

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	64MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	35
Program Memory Size	64KB (32K x 16)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	3.8K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 30x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-VQFN Exposed Pad
Supplier Device Package	44-QFN (8x8)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18lf46k22-i-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.4.1 PRI_IDLE MODE

This mode is unique among the three low-power Idle modes, in that it does not disable the primary device clock. For timing sensitive applications, this allows for the fastest resumption of device operation with its more accurate primary clock source, since the clock source does not have to "warm-up" or transition from another oscillator.

PRI_IDLE mode is entered from PRI_RUN mode by setting the IDLEN bit and executing a SLEEP instruction. If the device is in another Run mode, set IDLEN first, then clear the SCS bits and execute SLEEP. Although the CPU is disabled, the peripherals continue to be clocked from the primary clock source specified by the FOSC<3:0> Configuration bits. The OSTS bit remains set (see Figure 3-6).

When a wake event occurs, the CPU is clocked from the primary clock source. A delay of interval TCSD is required between the wake event and when code execution starts. This is required to allow the CPU to become ready to execute instructions. After the wake-up, the OSTS bit remains set. The IDLEN and SCS bits are not affected by the wake-up (see Figure 3-7).

3.4.2 SEC_IDLE MODE

In SEC_IDLE mode, the CPU is disabled but the peripherals continue to be clocked from the SOSC oscillator. This mode is entered from SEC_RUN by setting the IDLEN bit and executing a SLEEP instruction. If the device is in another Run mode, set the IDLEN bit first, then set the SCS<1:0> bits to '01' and execute SLEEP. When the clock source is switched to the SOSC oscillator, the primary oscillator is shut down, the OSTS bit is cleared and the SOSCRUN bit is set.

When a wake event occurs, the peripherals continue to be clocked from the SOSC oscillator. After an interval of TCSD following the wake event, the CPU begins executing code being clocked by the SOSC oscillator. The IDLEN and SCS bits are not affected by the wake-up; the SOSC oscillator continues to run (see Figure 3-7).

Note: The SOSC oscillator should already be running prior to entering SEC_IDLE mode. At least one of the secondary oscillator enable bits (SOSCGO, T1SOSCEN, T3SOSCEN or T5SOSCEN) must be set when the SLEEP instruction is executed. Otherwise, the main system clock will continue to operate in the previously selected mode and the corresponding IDLE mode will be entered (i.e., PRI_IDLE or RC_IDLE).

EXAMPLE 6-3:	WRITING TO FLASH PROGRAM MEMORY									
	MOVLW	D'64′	; number of bytes in erase block							
	MOVWF	COUNTER	-							
	MOVLW	BUFFER_ADDR_HIGH	; point to buffer							
	MOVWF	FSROH								
	MOVLW	BUFFER_ADDR_LOW								
	MOVWF	FSROL								
	MOVLW	CODE_ADDR_UPPER	; Load TBLPTR with the base							
	MOVWF	TBLPTRU	; address of the memory block							
	MOVLW	CODE_ADDR_HIGH								
	MOVWF	TBLPTRH								
	MOVLW	CODE_ADDR_LOW								
DEAD DIOGU	MOVWF	TBLDIRL								
READ_BLOCK	+ * תם זמיד		· road into TADIAT and inc							
	IBLRD"+	ייא איז איז איז	; read Into TABLAI, and Inc							
	MOVWE	POSTINCO	; store data							
	DECESZ	COUNTER	; done?							
	BRA	READ BLOCK	; repeat							
MODIFY WORD										
	MOVLW	BUFFER ADDR HIGH	; point to buffer							
	MOVWF	FSROH	-							
	MOVLW	BUFFER_ADDR_LOW								
	MOVWF	FSROL								
	MOVLW	NEW_DATA_LOW	; update buffer word							
	MOVWF	POSTINC0								
	MOVLW	NEW_DATA_HIGH								
	MOVWF	INDF0								
ERASE_BLOCK										
	MOVLW	CODE_ADDR_UPPER	; load TBLPTR with the base							
	MOVWF	TBLPTRU	; address of the memory block							
	MOVLW	CODE_ADDR_HIGH								
	MOVWF'	TBLPTRH								
	MOVLW	CODE_ADDR_LOW								
	MOVWF	IBLPIRL FEGONI FEDOD	: noint to Elach program moments							
	BCF	FECON1 CEGS	; access Elash program memory							
	BSF	EECON1 WREN	; enable write to memory							
	BSF	EECON1, FREE	; enable Erase operation							
	BCF	INTCON, GIE	; disable interrupts							
	MOVLW	55h	*							
Required	MOVWF	EECON2	; write 55h							
Sequence	MOVLW	0AAh								
	MOVWF	EECON2	; write OAAh							
	BSF	EECON1, WR	; start erase (CPU stall)							
	BSF	INTCON, GIE	; re-enable interrupts							
	TBLRD*-		; dummy read decrement							
	MOVLW	BUFFER_ADDR_HIGH	; point to buffer							
	MOVWF	FSROH								
	MOVLW	BUFFER_ADDR_LOW								
	MOVWF	FSROL								
WRITE_BUFFER_BACK	A MOUT M		·							
		COINTED COINTED	, number of bytes in notaing register							
	MOVWF	COUNTER D/64//DlockSize	: number of resite blocks in 64 butos							
	MULIME	COUNTERS	, number of wire blocks in 64 bytes							
שפוקב פעקב ה∖ הסו	EGS	COULTERS								
"WTID_DIID_IO_HKI	TVOM	POSTINCO. W	; get low byte of buffer data							
	MOVWF	TABLAT	; present data to table latch							
	TBLWT+*		; write data, perform a short write							
			; to internal TBLWT holding register							

