

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	64MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	35
Program Memory Size	64KB (32K x 16)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	3.8K × 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 30x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	40-UFQFN Exposed Pad
Supplier Device Package	40-UQFN (5x5)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18lf46k22-i-mv

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

FIGURE 3: 40-PIN PDIP DIAGRAM

FIGURE 4: 40-PIN UQFN DIAGRAM

		••			•••••••••••••••••••••••••••••••••••••••		
Pin Number		ımber		Din	Buffor		
	PDIP, Soic	QFN, UQFN	Pin Name	Туре	Туре	Description	
ľ	20	17	Vdd	Р	_	Positive supply for logic and I/O pins.	
	8, 19	5, 16	Vss	Р	-	Ground reference for logic and I/O pins.	

TABLE 1-2: PIC18(L)F2XK22 PINOUT I/O DESCRIPTIONS (CONTINUED)

Legend: TTL = TTL compatible input CMOS = CMOS compatible input or output; ST = Schmitt Trigger input with CMOS levels; I = Input; O = Output; P = Power.

Note 1: Default pin assignment for P2B, T3CKI, CCP3 and CCP2 when Configuration bits PB2MX, T3CMX, CCP3MX and CCP2MX are set.

2: Alternate pin assignment for P2B, T3CKI, CCP3 and CCP2 when Configuration bits PB2MX, T3CMX, CCP3MX and CCP2MX are clear.

TABLE 1-3:	PIC18(L)F4XK22 PINOUT I/O DESCRIPTIONS
------------	--

	Pin N	lumber		D'a Nama	Pin	Buffer	Description
PDIP	TQFP	QFN	UQFN	Pin Name	Туре	Туре	Description
2	19	19	17	RA0/C12IN0-/AN0			
				RA0	I/O	TTL	Digital I/O.
				C12IN0-	I	Analog	Comparators C1 and C2 inverting input.
				AN0	Ι	Analog	Analog input 0.
3	20	20	18	RA1/C12IN1-/AN1			
				RA1	I/O	TTL	Digital I/O.
				C12IN1-	I	Analog	Comparators C1 and C2 inverting input.
				AN1	Ι	Analog	Analog input 1.
4	21	21	19	RA2/C2IN+/AN2/DACOUT	/Vref-		
				RA2	I/O	TTL	Digital I/O.
				C2IN+	I	Analog	Comparator C2 non-inverting input.
				AN2	I	Analog	Analog input 2.
				DACOUT	0	Analog	DAC Reference output.
				VREF-	Ι	Analog	A/D reference voltage (low) input.
5	22	22	20	RA3/C1IN+/AN3/VREF+			
				RA3	I/O	TTL	Digital I/O.
				C1IN+	I	Analog	Comparator C1 non-inverting input.
				AN3	I	Analog	Analog input 3.
				VREF+	Ι	Analog	A/D reference voltage (high) input.
6	23	23	21	RA4/C1OUT/SRQ/T0CKI			
				RA4	I/O	ST	Digital I/O.
				C1OUT	0	CMOS	Comparator C1 output.
				SRQ	0	TTL	SR latch Q output.
				TOCKI	I	ST	Timer0 external clock input.

Legend: TTL = TTL compatible input CMOS = CMOS compatible input or output; ST = Schmitt Trigger input with CMOS levels; I = Input; O = Output; P = Power.

Note 1: Default pin assignment for P2B, T3CKI, CCP3/P3A and CCP2/P2A when Configuration bits PB2MX, T3CMX, CCP3MX and CCP2MX are set.

2: Alternate pin assignment for P2B, T3CKI, CCP3/P3A and CCP2/P2A when Configuration bits PB2MX, T3CMX, CCP3MX and CCP2MX are clear.

3.4.1 PRI_IDLE MODE

This mode is unique among the three low-power Idle modes, in that it does not disable the primary device clock. For timing sensitive applications, this allows for the fastest resumption of device operation with its more accurate primary clock source, since the clock source does not have to "warm-up" or transition from another oscillator.

PRI_IDLE mode is entered from PRI_RUN mode by setting the IDLEN bit and executing a SLEEP instruction. If the device is in another Run mode, set IDLEN first, then clear the SCS bits and execute SLEEP. Although the CPU is disabled, the peripherals continue to be clocked from the primary clock source specified by the FOSC<3:0> Configuration bits. The OSTS bit remains set (see Figure 3-6).

