assignment for P2B, T3CKI, CCP3 and CCP2 when Configuration bits PB2MX, T3CMX, CCP3MX and CCP2MX are set.

2: Alternate pin assignment for P2B, T3CKI, CCP3 and CCP2 when Configuration bits PB2MX, T3CMX, CCP3MX and CCP2MX are clear.

TABLE 1-3:	PIC18(L)F4XK22 PINOUT I/O DESCRIPTIONS
------------	--

Pin Number		D'a Nama	Pin	Buffer	Description		
PDIP	TQFP	QFN	UQFN	Pin Name	Туре	Туре	Description
2	19	19	17	RA0/C12IN0-/AN0			
				RA0	I/O	TTL	Digital I/O.
				C12IN0-	I	Analog	Comparators C1 and C2 inverting input.
				AN0	Ι	Analog	Analog input 0.
3	20	20	18	RA1/C12IN1-/AN1			
				RA1	I/O	TTL	Digital I/O.
				C12IN1-	I	Analog	Comparators C1 and C2 inverting input.
				AN1	Ι	Analog	Analog input 1.
4	21	21	19	RA2/C2IN+/AN2/DACOUT	/Vref-		
				RA2	I/O	TTL	Digital I/O.
				C2IN+	I	Analog	Comparator C2 non-inverting input.
				AN2	I	Analog	Analog input 2.
				DACOUT	0	Analog	DAC Reference output.
				VREF-	Ι	Analog	A/D reference voltage (low) input.
5	22	22	20	RA3/C1IN+/AN3/VREF+			
				RA3	I/O	TTL	Digital I/O.
				C1IN+	I	Analog	Comparator C1 non-inverting input.
				AN3	I	Analog	Analog input 3.
				VREF+	Ι	Analog	A/D reference voltage (high) input.
6	23	23	21	RA4/C1OUT/SRQ/T0CKI	RA4/C1OUT/SRQ/T0CKI		
				RA4	I/O	ST	Digital I/O.
				C1OUT	0	CMOS	Comparator C1 output.
				SRQ	0	TTL	SR latch Q output.
				TOCKI	I	ST	Timer0 external clock input.

Legend: TTL = TTL compatible input CMOS = CMOS compatible input or output; ST = Schmitt Trigger input with CMOS levels; I = Input; O = Output; P = Power.

Note 1: Default pin assignment for P2B, T3CKI, CCP3/P3A and CCP2/P2A when Configuration bits PB2MX, T3CMX, CCP3MX and CCP2MX are set.

2: Alternate pin assignment for P2B, T3CKI, CCP3/P3A and CCP2/P2A when Configuration bits PB2MX, T3CMX, CCP3MX and CCP2MX are clear.

4.2 Register Definitions: Reset Control

REGISTER 4-1: RCON: RESET CONTROL REGISTER

R/W-0/	0 R/W-q/u	U-0	R/W-1/a	R-1/q	R-1/q	R/W-q/u	R/W-0/a
IPEN	SBOREN ⁽¹⁾	_	RI	то	PD	POR ⁽²⁾	BOR
bit 7	I				L		bit 0
							,
Legend:							
R = Reada	able bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'	
'1' = Bit is	set	'0' = Bit is cle	ared	-n/n = Value	at POR and BO	R/Value at all c	ther Resets
x = Bit is	unknown	u = unchang	ed	q = depends	on condition		
bit 7	IPEN: Interrup 1 = Enable pr 0 = Disable pr	ot Priority Enat iority levels on riority levels on	ble bit interrupts i interrupts (P	IC16CXXX Co	mpatibility mode	•)	
bit 6	t 6 SBOREN: BOR Software Enable bit ⁽¹⁾ $\frac{\text{If BOREN<1:0> = 01:}}{1 = \text{BOR is enabled}}$ $0 = \text{BOR is disabled}$ $\frac{\text{If BOREN<1:0> = 00, 10 \text{ or } 11:}}{1 = \text{BOR is disabled}}$						
bit 5	Unimplemen	ted: Read as '	0'				
bit 4	RI: RESET INS	struction Flag b	oit				
	1 = The RESE 0 = The RESE code-exe	ET instruction v ET instruction cuted Reset of	vas not execu was executec ccurs)	ited (set by firm d causing a de	ware or Power- vice Reset (mu	on Reset) st be set in fin	mware after a
bit 3	TO: Watchdog	g Time-out Flag	g bit				
	1 = Set by po 0 = A WDT ti	wer-up, CLRW	DT instruction ed	or SLEEP instr	uction		
bit 2	PD: Power-do	own Detection	Flag bit				
	1 = Set by po	ower-up or by t	he CLRWDT in	struction			
L :L 4	0 = Set by ex	ecution of the	SLEEP INStruc	Ction			
DIT		on Reset Statu	S DIT-				
	1 = NO POWER0 = A Power-0	on Reset occu	rred (must be	set in software	after a Power-o	on Reset occur	s)
bit 0	BOR: Brown-	out Reset State	us bit ⁽³⁾				- /
	1 = A Brown- 0 = A Brown-	out Reset has out Reset occi	not occurred urred (must be	(set by firmwai e set by firmwa	e only) re after a POR o	or Brown-out R	eset occurs)
Note 1:	When CONFIG2L[2:1] = 01, then	the SBOREN	Reset state is	; '1'; otherwise.	it is '0'.	
2:	The actual Reset v	alue of POR is	determined b	by the type of c	levice Reset. Se	e the notes fol	lowing this