R/W-0/u	R/W-0/u	R/W-0/u	R/W-0/u	R/W/HC-0/u	R-x/x	R/W-0/u	R/W-0/u
TMRxGE	TxGPOL	TxGTM	TxGSPM	TxGGO/DONE	TxGVAL	TxGSS	5<1:0>
bit 7	·						bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimplemer	nted bit, read a	as '0'	
u = Bit is unch	anged	x = Bit is unkr	nown	-n/n = Value at F	POR and BOR	/Value at all ot	her Resets
'1' = Bit is set		'0' = Bit is cle	ared	HC = Bit is clear	ed by hardwar	re	
bit 7	TMRxGE: Tir <u>If TMRxON =</u> This bit is igno <u>If TMRxON =</u> 1 = Timer1/3 0 = Timer1/3	ner1/3/5 Gate <u>0</u> : ored <u>1</u> : /5 counting is c /5 counts regal	Enable bit controlled by the rdless of Time	ne Timer1/3/5 gate r1/3/5 gate functio	e function n		
bit 7TMRxGE: Timer1/3/5 Gate Enable bit If TMRxON = 0: This bit is ignored If TMRxON = 1: 1 = Timer1/3/5 counting is controlled by the Timer1/3/5 gate function 0 = Timer1/3/5 counts regardless of Timer1/3/5 gate function 0 = Timer1/3/5 Gate Polarity bit 1 = Timer1/3/5 gate is active-high (Timer1/3/5 counts when gate is high) 0 = Timer1/3/5 gate is active-low (Timer1/3/5 counts when gate is low)bit 5TxGTM: Timer1/3/5 Gate Toggle Mode bit 1 = Timer1/3/5 Gate Toggle mode is enabled 0 = Timer1/3/5 Gate Toggle mode is disabled and toggle flip-flop is cleared Timer1/3/5 gate flip-flop toggles on every rising edge.bit 4TxGSPM: Timer1/3/5 Gate Single-Pulse Mode bit 1 = Timer1/3/5 gate Single-Pulse Mode bit 1 = Timer1/3/5 gate Single-Pulse Mode bit							
bit 7 bit Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets '1' = Bit is set '0' = Bit is cleared HC = Bit is cleared by hardware bit 7 TMRxGE: Timer1/3/5 Gate Enable bit If TMRxON = 0: This bit is ignored If TMRxON = 1: 1 = Timer1/3/5 counts regardless of Timer1/3/5 gate function 0 = Timer1/3/5 counts regardless of Timer1/3/5 gate function 0 = Timer1/3/5 gate is active-high (Timer1/3/5 counts when gate is high) 0 = Timer1/3/5 gate is active-high (Timer1/3/5 counts when gate is high) 0 = Timer1/3/5 Gate Toggle mode is enabled 0 = Timer1/3/5 Gate Toggle mode is disabled 0 = Timer1/3/5 gate Single-Pulse Mode bit 1 = Timer1/3/5 Gate Toggle mode is disabled and toggle flip-flop is cleared Timer1/3/5 gate Single-Pulse mode is controlling Timer1/3/5 gate bit 4 TxGSPM: Timer1/3/5 Gate Single-Pulse Mode bit 1 = Timer1/3/5 gate Single-Pulse Mode bit 1 = Timer1/3/5 gate single-Pulse mode is disabled 0 = Timer1/3/5 gate single-Pulse Acquisition Status bit 1 = Timer1/3/5 gate single-Pulse acquisition is cleared. Timer1/3/5 gate single-Pulse acquisition is cleared. bit 3 TxGGO/DONE: Timer1/3/5 Gate Current State bit I							
bit 4	TxGSPM: Tin 1 = Timer1/3 0 = Timer1/3	ner1/3/5 Gate 3 /5 gate Single- /5 gate Single-	Single-Pulse M Pulse mode is Pulse mode is	lode bit enabled and is co disabled	ontrolling Time	r1/3/5 gate	
bit 3	TxGGO/DON 1 = Timer1/3 0 = Timer1/3 This bit is aut	E: Timer1/3/5 /5 gate single- _l /5 gate single- _l omatically clea	Gate Single-P oulse acquisition oulse acquisition red when TxG	ulse Acquisition S on is ready, waitin on has completed SPM is cleared.	tatus bit g for an edge or has not bee	en started	
bit 2	TxGVAL: Tim Indicates the Unaffected by	ner1/3/5 Gate C current state o / Timer1/3/5 Ga	Current State b f the Timer1/3, ate Enable (TM	it /5 gate that could /IRxGE).	be provided to	TMRxH:TMR	xL.
bit 1-0	TxGSS<1:0> 00 = Timer1/3 01 = Timer2/4 10 = Compar 11 = Compar	: Timer1/3/5 G 3/5 Gate pin 4/6 Match PR2 ator 1 optional ator 2 optional	ate Source Se /4/6 output (Se ly synchronize ly synchronize	lect bits ee Table 12-5 for p d output (sync_C1 d output (sync_C2	proper timer m IOUT) 2OUT)	atch selection))