When a wake event occurs, the CPU is clocked from the primary clock source. A delay of interval TCSD is required between the wake event and when code execution starts. This is required to allow the CPU to become ready to execute instructions. After the wake-up, the OSTS bit remains set. The IDLEN and SCS bits are not affected by the wake-up (see Figure 3-7).

3.4.2 SEC_IDLE MODE

In SEC_IDLE mode, the CPU is disabled but the peripherals continue to be clocked from the SOSC oscillator. This mode is entered from SEC_RUN by setting the IDLEN bit and executing a SLEEP instruction. If the device is in another Run mode, set the IDLEN bit first, then set the SCS<1:0> bits to '01' and execute SLEEP. When the clock source is switched to the SOSC oscillator, the primary oscillator is shut down, the OSTS bit is cleared and the SOSCRUN bit is set.

When a wake event occurs, the peripherals continue to be clocked from the SOSC oscillator. After an interval of TCSD following the wake event, the CPU begins executing code being clocked by the SOSC oscillator. The IDLEN and SCS bits are not affected by the wake-up; the SOSC oscillator continues to run (see Figure 3-7).

Note: The SOSC oscillator should already be running prior to entering SEC_IDLE mode. At least one of the secondary oscillator enable bits (SOSCGO, T1SOSCEN, T3SOSCEN or T5SOSCEN) must be set when the SLEEP instruction is executed. Otherwise, the main system clock will continue to operate in the previously selected mode and the corresponding IDLE mode will be entered (i.e., PRI_IDLE or RC_IDLE).