register and Section 4.7 "Reset State of Registers" for additional information.

3: See Table 4-1.

Note 1: Brown-out Reset is indicated when BOR is '0' and POR is '1' (assuming that both POR and BOR were set to '1' by firmware immediately after POR).

2: It is recommended that the POR bit be set after a Power-on Reset has been detected so that subsequent Power-on Resets may be detected.

4.5 Brown-out Reset (BOR)

PIC18(L)F2X/4XK22 devices implement a BOR circuit that provides the user with a number of configuration and power-saving options. The BOR is controlled by the BORV<1:0> and BOREN<1:0> bits of the CONFIG2L Configuration register. There are a total of four BOR configurations which are summarized in Table 4-1.

The BOR threshold is set by the BORV<1:0> bits. If BOR is enabled (any values of BOREN<1:0>, except '00'), any drop of VDD below VBOR for greater than TBOR will reset the device. A Reset may or may not occur if VDD falls below VBOR for less than TBOR. The chip will remain in Brown-out Reset until VDD rises above VBOR.

If the Power-up Timer is enabled, it will be invoked after VDD rises above VBOR; it then will keep the chip in Reset for an additional time delay, TPWRT. If VDD drops below VBOR while the Power-up Timer is running, the chip will go back into a Brown-out Reset and the Power-up Timer will be initialized. Once VDD rises above VBOR, the Power-up Timer will execute the additional time delay.

BOR and the Power-on Timer (PWRT) are independently configured. Enabling BOR Reset does not automatically enable the PWRT.

The BOR circuit has an output that feeds into the POR circuit and rearms the POR within the operating range of the BOR. This early rearming of the POR ensures that the device will remain in Reset in the event that VDD falls below the operating range of the BOR circuitry.

4.5.1 DETECTING BOR

When BOR is enabled, the $\overline{\text{BOR}}$ bit always resets to '0' on any BOR or POR event. This makes it difficult to determine if a BOR event has occurred just by reading the state of $\overline{\text{BOR}}$ alone. A more reliable method is to simultaneously check the state of both POR and $\overline{\text{BOR}}$. This assumes that the POR and $\overline{\text{BOR}}$ bits are reset to '1' by software immediately after any POR event. If $\overline{\text{BOR}}$ is '0' while $\overline{\text{POR}}$ is '1', it can be reliably assumed that a BOR event has occurred.

4.5.2 SOFTWARE ENABLED BOR

When BOREN<1:0> = 01, the BOR can be enabled or disabled by the user in software. This is done with the SBOREN control bit of the RCON register. Setting SBOREN enables the BOR to function as previously described. Clearing SBOREN disables the BOR entirely. The SBOREN bit operates only in this mode; otherwise it is read as '0'.

Placing the BOR under software control gives the user the additional flexibility of tailoring the application to the environment without having to reprogram the device to change BOR configuration. It also allows the user to tailor device power consumption in software by eliminating the incremental current that the BOR consumes. While the BOR current is typically very small, it may have some impact in low-power applications.

Note:	Even	when	BOR	is	under	software	
	control, the BOR Reset voltage level is still						
	set by the BORV<1:0> Configuration bits.						
	lt canr	not be c	hangeo	d by	softwar	e.	