REGISTER 12-2: TXGCON: TIMER1/3/5 GATE CONTROL REGISTER

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
CCPTMRS0	C3TSE	L<1:0>	—	C2TSE	L<1:0>	—	C1TS	EL<1:0>	201
CCPTMRS1	—		—	_	C5TSE	L<1:0>	C4TS	EL<1:0>	201
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	109
IPR1	—	ADIP	RC1IP	TX1IP	SSP1IP	CCP1IP	TMR2IP	TMR1IP	121
IPR5	_		_	_		TMR6IP	TMR5IP	TMR4IP	124
PIE1	_	ADIE	RC1IE	TX1IE	SSP1IE	CCP1IE	TMR2IE	TMR1IE	117
PIE5	—	_	—	—	_	TMR6IE	TMR5IE	TMR4IE	120
PIR1	—	ADIF	RC1IF	TX1IF	SSP1IF	CCP1IF	TMR2IF	TMR1IF	112
PIR5	—	_	—	—	_	TMR6IF	TMR5IF	TMR4IF	116
PMD0	UART2MD	UART1MD	TMR6MD	TMR5MD	TMR4MD	TMR3MD	TMR2MD	TMR1MD	52
PR2			-	Timer2 Peri	od Register				—
PR4			-	Timer4 Peri	od Register				—
PR6			-	Timer6 Peri	od Register				—
T2CON	—		T2OUTPS	S<3:0>		TMR2ON	T2CK	PS<1:0>	166
T4CON	—		T4OUTPS	S<3:0>		TMR4ON	T4CK	PS<1:0>	166
T6CON	—		T6OUTPS	S<3:0>		TMR6ON	T6CK	PS<1:0>	166
TMR2				Timer2 I	Register				
TMR4				Timer4 I	Register				—
TMR6				Timer6 I	Register				_

TABLE 13-1: SUMMARY OF REGISTERS ASSOCIATED WITH TIMER2/4/6

Legend: — = unimplemented locations, read as '0'. Shaded bits are not used by Timer2/4/6.

14.3 PWM Overview

Pulse-Width Modulation (PWM) is a scheme that provides power to a load by switching quickly between fully on and fully off states. The PWM signal resembles a square wave where the high portion of the signal is considered the on state and the low portion of the signal is considered the off state. The high portion, also known as the pulse width, can vary in time and is defined in steps. A larger number of steps applied, which lengthens the pulse width, also supplies more power to the load. Lowering the number of steps applied, which shortens the pulse width, supplies less power. The PWM period is defined as the duration of one complete cycle or the total amount of on and off time combined.

PWM resolution defines the maximum number of steps that can be present in a single PWM period. A higher resolution allows for more precise control of the pulse width time and in turn the power that is applied to the load.

The term duty cycle describes the proportion of the on time to the off time and is expressed in percentages, where 0% is fully off and 100% is fully on. A lower duty cycle corresponds to less power applied and a higher duty cycle corresponds to more power applied.

Figure 14-3 shows a typical waveform of the PWM signal.

14.3.1 STANDARD PWM OPERATION

The standard PWM function described in this section is available and identical for CCP and ECCP modules.

The standard PWM mode generates a Pulse-Width modulation (PWM) signal on the CCPx pin with up to 10 bits of resolution. The period, duty cycle, and resolution are controlled by the following registers:

- PRx registers
- TxCON registers
- · CCPRxL registers
- CCPxCON registers

Figure 14-4 shows a simplified block diagram of PWM operation.

- Note 1: The corresponding TRIS bit must be cleared to enable the PWM output on the CCPx pin.
 - 2: Clearing the CCPxCON register will relinquish control of the CCPx pin.

FIGURE 14-3: CCP PWM OUTPUT SIGNAL

SIMPLIFIED PWM BLOCK DIAGRAM

14.3.2 SETUP FOR PWM OPERATION

The following steps should be taken when configuring the CCP module for standard PWM operation:

- 1. Disable the CCPx pin output driver by setting the associated TRIS bit.
- Select the 8-bit TimerX resource, (Timer2, Timer4 or Timer6) to be used for PWM generation by setting the CxTSEL<1:0> bits in the CCPTMRSx register.⁽¹⁾
- 3. Load the PRx register for the selected TimerX with the PWM period value.
- Configure the CCP module for the PWM mode by loading the CCPxCON register with the appropriate values.
- Load the CCPRxL register and the DCxB<1:0> bits of the CCPxCON register, with the PWM duty cycle value.