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	<u>Value on</u> POR, BOR
FA2h	IPR2	OSCFIP	C1IP	C2IP	EEIP	BCL1IP	HLVDIP	TMR3IP	CCP2IP	1111 1111
FA1h	PIR2	OSCFIF	C1IF	C2IF	EEIF	BCL1IF	HLVDIF	TMR3IF	CCP2IF	0000 0000
FA0h	PIE2	OSCFIE	C1IE	C2IE	EEIE	BCL1IE	HLVDIE	TMR3IE	CCP2IE	0000 0000
F9Fh	IPR1	_	ADIP	RC1IP	TX1IP	SSP1IP	CCP1IP	TMR2IP	TMR1IP	-111 1111
F9Eh	PIR1	—	ADIF	RC1IF	TX1IF	SSP1IF	CCP1IF	TMR2IF	TMR1IF	-000 0000
F9Dh	PIE1	_	ADIE	RC1IE	TX1IE	SSP1IE	CCP1IE	TMR2IE	TMR1IE	-000 0000
F9Ch	HLVDCON	VDIRMAG	BGVST	IRVST	HLVDEN		HLVDL	<3:0>		0000 0000
F9Bh	OSCTUNE	INTSRC	PLLEN			TUN	<5:0>			00xx xxxx
F96h	TRISE	WPUE3	_	_	_	_	TRISE2 ⁽¹⁾	TRISE1 ⁽¹⁾	TRISE0 ⁽¹⁾	1111
F95h	TRISD ⁽¹⁾	TRISD7	TRISD6	TRISD5	TRISD4	TRISD3	TRISD2	TRISD1	TRISD0	1111 1111
F94h	TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	1111 1111
F93h	TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	1111 1111
F92h	TRISA	TRISA7	TRISA6	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	1111 1111
F8Dh	LATE ⁽¹⁾	_	—	_	—	_	LATE2	LATE1	LATE0	xxx
F8Ch	LATD ⁽¹⁾	LATD7	LATD6	LATD5	LATD4	LATD3	LATD2	LATD1	LATD0	xxxx xxxx
F8Bh	LATC	LATC7	LATC6	LATC5	LATC4	LATC3	LATC2	LATC1	LATC0	xxxx xxxx
F8Ah	LATB	LATB7	LATB6	LATB5	LATB4	LATB3	LATB2	LATB1	LATB0	xxxx xxxx
F89h	LATA	LATA7	LATA6	LATA5	LATA4	LATA3	LATA2	LATA1	LATA0	xxxx xxxx
F84b	PORTE ⁽²⁾	_	—	_	—	RE3	—	—	—	x
10411	PORTE ⁽¹⁾	_	—	_	—	RE3	RE2	RE1	RE0	x000
F83h	PORTD ⁽¹⁾	RD7	RD6	RD5	RD4	RD3	RD2	RD1	RD0	0000 0000
F82h	PORTC	RC7	RC6	RC5	RC4	RC3	RC2	RC1	RC0	0000 00xx
F81h	PORTB	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	xxx0 0000
F80h	PORTA	RA7	RA6	RA5	RA4	RA3	RA2	RA1	RA0	xx0x 0000
F7Fh	IPR5	_	_	_	_	_	TMR6IP	TMR5IP	TMR4IP	111
F7Eh	PIR5	_	_	_	_	_	TMR6IF	TMR5IF	TMR4IF	111
F7Dh	PIE5	—	—	—	—	—	TMR6IE	TMR5IE	TMR4IE	000
F7Ch	IPR4	_	—	—	—	_	CCP5IP	CCP4IP	CCP3IP	000
F7Bh	PIR4	_	—	—	—	_	CCP5IF	CCP4IF	CCP3IF	000
F7Ah	PIE4	_	_	_	_	_	CCP5IE	CCP4IE	CCP3IE	000
F79h	CM1CON0	C1ON	C1OUT	C10E	C1POL	C1SP	C1R	C1CH	l<1:0>	0000 1000
F78h	CM2CON0	C2ON	C2OUT	C2OE	C2POL	C2SP	C2R	C2CH	<1:0>	0000 1000
F77h	CM2CON1	MC10UT	MC2OUT	C1RSEL	C2RSEL	C1HYS	C2HYS	C1SYNC	C2SYNC	0000 0000
F76h	SPBRGH2			EUSAR	T2 Baud Rate	Generator, Hig	gh Byte			0000 0000
F75h	SPBRG2			EUSAR	T2 Baud Rate	Generator, Lo	w Byte			0000 0000
F74h	RCREG2			EUSAR	T2 Receive Re	egister				0000 0000
F73h	TXREG2			EUSAR	T2 Transmit R	egister				0000 0000
F72h	TXSTA2	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	0000 0010
F71h	RCSTA2	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	0000 000x
F70h	BAUDCON2	ABDOVF	RCIDL	DTRXP CKTXP BRG16 — WUE ABDE						01x0 0-00
F6Fh	SSP2BUF			SSP2 I	Receive Buffer,	/Transmit Regi	ister			XXXX XXXX
F6Eh	SSP2ADD	SSP2 Add	dress Register	in I ² C Slave	Mode. SSP2 B	aud Rate Relo	ad Register in	I ² C Master M	ode	0000 0000
F6Dh	SSP2STAT	SMP	CKE	D/A	Р	S	R/W	UA	BF	0000 0000
F6Ch	SSP2CON1	WCOL	SSPOV	SSPEN	PEN CKP SSPM<3:0>					0000 0000
F6Bh	SSP2CON2	GCEN	ACKSTAT	ACKDT	KDT ACKEN RCEN PEN RSEN SEN					0000 0000
F6Ah	SSP2MSK				SSP1 MASK F	Register bits				1111 1111
F69h	SSP2CON3	ACKTIM	PCIE	SCIE	BOEN	SDAHT	SBCDE	AHEN	DHEN	0000 0000

 $\label{eq:legend: Legend: Legend: a generative state of the state of$

Note 1: PIC18(L)F4XK22 devices only.

2: PIC18(L)F2XK22 devices only.

3: PIC18(L)F23/24K22 and PIC18(L)F43/44K22 devices only.