4.5.3 DISABLING BOR IN SLEEP MODE

When BOREN<1:0> = 10, the BOR remains under hardware control and operates as previously described. Whenever the device enters Sleep mode, however, the BOR is automatically disabled. When the device returns to any other operating mode, BOR is automatically re-enabled.

This mode allows for applications to recover from brown-out situations, while actively executing code, when the device requires BOR protection the most. At the same time, it saves additional power in Sleep mode by eliminating the small incremental BOR current.

4.5.4 MINIMUM BOR ENABLE TIME

Enabling the BOR also enables the Fixed Voltage Reference (FVR) when no other peripheral requiring the FVR is active. The BOR becomes active only after the FVR stabilizes. Therefore, to ensure BOR protection, the FVR settling time must be considered when enabling the BOR in software or when the BOR is automatically enabled after waking from Sleep. If the BOR is disabled, in software or by reentering Sleep before the FVR stabilizes, the BOR circuit will not sense a BOR condition. The FVRST bit of the VREFCON0 register can be used to determine FVR stability.

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	ANSB5	ANSB4	ANSB3	ANSB2	ANSB1	ANSB0
bit 7							bit 0
Legend:							
R = Readable	R = Readable bit W = Writable bit		bit	U = Unimplemented bit, read as '0'			
-n = Value at POR		'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown

REGISTER 10-4: ANSELB – PORTB ANALOG SELECT REGISTER

bit 7-6 Unimplemented: Read as '0'

bit 5-0 ANSB<5:0>: RB<5:0> Analog Select bit 1 = Digital input buffer disabled 0 = Digital input buffer enabled

REGISTER 10-5: ANSELC – PORTC ANALOG SELECT REGISTER

R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	U-0	U-0
ANSC7	ANSC6	ANSC5	ANSC4	ANSC3	ANSC2	—	—
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-2 ANSC<7:2>: RC<7:2> Analog Select bit 1 = Digital input buffer disabled 0 = Digital input buffer enabled

bit 1-0 Unimplemented: Read as '0'

REGISTER 10-6: ANSELD – PORTD ANALOG SELECT REGISTER

| R/W-1 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| ANSD7 | ANSD6 | ANSD5 | ANSD4 | ANSD3 | ANSD2 | ANSD1 | ANSD0 |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-0 ANSD<7:0>: RD<7:0> Analog Select bit

1 = Digital input buffer disabled

0 = Digital input buffer enabled

FIGURE 12-7:	TIMER1/3/5 GATE SING	LE-PULSE AND TOGGLE COMBINED MODE
TMRxGE		
TxGPOL		
TxGSPM		
TxGTM		
TxGG <u>O/</u> DONE	 Set by software Counting enabled of the set of the	Cleared by hardware on falling edge of TxGVAL
TxG_IN	rising edge of TxG	
ТхСКІ		
TxGVAL		
TIMER1/3/5	Ν	<u>N + 1</u> <u>N + 2</u> <u>N + 3</u> <u>N + 4</u>
TMRxGIF	Cleared by software	Set by hardware on falling edge of TxGVAL

12.12 Peripheral Module Disable

When a peripheral module is not used or inactive, the module can be disabled by setting the Module Disable bit in the PMD registers. This will reduce power consumption to an absolute minimum. Setting the PMD bits holds the module in Reset and disconnects the module's clock source. The Module Disable bits for Timer1 (TMR1MD), Timer3 (TMR3MD) and Timer5 (TMR5MD) are in the PMD0 Register. See Section 3.0 "Power-Managed Modes" for more information.

14.4.5 PROGRAMMABLE DEAD-BAND DELAY MODE

In half-bridge applications where all power switches are modulated at the PWM frequency, the power switches normally require more time to turn off than to turn on. If both the upper and lower power switches are switched at the same time (one turned on, and the other turned off), both switches may be on for a short period of time until one switch completely turns off. During this brief interval, a very high current (*shoot-through current*) will flow through both power switches, shorting the bridge supply. To avoid this potentially destructive shootthrough current from flowing during switching, turning on either of the power switches is normally delayed to allow the other switch to completely turn off.

In Half-Bridge mode, a digitally programmable deadband delay is available to avoid shoot-through current from destroying the bridge power switches. The delay occurs at the signal transition from the non-active state to the active state. See Figure 14-16 for illustration. The lower seven bits of the associated PWMxCON register (Register 14-6) sets the delay period in terms of microcontroller instruction cycles (TcY or 4 Tosc).