14.4.6 PWM STEERING MODE

In Single Output mode, PWM steering allows any of the PWM pins to be the modulated signal. Additionally, the same PWM signal can be simultaneously available on multiple pins.

Once the Single Output mode is selected (CCPxM<3:2> = 11 and PxM<1:0> = 00 of the CCPxCON register), the user firmware can bring out the same PWM signal to one, two, three or four output pins by setting the appropriate Steering Enable bits (STRxA, STRxB, STRxC and/or STRxD) of the PSTRxCON register, as shown in Table 14-13.

Note:	The associated TRIS bits must be set to
	output ('0') to enable the pin output driver
	in order to see the PWM signal on the pin.

While the PWM Steering mode is active, CCPxM<1:0> bits of the CCPxCON register select the PWM output polarity for the PxD, PxC, PxB and PxA pins.

The PWM auto-shutdown operation also applies to PWM Steering mode as described in **Section 14.4.3 "Enhanced PWM Auto-shutdown Mode"**. An autoshutdown event will only affect pins that have PWM outputs enabled.

FIGURE 14-18: SIMPLIFIED STEERING BLOCK DIAGRAM

14.4.6.1 Steering Synchronization

The STRxSYNC bit of the PSTRxCON register gives the user two selections of when the steering event will happen. When the STRxSYNC bit is '0', the steering event will happen at the end of the instruction that writes to the PSTRxCON register. In this case, the output signal at the PxA, PxB, PxC and PxD pins may be an incomplete PWM waveform. This operation is useful when the user firmware needs to immediately remove a PWM signal from the pin.

When the STRxSYNC bit is '1', the effective steering update will happen at the beginning of the next PWM period. In this case, steering on/off the PWM output will always produce a complete PWM waveform.

Figures 14-19 and 14-20 illustrate the timing diagrams of the PWM steering depending on the STRxSYNC setting.

15.2.3 SPI MASTER MODE

The master can initiate the data transfer at any time because it controls the SCKx line. The master determines when the slave (Processor 2, Figure 15-5) is to broadcast data by the software protocol.

In Master mode, the data is transmitted/received as soon as the SSPxBUF register is written to. If the SPI is only going to receive, the SDOx output could be disabled (programmed as an input). The SSPxSR register will continue to shift in the signal present on the SDIx pin at the programmed clock rate. As each byte is received, it will be loaded into the SSPxBUF register as if a normal received byte (interrupts and Status bits appropriately set).

The clock polarity is selected by appropriately programming the CKP bit of the SSPxCON1 register and the CKE bit of the SSPxSTAT register.

This then, would give waveforms for SPI communication as shown in Figure 15-6, Figure 15-8, Figure 15-9 and Figure 15-10, where the MSB is transmitted first. In Master mode, the SPI clock rate (bit rate) is user programmable to be one of the following:

- Fosc/4 (or Tcy)
- Fosc/16 (or 4 * Tcy)
- Fosc/64 (or 16 * Tcy)
- Timer2 output/2
- Fosc/(4 * (SSPxADD + 1))

Figure 15-6 shows the waveforms for Master mode.

When the CKE bit is set, the SDOx data is valid before there is a clock edge on SCKx. The change of the input sample is shown based on the state of the SMP bit. The time when the SSPxBUF is loaded with the received data is shown.

FIGURE 15-7: SPI DAISY-CHAIN CONNECTION

FIGURE 15-8: SLAVE SELECT SYNCHRONOUS WAVEFORM

REGISTER 15-5: SSPxCON3: SSPx CONTROL REGISTER 3 (CONTINUED)

- **DHEN:** Data Hold Enable bit (I²C Slave mode only)
 - 1 = Following the 8th falling edge of SCLx for a received data byte; slave hardware clears the CKP bit of the SSPxCON1 register and SCLx is held low.
 - 0 = Data holding is disabled

bit 0

- **Note 1:** For daisy-chained SPI operation; allows the user to ignore all but the last received byte. SSPxOV is still set when a new byte is received and BF = 1, but hardware continues to write the most recent byte to SSPxBUF.
 - **2:** This bit has no effect in Slave modes for which Start and Stop condition detection is explicitly listed as enabled.
 - 3: The ACKTIM Status bit is active only when the AHEN bit or DHEN bit is set.