4: PIC18(L)F26K22 and PIC18(L)F46K22 devices only.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	<u>Value on</u> POR, BOR	
F68h	CCPR2H			Capture/C	ompare/PWM	Register 2, Hiç	gh Byte			xxxx xxxx	
F67h	CCPR2L			Capture/C	ompare/PWM	Register 2, Lov	w Byte			xxxx xxxx	
F66h	CCP2CON	P2M<	<1:0>	DC2E	3<1:0>		CCP2N	<3:0>		0000 0000	
F65h	PWM2CON	P2RSEN				P2DC<6:0>				0000 0000	
F64h	ECCP2AS	CCP2ASE		CCP2AS<2:0	>	PSS2A	C<1:0>	PSS2B	D<1:0>	0000 0000	
F63h	PSTR2CON	_	_	_	STR2SYNC	STR2D	STR2C	STR2B	STR2A	0 0001	
F62h	IOCB	IOCB7	IOCB6	IOCB5	IOCB4	_	_	_	_	1111	
F61h	WPUB	WPUB7	WPUB6	WPUB5	WPUB4	WPUB3	WPUB2	WPUB1	WPUB0	1111 1111	
Fool	SLRCON ⁽²⁾	—	—	—			SLRC	SLRB	SLRA	111	
F60h	SLRCON ⁽¹⁾	—	—	—	SLRE	SLRD	SLRC	SLRB	SLRA	1 1111	
F5Fh	CCPR3H			Capture/	Compare/PWN	1 Register 3, H	igh Byte			xxxx xxxx	
F5Eh	CCPR3L			Capture/0	Compare/PWN	1 Register 3, L	ow Byte			xxxx xxxx	
F5Dh	CCP3CON	P3M<	<1:0>	DC3E	8<1:0>		CCP3N	<3:0>		0000 0000	
F5Ch	PWM3CON	P3RSEN				P3DC<6:0>				0000 0000	
F5Bh	ECCP3AS	CCP3ASE		CCP3AS<2:0	>	PSS3A	C<1:0>	PSS3B	D<1:0>	0000 0000	
F5Ah	PSTR3CON	_	_	_	STR3SYNC	STR3D	STR3C	STR3B	STR3A	0 0001	
F59h	CCPR4H			Capture/	Compare/PWN	/I Register 4, ⊦	ligh Byte			xxxx xxxx	
F58h	CCPR4L			Capture/	Compare/PWN	/I Register 4, L	.ow Byte			xxxx xxxx	
F57h	CCP4CON	_	—	DC4E	8<1:0>		CCP4N	<3:0>		00 0000	
F56h	CCPR5H			Capture/	Compare/PWN	/I Register 5, H	ligh Byte			xxxx xxxx	
F55h	CCPR5L			Capture/	Compare/PWN	/I Register 5, L	ow Byte			xxxx xxxx	
F54h	CCP5CON	_	_	DC5E	8<1:0>		CCP5N	<3:0>		00 0000	
F53h	TMR4				Timer4	Register				0000 0000	
F52h	PR4				Timer4 Pe	riod Register				1111 1111	
F51h	T4CON	_		T4OUT	PS<3:0>		TMR4ON	T4CKP	S<1:0>	-000 0000	
F50h	TMR5H		Holding R	egister for the	Most Significa	int Byte of the	16-bit TMR5 R	egister		0000 0000	
F4Fh	TMR5L			Least Signifi	icant Byte of th	e 16-bit TMR5	Register			0000 0000	
F4Eh	T5CON	TMR5C	S<1:0>	T5CKF	°S<1:0>	T5SOSCEN	T5SYNC	T5RD16	TMR5ON	0000 0000	
F4Dh	T5GCON	TMR5GE	T5GPOL	T5GTM	T5GSPM	T <u>5GGO</u> / DONE	T5GVAL	T5GSS	S<1:0>	0000 0x00	
F4Ch	TMR6				Timer6 Regist	er					
F4Bh	PR6				Timer6 Period	Register				1111 1111	
F4Ah	T6CON	_		T6OUT	PS<3:0>		TMR6ON	T6CKP	S<1:0>	-000 0000	
F49h	CCPTMRS0	C3TSE	L<1:0>	_	C2TSE	L<1:0>	_	C1TSE	L<1:0>	00-0 0-00	
F48h	CCPTMRS1	_	_	_	_	C5TSE	L<1:0>	C4TSE	L<1:0>	0000	
F47h	SRCON0	SRLEN		SRCLK<2:0>	,	SRQEN	SRNQEN	SRPS	SRPR	0000 0000	
F46h	SRCON1	SRSPE	SRSCKE	SRSC2E	SRSC1E	SRRPE	SRRCKE	SRRC2E	SRRC1E	0000 0000	
F45h	CTMUCONH	CTMUEN	_	CTMUSIDL	TGEN	EDGEN	EDGSEQEN	IDISSEN	CTTRIG	0000 0000	
F44h	CTMUCONL	EDG2POL	EDG2S	EL<1:0>	EDG1POL	EDG1S	EL<1:0>	EDG2STAT	EDG1STAT	0000 0000	
F43h	CTMUICON			ITRIM<5:0>				IRNG<1:0>		0000 0000	
F42h	VREFCON0	FVREN	FVRST	FVRS	S<1:0>	_	_	_	_	0001	
F41h	VREFCON1	DACEN	DACLPS	DACOE	_	DACPS	SS<1:0>	_	DACNSS	000- 00-0	
F40h	VREFCON2	_	_	_			DACR<4:0>			0 0000	
F3Fh	PMD0	UART2MD	UART1MD	TMR6MD	TMR5MD	TMR4MD	TMR3MD	TMR2MD	TMR1MD	0000 0000	
F3Eh	PMD1	MSSP2MD	MSSP1MD	—	CCP5MD	CCP4MD	CCP3MD	CCP2MD	CCP1MD	00-0 0000	
F3Dh	PMD2	—	—	—	—	CTMUMD	CMP2MD	CMP1MD	ADCMD	0000	
F3Ch	ANSELE ⁽¹⁾	—	—	—	_	_	ANSE2	ANSE1	ANSE0	111	
F3Bh	ANSELD ⁽¹⁾	ANSD7	ANSD6	ANSD5	ANSD4	ANSD3	ANSD2	ANSD1	ANSD0	1111 1111	