FIGURE 14-16: EXAMPLE OF HALF-BRIDGE PWM OUTPUT

FIGURE 14-17: EXAMPLE OF HALF-BRIDGE APPLICATIONS

© 2010-2016 Microchip Technology Inc

DS40001412G-page 226

PIC18(L)F2X/4XK22

15.6.2 CLOCK ARBITRATION

Clock arbitration occurs when the master, during any receive, transmit or Repeated Start/Stop condition, releases the SCLx pin (SCLx allowed to float high). When the SCLx pin is allowed to float high, the Baud Rate Generator (BRG) is suspended from counting until the SCLx pin is actually sampled high. When the SCLx pin is sampled high, the Baud Rate Generator is reloaded with the contents of SSPxADD<7:0> and begins counting. This ensures that the SCLx high time will always be at least one BRG rollover count in the event that the clock is held low by an external device (Figure 15-25).

FIGURE 15-25: BAUD RATE GENERATOR TIMING WITH CLOCK ARBITRATION

15.6.3 WCOL STATUS FLAG

If the user writes the SSPxBUF when a Start, Restart, Stop, Receive or Transmit sequence is in progress, the WCOL is set and the contents of the buffer are unchanged (the write does not occur). Any time the WCOL bit is set it indicates that an action on SSPxBUF was attempted while the module was not Idle.

Note:	Because queueing of events is not
	allowed, writing to the lower 5 bits of
	SSPxCON2 is disabled until the Start con-
	dition is complete.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register
									on Page
BAUDCON1	ABDOVF	RCIDL	DTRXP	CKTXP	BRG16	_	WUE	ABDEN	271
BAUDCON2	ABDOVF	RCIDL	DTRXP	CKTXP	BRG16	—	WUE	ABDEN	271
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	109
IPR1	—	ADIP	RC1IP	TX1IP	SSP1IP	CCP1IP	TMR2IP	TMR1IP	121
IPR3	SSP2IP	BCL2IP	RC2IP	TX2IP	CTMUIP	TMR5GIP	TMR3GIP	TMR1GIP	123
PIE1	—	ADIE	RC1IE	TX1IE	SSP1IE	CCP1IE	TMR2IE	TMR1IE	117
PIE3	SSP2IE	BCL2IE	RC2IE	TX2IE	CTMUIE	TMR5GIE	TMR3GIE	TMR1GIE	119
PIR1	—	ADIF	RC1IF	TX1IF	SSP1IF	CCP1IF	TMR2IF	TMR1IF	112
PIR3	SSP2IF	BCL2IF	RC2IF	TX2IF	CTMUIF	TMR5GIF	TMR3GIF	TMR1GIF	114
PMD0	UART2MD	UART1MD	TMR6MD	TMR5MD	TMR4MD	TMR3MD	TMR2MD	TMR1MD	52
RCSTA1	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	270
RCSTA2	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	270
SPBRG1			EUSART1	Baud Rate	Generator,	Low Byte			—
SPBRGH1			EUSART1	Baud Rate	Generator,	High Byte			—
SPBRG2	EUSART2 Baud Rate Generator, Low Byte							—	
SPBRGH2			EUSART2	Baud Rate	Generator,	High Byte			—
ANSELC	ANSC7	ANSC6	ANSC5	ANSC4	ANSC3	ANSC2	-		150
ANSELD ⁽¹⁾	ANSD7	ANSD6	ANSD5	ANSD4	ANSD3	ANSD2	ANSD1	ANSD0	150
TRISB ⁽²⁾	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	151
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	151
TRISD ⁽¹⁾	TRISD7	TRISD6	TRISD5	TRISD4	TRISD3	TRISD2	TRISD1	TRISD0	151
TXREG1	EUSART1 Transmit Register							—	
TXSTA1	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	269
TXREG2			EU	SART2 Tra	nsmit Regis	ster			—
TXSTA2	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	269

TABLE 16-9: REGISTERS ASSOCIATED WITH SYNCHRONOUS SLAVE TRANSMISSION

Legend: — = unimplemented locations, read as '0'. Shaded bits are not used for synchronous slave transmission.

Note 1: PIC18(L)F4XK22 devices.

2: PIC18(L)F2XK22 devices.