R/W-1	R/W-1 R/W-1		R/W-1	R/W-1	R/W-1	R/W-1	R/W-1		
MSK7	SK7 MSK6 MSK5 MSK		MSK4	MSK3	MSK2	MSK1	MSK0		
bit 7									

REGISTER 15-6: SSPxMSK: SSPx MASK REGISTER

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-1 MSK<7:1>: Mask bits

- 1 = The received address bit n is compared to SSPxADD<n> to detect I²C address match
- 0 = The received address bit n is not used to detect I²C address match

bit 0 **MSK<0>:** Mask bit for I²C Slave mode, 10-bit Address

 I^2C Slave mode, 10-bit address (SSPxM<3:0> = 0111 or 1111):

- 1 = The received address bit 0 is compared to SSPxADD<0> to detect I^2C address match
- 0 = The received address bit 0 is not used to detect I²C address match
- I²C Slave mode, 7-bit address, the bit is ignored

					OTER	_						
R/W-0	R-1	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0					
ABDOVF	RCIDL	DTRXP	CKTXP	BRG16		WUE	ABDEN					
bit 7							bit 0					
Legend:						(-)						
R = Readable I	oit	W = Writable k	bit	U = Unimplem	nented bit, read	as '0'						
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	own					
bit 7	ABDOVF: Aut Asynchronous 1 = Auto-baud 0 = Auto-baud Synchronous Don't care	to-Baud Detect (<u>s mode</u> : d timer overflowed t timer did not ov <u>mode</u> :	Overflow bit ed verflow									
bit 6	RCIDL: Recei	ve Idle Flag bit										
	Asynchronous 1 = Receiver i 0 = Start bit ha Synchronous Don't care	<u>s mode</u> : s Idle as been detecte <u>mode</u> :	d and the rece	eiver is active								
bit 5	DTRXP: Data/	Receive Polarit	y Select bit									
	Asynchronous	<u>s mode</u> :		``								
	1 = Receive d	ata (RXx) is inve ata (RXx) is not	erted (active-lo	0W) ve-high)								
	Synchronous mode:											
	1 = Data (DTx) is inverted (active-low)											
	0 = Data (DTx	ata (DTx) is not inverted (active-high)										
bit 4	CKTXP: Clock	<pre>k/Transmit Polar .</pre>	ity Select bit									
	Asynchronous 1 = Idle state f 0 = Idle state f	<u>vnchronous mode</u> : = Idle state for transmit (TXx) is low = Idle state for transmit (TXx) is high										
	Synchronous	Synchronous mode:										
	1 = Data chan 0 = Data chan	iges on the fallin iges on the risin	g edge of the g edge of the g	clock and is san clock and is sam	npled on the ris	ing edge of the c ing edge of the c	lock lock					
bit 3	BRG16: 16-bi 1 = 16-bit Ba 0 = 8-bit Bau	t Baud Rate Ge ud Rate Genera d Rate Generate	nerator bit itor is used (Sl or is used (SP	PBRGHx:SPBR(BRGx)	Gx)							
bit 2	Unimplement	ted: Read as '0'										
bit 1	WUE: Wake-u	ıp Enable bit										
	Asynchronous 1 = Receiver i edge. WL 0 = Receiver i Synchronous	s mode: is waiting for a f JE will automation is operating norr mode:	alling edge. N cally clear on t nally	o character will he rising edge.	be received bu	RCxIF will be se	et on the falling					
	Don't care											
bit 0	ABDEN: Auto	-Baud Detect Er	hable bit									
	Asynchronous 1 = Auto-Bau 0 = Auto-Bau Synchronous Don't care	<u>s mode</u> : Id Detect mode Id Detect mode <u>mode</u> :	is enabled (cle is disabled	ears when auto-l	baud is comple	ie)						

REGISTER 16-3: BAUDCONX: BAUD RATE CONTROL REGISTER

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on Page
BAUDCON1	ABDOVF	RCIDL	DTRXP	CKTXP	BRG16	—	WUE	ABDEN	271
BAUDCON2	ABDOVF	RCIDL	DTRXP	CKTXP	BRG16	—	WUE	ABDEN	271
PMD0	UART2MD	UART1MD	TMR6MD	TMR5MD	TMR4MD	TMR3MD	TMR2MD	TMR1MD	52
RCSTA1	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	270
RCSTA2	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	270
SPBRG1			EUSART1	Baud Rate C	Generator, Lo	w Byte			_
SPBRGH1			EUSART1	Baud Rate (Generator, Hi	gh Byte			_
SPBRG2			EUSART2	Baud Rate C	Generator, Lo	w Byte			_
SPBRGH2			EUSART2	Baud Rate (Generator, Hi	gh Byte			_
PIR1	_	ADIF	RC1IF	TX1IF	SSP1IF	CCP1IF	TMR2IF	TMR1IF	112
PIR3	SSP2IF	BCL2IF	RC2IF	TX2IF	CTMUIF	TMR5GIF	TMR3GIF	TMR1GIF	114
TXSTA1	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	269
TXSTA2	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	269

TABLE 16-4: REGISTERS ASSOCIATED WITH BAUD RATE GENERATOR

Legend: — = unimplemented, read as '0'. Shaded bits are not used by the BRG.