TABLE 5-2: REGISTER FILE SUMMARY FOR PIC18(L)F2X/4XK22 DEVICES (CONTINUED)

 $\label{eq:Legend: Legend: Legend: Legend: u = unchanged, --= unimplemented, q = value depends on condition$

Note 1: PIC18(L)F4XK22 devices only.

2: PIC18(L)F2XK22 devices only.

3: PIC18(L)F23/24K22 and PIC18(L)F43/44K22 devices only.

4: PIC18(L)F26K22 and PIC18(L)F46K22 devices only.

6.2 Control Registers

Several control registers are used in conjunction with the TBLRD and TBLWT instructions. These include the:

- EECON1 register
- EECON2 register
- TABLAT register
- TBLPTR registers

6.2.1 EECON1 AND EECON2 REGISTERS

The EECON1 register (Register 6-1) is the control register for memory accesses. The EECON2 register is not a physical register; it is used exclusively in the memory write and erase sequences. Reading EECON2 will read all '0's.

The EEPGD control bit determines if the access will be a program or data EEPROM memory access. When EEPGD is clear, any subsequent operations will operate on the data EEPROM memory. When EEPGD is set, any subsequent operations will operate on the program memory.

The CFGS control bit determines if the access will be to the Configuration/Calibration registers or to program memory/data EEPROM memory. When CFGS is set, subsequent operations will operate on Configuration registers regardless of EEPGD (see **Section 24.0 "Special Features of the CPU"**). When CFGS is clear, memory selection access is determined by EEPGD. The FREE bit allows the program memory erase operation. When FREE is set, an erase operation is initiated on the next WR command. When FREE is clear, only writes are enabled.

The WREN bit, when set, will allow a write operation. The WREN bit is clear on power-up.

The WRERR bit is set by hardware when the WR bit is set and cleared when the internal programming timer expires and the write operation is complete.

Note: During normal operation, the WRERR is read as '1'. This can indicate that a write operation was prematurely terminated by a Reset, or a write operation was attempted improperly.

The WR control bit initiates write operations. The WR bit cannot be cleared, only set, by firmware. Then WR bit is cleared by hardware at the completion of the write operation.

Note: The EEIF interrupt flag bit of the PIR2 register is set when the write is complete. The EEIF flag stays set until cleared by firmware.