17.1.5 CONVERSION CLOCK

The source of the conversion clock is software selectable via the ADCS bits of the ADCON2 register. There are seven possible clock options:

- Fosc/2
- Fosc/4
- Fosc/8
- Fosc/16
- Fosc/32
- Fosc/64
- FRC (dedicated internal oscillator)

The time to complete one bit conversion is defined as TAD. One full 10-bit conversion requires 11 TAD periods as shown in Figure 17-3.

For correct conversion, the appropriate TAD specification must be met. See A/D conversion requirements in Table 27-22 for more information. Table 17-1 gives examples of appropriate ADC clock selections.

Note:	Unless using the FRC, any changes in the						
	system clock frequency will change the						
	ADC clock frequency, which may						
	adversely affect the ADC result.						

17.1.6 INTERRUPTS

The ADC module allows for the ability to generate an interrupt upon completion of an Analog-to-Digital Conversion. The ADC interrupt enable is the ADIE bit in the PIE1 register and the interrupt priority is the ADIP bit in the IPR1 register. The ADC interrupt flag is the ADIF bit in the PIR1 register. The ADIF bit must be cleared by software.

Note: The ADIF bit is set at the completion of every conversion, regardless of whether or not the ADC interrupt is enabled.

This interrupt can be generated while the device is operating or while in Sleep. If the device is in Sleep, the interrupt will wake-up the device. Upon waking from Sleep, the next instruction following the SLEEP instruction is always executed. If the user is attempting to wake-up from Sleep and resume in-line code execution, the global interrupt must be disabled. If the global interrupt is enabled, execution will switch to the Interrupt Service Routine.

TABLE 17-1:	ADC CLOCK PERIOD	(TAD) VS. DEVICE OPERATING FREQUENCIES
-------------	------------------	--

ADC Clock	Period (TAD)	Device Frequency (Fosc)					
ADC Clock Source	ADCS<2:0>	64 MHz	16 MHz	4 MHz	1 MHz		
Fosc/2	000	31.25 ns ⁽²⁾	125 ns ⁽²⁾	500 ns ⁽²⁾	2.0 μs		
Fosc/4	100	62.5 ns ⁽²⁾	250 ns ⁽²⁾	1.0 μs	4.0 μs ⁽³⁾		
Fosc/8	001	400 ns ⁽²⁾	500 ns ⁽²⁾	2.0 μs	8.0 μs ⁽³⁾		
Fosc/16	101	250 ns ⁽²⁾	1.0 μs	4.0 μs ⁽³⁾	16.0 μs ⁽³⁾		
Fosc/32	010	500 ns ⁽²⁾	2.0 μs	8.0 μs ⁽³⁾	32.0 μs ⁽³⁾		
Fosc/64	110	1.0 μs	4.0 μs ⁽³⁾	16.0 μs ⁽³⁾	64.0 μs ⁽³⁾		
FRC	x11	1-4 μs ^(1,4)	1-4 μs ^(1,4)	1-4 μs ^(1,4)	1-4 μs ^(1,4)		

Legend: Shaded cells are outside of recommended range.

Note 1: The FRC source has a typical TAD time of $1.7 \ \mu$ s.

2: These values violate the minimum required TAD time.

3: For faster conversion times, the selection of another clock source is recommended.

4: The ADC clock period (TAD) and total ADC conversion time can be minimized when the ADC clock is derived from the system clock Fosc. However, the FRC oscillator source must be used when conversions are to be performed with the device in Sleep mode.