TABLE 16-5: BAUD RATES FOR ASYNCHRONOUS MODES

					S	YNC = 0, BRC							
BAUD	Fosc = 64.000 MHz			Fosc = 18.432 MHz			Fosc = 16.000 MHz			Fos	Fosc = 11.0592 MHz		
RATE	Actual Rate	% Error	SPBRxG value (decimal)	Actual Rate	% Error	SPBRGx value (decimal)	Actual Rate	% Error	SPBRGx value (decimal)	Actual Rate	% Error	SPBRGx value (decimal)	
300	—	_	_	_	_	_	_	_	_	_	_	_	
1200	_	_	_	1200	0.00	239	1202	0.16	207	1200	0.00	143	
2400	_	_	_	2400	0.00	119	2404	0.16	103	2400	0.00	71	
9600	9615	0.16	103	9600	0.00	29	9615	0.16	25	9600	0.00	17	
10417	10417	0.00	95	10286	-1.26	27	10417	0.00	23	10165	-2.42	16	
19.2k	19.23k	0.16	51	19.20k	0.00	14	19.23k	0.16	12	19.20k	0.00	8	
57.6k	58.82k	2.12	16	57.60k	0.00	7	—	_	_	57.60k	0.00	2	
115.2k	111.11k	-3.55	8	—	_	_	—	—	_	—	_	_	

					S	YNC = 0, BRC							
BAUD	Fosc = 8.000 MHz			Fosc = 4.000 MHz			Fosc = 3.6864 MHz			Fo	Fosc = 1.000 MHz		
RATE	Actual Rate	% Error	SPBRGx value (decimal)	Actual Rate	% Error	SPBRGx value (decimal)	Actual Rate	% Error	SPBRGx value (decimal)	Actual Rate	% Error	SPBRGx value (decimal)	
300	—	_	_	300	0.16	207	300	0.00	191	300	0.16	51	
1200	1202	0.16	103	1202	0.16	51	1200	0.00	47	1202	0.16	12	
2400	2404	0.16	51	2404	0.16	25	2400	0.00	23	—	—	_	
9600	9615	0.16	12	—	_	_	9600	0.00	5	—	_	_	
10417	10417	0.00	11	10417	0.00	5	—	_	_	_	_	_	
19.2k	_	_	_	_	_	_	19.20k	0.00	2	_	_	_	
57.6k	—	_	—	—	_	—	57.60k	0.00	0	—	—	—	
115.2k	—	—	—	—	_	—	—	—	—	—	—	—	

16.4.2 AUTO-BAUD OVERFLOW

During the course of automatic baud detection, the ABDOVF bit of the BAUDCONx register will be set if the baud rate counter overflows before the fifth rising edge is detected on the RX pin. The ABDOVF bit indicates that the counter has exceeded the maximum count that can fit in the 16 bits of the SPBRGHx:SPBRGx register pair. After the ABDOVF has been set, the counter continues to count until the fifth rising edge is detected on the RXx/DTx pin. Upon detecting the fifth RXx/DTx edge, the hardware will set the RCxIF interrupt flag and clear the ABDEN bit of the BAUDCONx register. The RCxIF flag can be subsequently cleared by reading the RCREGx. The ABDOVF flag can be cleared by software directly.

To terminate the auto-baud process before the RCxIF flag is set, clear the ABDEN bit then clear the ABDOVF bit. The ABDOVF bit will remain set if the ABDEN bit is not cleared first.

16.4.3 AUTO-WAKE-UP ON BREAK

During Sleep mode, all clocks to the EUSART are suspended. Because of this, the Baud Rate Generator is inactive and a proper character reception cannot be performed. The Auto-Wake-up feature allows the controller to wake-up due to activity on the RXx/DTx line. This feature is available only in Asynchronous mode.

The Auto-Wake-up feature is enabled by setting the WUE bit of the BAUDCONx register. Once set, the normal receive sequence on RXx/DTx is disabled, and the EUSART remains in an Idle state, monitoring for a wake-up event independent of the CPU mode. A wake-up event consists of a high-to-low transition on the RXx/DTx line. (This coincides with the start of a Sync Break or a wake-up signal character for the LIN protocol.)

The EUSART module generates an RCxIF interrupt coincident with the wake-up event. The interrupt is generated synchronously to the Q clocks in normal CPU operating modes (Figure 16-7), and asynchronously if the device is in Sleep mode (Figure 16-8). The interrupt condition is cleared by reading the RCREGx register.

The WUE bit is automatically cleared by the low-to-high transition on the RXx line at the end of the Break. This signals to the user that the Break event is over. At this point, the EUSART module is in Idle mode waiting to receive the next character.

16.4.3.1 Special Considerations

Break Character

To avoid character errors or character fragments during a wake-up event, the wake-up character must be all zeros.

When the wake-up is enabled the function works independent of the low time on the data stream. If the WUE bit is set and a valid non-zero character is received, the low time from the Start bit to the first rising edge will be interpreted as the wake-up event. The remaining bits in the character will be received as a fragmented character and subsequent characters can result in framing or overrun errors.