FIGURE 12-7:	TIMER1/3/5 GATE SING	LE-PULSE AND TOGGLE COMBINED MODE
TMRxGE		
TxGPOL		
TxGSPM		
TxGTM		
TxGG <u>O/</u> DONE	 Set by software Counting enabled of the set of the	Cleared by hardware on falling edge of TxGVAL
TxG_IN	rising edge of TxG	
ТхСКІ		
TxGVAL		
TIMER1/3/5	Ν	<u>N + 1</u> <u>N + 2</u> <u>N + 3</u> <u>N + 4</u>
TMRxGIF	Cleared by software	Set by hardware on falling edge of TxGVAL

12.12 Peripheral Module Disable

When a peripheral module is not used or inactive, the module can be disabled by setting the Module Disable bit in the PMD registers. This will reduce power consumption to an absolute minimum. Setting the PMD bits holds the module in Reset and disconnects the module's clock source. The Module Disable bits for Timer1 (TMR1MD), Timer3 (TMR3MD) and Timer5 (TMR5MD) are in the PMD0 Register. See Section 3.0 "Power-Managed Modes" for more information.

14.4.1 HALF-BRIDGE MODE

In Half-Bridge mode, two pins are used as outputs to drive push-pull loads. The PWM output signal is output on the CCPx/PxA pin, while the complementary PWM output signal is output on the PxB pin (see Figure 14-9). This mode can be used for half-bridge applications, as shown in Figure 14-9, or for full-bridge applications, where four power switches are being modulated with two PWM signals.

In Half-Bridge mode, the programmable dead-band delay can be used to prevent shoot-through current in halfbridge power devices. The value of the PDC<6:0> bits of the PWMxCON register sets the number of instruction cycles before the output is driven active. If the value is greater than the duty cycle, the corresponding output remains inactive during the entire cycle. See **Section 14.4.5 "Programmable Dead-Band Delay Mode"** for more details of the dead-band delay operations. Since the PxA and PxB outputs are multiplexed with the PORT data latches, the associated TRIS bits must be cleared to configure PxA and PxB as outputs.

FIGURE 14-8: EXAMPLE OF HALF-BRIDGE PWM OUTPUT

FIGURE 14-9: EXAMPLE OF HALF-BRIDGE APPLICATIONS

© 2010-2016 Microchip Technology Inc.

16.5.2 SYNCHRONOUS SLAVE MODE

The following bits are used to configure the EUSART for Synchronous slave operation:

- SYNC = 1
- CSRC = 0
- SREN = 0 (for transmit); SREN = 1 (for receive)
- CREN = 0 (for transmit); CREN = 1 (for receive)
- SPEN = 1

Setting the SYNC bit of the TXSTAx register configures the device for synchronous operation. Clearing the CSRC bit of the TXSTAx register configures the device as a slave. Clearing the SREN and CREN bits of the RCSTAx register ensures that the device is in the Transmit mode, otherwise the device will be configured to receive. Setting the SPEN bit of the RCSTAx register enables the EUSART. If the RXx/DTx or TXx/CKx pins are shared with an analog peripheral the analog I/O functions must be disabled by clearing the corresponding ANSEL bits.

RXx/DTx and TXx/CKx pin output drivers must be disabled by setting the corresponding TRIS bits.

16.5.2.1 EUSART Synchronous Slave Transmit

The operation of the Synchronous Master and Slave modes are identical (see Section 16.5.1.3 "Synchronous Master Transmission"), except in the case of the Sleep mode.

If two words are written to the TXREGx and then the SLEEP instruction is executed, the following will occur:

- 1. The first character will immediately transfer to the TSR register and transmit.
- 2. The second word will remain in TXREGx register.
- 3. The TXxIF bit will not be set.
- After the first character has been shifted out of TSR, the TXREGx register will transfer the second character to the TSR and the TXxIF bit will now be set.
- 5. If the PEIE/GIEL and TXxIE bits are set, the interrupt will wake the device from Sleep and execute the next instruction. If the GIE/GIEH bit is also set, the program will call the Interrupt Service Routine.
- 16.5.2.2 Synchronous Slave Transmission Setup:
- 1. Set the SYNC and SPEN bits and clear the CSRC bit.
- 2. Set the RXx/DTx and TXx/CKx TRIS controls to '1'.
- 3. Clear the CREN and SREN bits.
- 4. If using interrupts, ensure that the GIE/GIEH and PEIE/GIEL bits of the INTCON register are set and set the TXxIE bit.
- 5. If 9-bit transmission is desired, set the TX9 bit.
- 6. Enable transmission by setting the TXEN bit.
- 7. If 9-bit transmission is selected, insert the Most Significant bit into the TX9D bit.
- 8. Start transmission by writing the Least Significant eight bits to the TXREGx register.