EXAMPLE 19-4: ROUTINE FOR CAPACITIVE TOUCH SWITCH

```
#include "p18cxxx.h"
#define COUNT 500
                                        //@ 8MHz = 125uS.
#define DELAY for(i=0;i<COUNT;i++)</pre>
#define OPENSW 1000
                                        //Un-pressed switch value
#define TRIP 300
                                        //Difference between pressed
                                        //and un-pressed switch
#define HYST 65
                                        //amount to change
                                        //from pressed to un-pressed
#define PRESSED 1
#define UNPRESSED 0
int main(void)
{
   unsigned int Vread;
                                        //storage for reading
   unsigned int switchState;
   int i;
   //assume CTMU and A/D have been set up correctly
   //see Example 25-1 for CTMU & A/D setup
   setup();
   CTMUCONHbits.CTMUEN = 1;
                                       // Enable the CTMU
   CTMUCONLbits.EDG1STAT = 0;
                                       // Set Edge status bits to zero
   CTMUCONLbits.EDG2STAT = 0;
                                        //drain charge on the circuit
   CTMUCONHbits.IDISSEN = 1;
   DELAY;
                                        //wait 125us
   CTMUCONHbits.IDISSEN = 0;
                                        //end drain of circuit
   CTMUCONLbits.EDG1STAT = 1;
                                        //Begin charging the circuit
                                        //using CTMU current source
                                        //wait for 125us
   DELAY;
   CTMUCONLbits.EDG1STAT = 0;
                                        //Stop charging circuit
   PIR1bits.ADIF = 0;
                                        //make sure A/D Int not set
                                        //and begin A/D conv.
   ADCON0bits.GO=1;
   while(!PIR1bits.ADIF);
                                        //Wait for A/D convert complete
   Vread = ADRES;
                                        //Get the value from the A/D
   if(Vread < OPENSW - TRIP)
    {
        switchState = PRESSED;
   }
   else if(Vread > OPENSW - TRIP + HYST)
    {
       switchState = UNPRESSED;
   }
}
```

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
		ITRIM	1<5:0>			IRNG	i<1:0>				
bit 7							bit 0				
Legend:											
R = Reada	ble bit	W = Writable	bit	U = Unimplen	nented bit, read	d as '0'					
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown				
bit 7-2	ITRIM<5:0	-: Current Source	e Trim bits								
	011111 =	011111 = Maximum positive change from nominal current									
	011110										
	•										
	•										
	000001 =	000001 = Minimum positive change from nominal current									
	1 = 000000	000000 = Nominal current output specified by IRNG<1:0>									
	111111 = 	111111 = Minimum negative change from nominal current									
	•										
	•										
	•										
	100001 =	100001 = Maximum negative change from nominal current									
bit 1-0	IRNG<1:0>	Current Source	Range Selec	t bits (see Table	27-4)						
	11 = 100 ×	Base current	C	,	,						
	$10 = 10 \times E$	Base current									
	01 = Base	current level									
	00 = Curre	nt source disable	b								

REGISTER 19-3: CTMUICON: CTMU CURRENT CONTROL REGISTER

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on Page
CTMUCONH	CTMUEN	_	CTMUSIDL	TGEN	EDGEN	EDGSEQEN	IDISSEN	CTTRIG	323
CTMUCONL	EDG2POL	EDG2SEL<1:0>		EDG1POL	EDG1SI	EDG1SEL<1:0>		EDG1STAT	324
CTMUICON			ITRI	M<5:0>			IRNG	i<1:0>	325
IPR3	SSP2IP	BCL2IP	RC2IP	TX2IP	CTMUIP	TMR5GIP	TMR3GIP	TMR1GIP	123
PIE3	SSP2IE	BCL2IE	RC2IE	TX2IE	CTMUIE	TMR5GIE	TMR3GIE	TMR1GIE	119
PIR3	SSP2IF	BCL2IF	RC2IF	TX2IF	CTMUIF	TMR5GIF	TMR3GIF	TMR1GIF	114
PMD2	—		—	-	CTMUMD	CMP2MD	CMP1MD	ADCMD	54

Legend: — = unimplemented, read as '0'. Shaded bits are not used during CTMU operation.

21.0 FIXED VOLTAGE REFERENCE (FVR)

The Fixed Voltage Reference, or FVR, is a stable voltage reference, independent of VDD, with 1.024V, 2.048V or 4.096V selectable output levels. The output of the FVR can be configured to supply a reference voltage to the following:

- ADC input channel
- · ADC positive reference
- · Comparator positive input
- Digital-to-Analog Converter (DAC)

The FVR can be enabled by setting the FVREN bit of the VREFCON0 register.

21.1 Independent Gain Amplifiers

The output of the FVR supplied to the ADC, Comparators and DAC is routed through an independent programmable gain amplifier. The amplifier can be configured to amplify the 1.024V reference voltage by 1x, 2x or 4x, to produce the three possible voltage levels.

The FVRS<1:0> bits of the VREFCON0 register are used to enable and configure the gain amplifier settings for the reference supplied to the DAC and Comparator modules. When the ADC module is configured to use the FVR output, (FVR BUF2) the reference is buffered through an additional unity gain amplifier. This buffer is disabled if the ADC is not configured to use the FVR.