Therefore, the initial character in the transmission must be all '0's. This must be 10 or more bit times, 13-bit times recommended for LIN bus, or any number of bit times for standard RS-232 devices.

Oscillator Start-up Time

Oscillator start-up time must be considered, especially in applications using oscillators with longer start-up intervals (i.e., LP, XT or HS/PLL mode). The Sync Break (or wake-up signal) character must be of sufficient length, and be followed by a sufficient interval, to allow enough time for the selected oscillator to start and provide proper initialization of the EUSART.

WUE Bit

The wake-up event causes a receive interrupt by setting the RCxIF bit. The WUE bit is cleared by hardware by a rising edge on RXx/DTx. The interrupt condition is then cleared by software by reading the RCREGx register and discarding its contents.

To ensure that no actual data is lost, check the RCIDL bit to verify that a receive operation is not in process before setting the WUE bit. If a receive operation is not occurring, the WUE bit may then be set just prior to entering the Sleep mode.

R/P-1	U-0	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1
MCLR	E —	P2BMX	T3CMX	HFOFST	CCP3MX	PBADEN	CCP2MX
bit 7							bit (
Legend:							
R = Read	able bit	P = Programr	nable bit	U = Unimpler	mented bit. read	d as '0'	
-n = Value	e when device is	unprogrammed		x = Bit is unk	nown		
bit 7	MCLRE: M	ICLR Pin Enable	bit				
	$1 = \overline{MCLR}$	pin enabled; RE3	input pin disa	bled			
1.11.0	0 = RE3 inj	put pin enabled; I	VICLR disable	d			
bit 6	Unimplem	ented: Read as '	0'				
bit 5	P2BMX: P2	2B Input MUX bit					
	I = P2B is P2B is	on RD2 ⁽²⁾					
	0 = P2B is	on RC0					
bit 4	T3CMX: Ti	mer3 Clock Input	MUX bit				
	1 = T3CKI	is on RC0					
	0 = 13CKI	IS ON RB5					
bit 3		IFINTOSC Fast	Start-up bit	· · · · · · · · · · · · · · · · · · ·		4 4 - h : l'	
	1 = HFINI(0 - The system	JSC starts clocki stem clock is held	ng the CPU w 1 off until the H	ITENTOSC is st	or the oscillator	to stabilize	
hit 2	CCP3MX:	CCP3 MUX hit					
	1 = CCP3 i	nput/output is mu	ultiplexed with	RB5			
	0 = CCP3 i	nput/output is mu	ltiplexed with	RC6 ⁽¹⁾			
	CCP3 i	nput/output is mu	Itiplexed with	RE0 ⁽²⁾			
bit 1	PBADEN:	PORTB A/D Ena	ble bit				
	1 = ANSEL 0 = ANSEL	B<5:0> resets to B<5:0> resets to	1, PORTB<5: 0, PORTB<4:	0> pins are co 0> pins are co	nfigured as ana nfigured as digi	log inputs on F tal I/O on Rese	Reset et
bit 0	CCP2MX:	CCP2 MUX bit					
	1 = CCP2 i	nput/output is mu	Itiplexed with	RC1			
	0 = CCP2 i	nput/output is mu	Itiplexed with	RB3			
Note 1:	PIC18(L)F2XK2	2 devices only.					
2:	PIC18(L)F4XK2	2 devices only.					

REGISTER 24-4: CONFIG3H: CONFIGURATION REGISTER 3 HIGH

RET	FIE	Return from Interrupt						
Synta	ax:	RETFIE {	RETFIE {s}					
Oper	ands:	$s \in \left[0,1\right]$	s ∈ [0,1]					
Operation:		$(TOS) \rightarrow F$ $1 \rightarrow GIE/G$ if s = 1 $(WS) \rightarrow W$ (STATUSS) $(BSRS) \rightarrow$ PCLATU, I	PC, GIEH or P $\frac{1}{2}$, $\frac{1}{2}$ → Statu BSR, PCLATH :	EIE/GIE Is, are unch	L, nanged.			
Status Affected:		GIE/GIEH,	GIE/GIEH, PEIE/GIEL.					
Encoding:		0000	0000	0001	000s			
Description:		Return from and Top-of the PC. Int setting eith global inte contents o STATUSS their corres STATUS a of these ret	Return from interrupt. Stack is popped and Top-of-Stack (TOS) is loaded into the PC. Interrupts are enabled by setting either the high or low priority global interrupt enable bit. If 's' = 1, the contents of the shadow registers, WS, STATUSS and BSRS, are loaded into their corresponding registers, W, STATUS and BSR. If 's' = 0, no update					
Word	ls:	1						
Cycle	es:	2						
QC	ycle Activity:							
	Q1	Q2	Q3	}	Q4			
	Decode	No operation	No opera	tion s	POP PC from stack Set GIEH or GIEL			
	No	No	No)	No			
	operation	operation	opera	tion	operation			
Example:		RETFIE	1					
	After Interrupt PC W BSR Status GIE/GIEI	H, PEIE/GIEL	= T = V = E = S	TOS VS BSRS BTATUS	S			