For specific use of the FVR, refer to the specific module sections: Section 17.0 "Analog-to-Digital Converter (ADC) Module", Section 22.0 "Digital-to-Analog Converter (DAC) Module" and Section 18.0 "Comparator Module".

21.2 FVR Stabilization Period

When the Fixed Voltage Reference module is enabled, it requires time for the reference and amplifier circuits to stabilize. Once the circuits stabilize and are ready for use, the FVRST bit of the VREFCON0 register will be set. See Table 27-3 for the minimum delay requirement.

REGISTER 24-11: CONFIG7H: CONFIGURATION REGISTER 7 HIGH

bit 7							bit 0
	EBTRB	—	—	—	—	—	_
U-0	R/C-1	U-0	U-0	U-0	U-0	U-0	U-0

Legend:	
R = Readable bit	U = Unimplemented bit, read as '0'
-n = Value when device is unprogrammed	C = Clearable only bit

ead as '0'

bit 6	EBTRB: Boot Block Table Read Protection bit
	1 = Boot Block not protected from table reads executed in other blocks
	0 = Boot Block protected from table reads executed in other blocks
bit 5-0	Unimplemented: Read as '0'

REGISTER 24-12: DEVID1: DEVICE ID REGISTER 1

R	R	R	R	R	R	R	R
DEV2	DEV1	DEV0	REV4	REV3	REV2	REV1	REV0
bit 7							bit 0

Legend:	
R = Readable bit	U = Unimplemented bit, read as '0'
-n = Value when device is unprogrammed	C = Clearable only bit

bit 7-5	DEV<2:0>: Device ID bits
	These bits, together with DEV<10:3> in DEVID2, determine the device ID.
	See Table 24-2 for complete Device ID list.
bit 4-0	REV<4:0>: Revision ID bits
	These bits indicate the device revision.

REGISTER 24-13: DEVID2: DEVICE ID REGISTER 2

R	R	R	R	R	R	R	R
DEV10	DEV9	DEV8	DEV7	DEV6	DEV5	DEV4	DEV3
bit 7							bit 0

Legend:	
R = Readable bit	U = Unimplemented bit, read as '0'
-n = Value when device is unprogrammed	C = Clearable only bit

bit 7-0 **DEV<10:3>:** Device ID bits

These bits, together with DEV<2:0> in DEVID1, determine the device ID. See Table 24-2 for complete Device ID list.

CNT Z C DC

After Instruction

CNT Z C DC

FFh 0 ? ?

00h

= = = =

= = = 1 1 1

GOTO	Unconditi	ional Brancl	n	INCF	Incremen	tf		
Syntax:	GOTO k			Syntax:	INCF f{,c	l {,a}}		
Operands:	$0 \le k \le 1048$	8575		Operands:	$0 \leq f \leq 255$			
Operation:	$k \rightarrow PC < 20$:1>			$d \in [0,1]$			
Status Affected:	is Affected: None One		Oneretine	a ∈ [0,1]				
Encoding:				Operation:	$(1) + 1 \rightarrow 00$			
1st word (k<7:0>)	1110	1111 k ₇ k	kk kkkk ₀	Status Affected:	C, DC, N, 0	JV, Z		
2nd word(k<19:8>)	1111 1	k ₁₉ kkk kkł	ck kkkk ₈	Encoding:	0010	10da ff	ff ffff	
Words:	anywhere w 2-Mbyte me value 'k' is l GOTO is alw instruction. 2	vithin entire emory range. 1 oaded into PC vays a 2-cycle	Fhe 20-bit C<20:1>.		incremented. If 'd' is '0', the result is placed in W. If 'd' is '1', the result is placed back in register 'f' (default). If 'a' is '0', the Access Bank is selecte If 'a' is '1', the BSR is used to select th GPR bank.		he result is ne result is (default). nk is selected. ed to select the	
Cycles: 2 Q Cycle Activity:			if a is of and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing					
Q1	Q2	Q3	Q4		mode whenever $f \le 95$ (5Fh). See			
Decode	Read literal 'k'<7:0>,	No operation	Read literal 'k'<19:8>, Write to PC	Bit-Oriented Instruction Literal Offset Mode" for		ed Instruction set Mode" for	Driented and Dris in Indexed Dridetails.	
No	No	No	No	Words:	1			
operation	operation	operation	operation	Cycles:	1			
				Q Cycle Activity:				
Example:	GOTO THEF	RE		Q1	Q2	Q3	Q4	
After Instruction PC =	n Address (TH	HERE)		Decode	Read register 'f'	Process Data	Write to destination	
				Example: Before Instru	INCF	CNT, 1, 0		