Synta	ax:	REILVV K					
Oper	ands:	$0 \le k \le 255$					
Oper	ation:	$k \rightarrow W,$ (TOS) $\rightarrow P($ PCLATU, P	$k \rightarrow W$, (TOS) \rightarrow PC, PCLATU, PCLATH are unchanged				
Statu	is Affected:	None					
Enco	oding:	0000	1100	kkkk	kkkk		
Desc	ription:	W is loaded program co of the stack high addres unchanged.	l with the unter is l (the retu s latch (l	8-bit liter oaded fro urn addres PCLATH)	al 'k'. The m the top ss). The remains		
Word	ls:	1					
Cycle	es:	2					
QC	ycle Activity:						
	Q1	Q2	Q3		Q4		
	Decode	Read literal 'k'	Proce Data	ess P a fro W	OP PC om stack, rite to W		
	No	No	No		No		
	operation	operation	operat	tion o	peration		
Exan	n <mark>ple</mark> : CALL TABLE	; W contai	ins tab	le			
		; offset value					
		; W now has					
:		/ Labie va	irue				
TABI	ĿE						
	ADDWF PCL	; W = offset					
	RETLW k0	; Begin ta	; Begin table				
	RETLW kl	;					
:							

W = 07h After Instruction

W = value of kn

Param. No.	Symbol		Characteristic	;	Min	Max	Units	Conditions
40	Tt0H	T0CKI High P	ulse Width No prescaler		0.5 Tcy + 20	—	ns	
				With prescaler		—	ns	
41	Tt0L	T0CKI Low P	ulse Width	No prescaler	0.5 TCY + 20	_	ns	
				With prescaler	10	—	ns	
42 Tt0P		T0CKI Period		No prescaler	Tcy + 10	—	ns	
			With pre		Greater of: 20 ns or (TCY + 40)/N	_	ns	N = prescale value (1, 2, 4,, 256)
45	Tt1H	t1H TxCKI High Time	Synchronous, no prescaler		0.5 TCY + 20	_	ns	
			Synchronous, with prescaler		10	—	ns	
			Asynchronous		30	_	ns	
46	Tt1L	TxCKI Low	Synchronous, no prescaler Synchronous, with prescaler		0.5 TCY + 5	—	ns	
		Time			10	-	ns	
			Asynchronous		30	—	ns	
47	Tt1P	TxCKI Input Period	Synchronous		Greater of: 20 ns or (Tcy + 40)/N	_	ns	N = prescale value $(1, 2, 4, 8)$
			Asynchronous		60	_	ns	
	Ft1	TxCKI Clock I	nput Frequency Range		DC	50	kHz	
48	Tcke2tmrl	Delay from Ex Increment	ternal TxCKI Clock Edge to Timer		2 Tosc	7 Tosc	_	

TABLE 27-12:	TIMER0 AND	TIMER1/3/5	EXTERNAL	CLOCK	REQUIREMENTS
--------------	------------	------------	----------	-------	--------------

FIGURE 27-12: CAPTURE/COMPARE/PWM TIMINGS (ALL CCP MODULES)

TABLE 21-11: WASTER 33PT C DUS START/STUP DITS REQUIREMENT	TABLE 27-17:	MASTER SS	P I ² C BUS	START/STOP	BITS REQ	UIREMENTS
--	--------------	-----------	------------------------	------------	-----------------	-----------

Param. No.	Symbol	Characteristic		Min	Мах	Units	Conditions	
90	TSU:STA	Start Condition	100 kHz mode	2(Tosc)(BRG + 1)		ns	Only relevant for	
		Setup Time	400 kHz mode	2(Tosc)(BRG + 1)	_		Repeated Start	
			1 MHz mode ⁽¹⁾	2(Tosc)(BRG + 1)	_		condition	
91	THD:STA	Start Condition	100 kHz mode	2(Tosc)(BRG + 1)	_	ns	After this period, the	
		Hold Time	400 kHz mode	2(Tosc)(BRG + 1)	_		first clock pulse is	
			1 MHz mode ⁽¹⁾	2(Tosc)(BRG + 1)	_		generated	
92	Tsu:sto	Stop Condition	100 kHz mode	2(Tosc)(BRG + 1)		ns		
		Setup Time	400 kHz mode	2(Tosc)(BRG + 1)	_			
			1 MHz mode ⁽¹⁾	2(Tosc)(BRG + 1)				
93	THD:STO	Stop Condition	100 kHz mode	2(Tosc)(BRG + 1)		ns		
		Hold Time	400 kHz mode	2(Tosc)(BRG + 1)				
			1 MHz mode ⁽¹⁾	2(Tosc)(BRG + 1)	_			

Note 1: Maximum pin capacitance = 10 pF for all I^2C pins.

FIGURE 27-20: MASTER SSP I²C BUS DATA TIMING