SUBFSR Subtract Literal from FSR					SR			
Synta	Syntax: SUBFSR f, k							
Oper	ands:	$0 \le k \le 63$						
		f ∈ [0, 1, 2	2]					
Oper	ation:	FSR(f) – k	$t \rightarrow FSRf$					
Statu	is Affected:	None						
Enco	oding:	1110	1001	ffkk	kkkk			
Desc	ription:	The 6-bit I the conter 'f'.	The 6-bit literal 'k' is subtracted from the contents of the FSR specified by 'f'.					
Word	ls:	1	1					
Cycle	es:	1	1					
QC	ycle Activity:							
	Q1	Q2	Q3		Q4			
	Decode	Read	Proce	SS	Write to			
		register 'f'	Data	a d	estination			

Example . SUBFSR 2, 231	Example:	SUBFSR	2,	23h
--------------------------------	----------	--------	----	-----

Before Instruction

FSR2	=	03FFh
After Instructi		

FSR2 = 03DCh

SUBULNK Subtract Literal from FSR2 and Return

Curato			< 1.			
Synta	ax.	SUBULIN	к			
Oper	ands:	$0 \le k \le 63$				
Oper	ation:	FSR2 – k	\rightarrow FSF	R2		
		$(TOS) \rightarrow I$	ъС			
Status Affected: None						
Enco	ding:	1110 1001 11kk			11kk	kkkk
Desc	 The 6-bit literal 'k' is subtracted from the contents of the FSR2. A RETURN is then executed by loading the PC with the TOS. The instruction takes two cycles to execute; a NOP is performed during the second cycle. This may be thought of as a special case of the SUBFSR instruction, where f = 3 (binary '11'); it operates only on FSR2. 			I from the It is then th the TOS. s to uring the ecial case of f = 3 (binary		
Word	ls:	1				
Cycle	es:	2				
Q Cycle Activity		/:				
_	Q1	Q	2		Q3	Q4
	Decode	Rea	ad	Pro	ocess	Write to

Decode	Read register 'f'	Process Data	Write to destination	
No	No	No	No	
Operation	Operation	Operation	Operation	

Example: SUBULNK 23h

<u></u> .	-					
Before Instruction						
FSR2	=	03FFh				
PC	=	0100h				
After Instruction						
FSR2	=	03DCh				
PC	=	(TOS)				

© 2010-2016 Microchip Technology Inc.

FIGURE 28-95: PIC18(L)F2X/4XK22 TYPICAL FIXED VOLTAGE REFERENCE 1x OUTPUT

28-Lead Ultra Thin Plastic Quad Flat, No Lead Package (MV) - 4x4 mm Body [UQFN] With 0.40 mm Contact Length

Units		MILLIMETERS			
Dimension Limits		MIN	NOM	MAX	
Contact Pitch	Е	0.40 BSC			
Optional Center Pad Width	W2			2.35	
Optional Center Pad Length	T2			2.35	
Contact Pad Spacing	C1		4.00		
Contact Pad Spacing	C2		4.00		
Contact Pad Width (X28)	X1			0.20	
Contact Pad Length (X28)	Y1			0.80	
Distance Between Pads	G	0.20			

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2152A

40-Lead Plastic Dual In-Line (P) – 600 mil Body [PDIP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units		INCHES			
Dimension Limits		MIN	NOM	MAX		
Number of Pins	N	40				
Pitch	е	.100 BSC				
Top to Seating Plane	Α	-	-	.250		
Molded Package Thickness	A2	.125	-	.195		
Base to Seating Plane	A1	.015	-	—		
Shoulder to Shoulder Width	E	.590	_	.625		
Molded Package Width	E1	.485	_	.580		
Overall Length	D	1.980	-	2.095		
Tip to Seating Plane	L	.115	-	.200		
Lead Thickness	С	.008	-	.015		
Upper Lead Width	b1	.030	-	.070		
Lower Lead Width	b	.014	_	.023		
Overall Row Spacing §	eB	_	_	.700		

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. § Significant Characteristic.

3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" per side.

4. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-016B