EXAMPLE 19-3: CAPACITANCE CALIBRATION ROUTINE

```
#include "p18cxxx.h"
#define COUNT 25
                                            //@ 8MHz INTFRC = 62.5 us.
#define ETIME COUNT*2.5
                                            //time in uS
#define DELAY for(i=0;i<COUNT;i++)</pre>
#define ADSCALE 1023
                                            //for unsigned conversion 10 sig
bits
#define ADREF 3.3
                                            //Vdd connected to A/D Vr+
#define RCAL .027
                                            //R value is 4200000 (4.2M)
                                            //scaled so that result is in
                                            //1/100th of uA
int main(void)
{
   int i;
   int j = 0;
                                            //index for loop
   unsigned int Vread = 0;
   float CTMUISrc, CTMUCap, Vavg, VTot, Vcal;
//assume CTMU and A/D have been set up correctly
//see Example 25-1 for CTMU & A/D setup
setup();
CTMUCONHbits.CTMUEN = 1;
                                            //Enable the CTMU
CTMUCONLbits.EDG1STAT = 0;
                                            // Set Edge status bits to zero
CTMUCONLbits.EDG2STAT = 0;
   for(j=0;j<10;j++)</pre>
    {
       CTMUCONHbits.IDISSEN = 1;
                                           //drain charge on the circuit
                                            //wait 125us
       DELAY;
       CTMUCONHbits.IDISSEN = 0;
                                            //end drain of circuit
       CTMUCONLbits.EDG1STAT = 1;
                                            //Begin charging the circuit
                                            //using CTMU current source
                                            //wait for 125us
       DELAY;
       CTMUCONLbits.EDG1STAT = 0;
                                           //Stop charging circuit
       PIR1bits.ADIF = 0;
                                           //make sure A/D Int not set
       ADCON0bits.GO=1;
                                            //and begin A/D conv.
       while(!PIR1bits.ADIF);
                                            //Wait for A/D convert complete
       Vread = ADRES;
                                            //Get the value from the A/D
       PIR1bits.ADIF = 0;
                                            //Clear A/D Interrupt Flag
       VTot += Vread;
                                            //Add the reading to the total
   }
   Vavg = (float)(VTot/10.000);
                                            //Average of 10 readings
   Vcal = (float)(Vavg/ADSCALE*ADREF);
                                            //CTMUISrc is in 1/100ths of uA
   CTMUISrc = Vcal/RCAL;
   CTMUCap = (CTMUISrc*ETIME/Vcal)/100;
```

23.7 Operation During Sleep

When enabled, the HLVD circuitry continues to operate during Sleep. If the device voltage crosses the trip point, the HLVDIF bit will be set and the device will wake-up from Sleep. Device execution will continue from the interrupt vector address if interrupts have been globally enabled.

23.8 Effects of a Reset

A device Reset forces all registers to their Reset state. This forces the HLVD module to be turned off.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on page
HLVDCON	VDIRMAG	BGVST	IRVST	HLVDEN		HLVDL<3:0>			
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	109
IPR2	OSCFIP	C1IP	C2IP	EEIP	BCL1IP	HLVDIP	TMR3IP	CCP2IP	122
PIE2	OSCFIE	C1IE	C2IE	EEIE	BCL1IE	HLVDIE	TMR3IE	CCP2IE	118
PIR2	OSCFIF	C1IF	C2IF	EEIF	BCL1IF	HLVDIF	TMR3IF	CCP2IF	113
TRISA	TRISA7	TRISA6	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	151

TABLE 23-1: REGISTERS ASSOCIATED WITH HIGH/LOW-VOLTAGE DETECT MODULE

Legend: — = unimplemented locations, read as '0'. Shaded bits are unused by the HLVD module.

24.3 Watchdog Timer (WDT)

For PIC18(L)F2X/4XK22 devices, the WDT is driven by the LFINTOSC source. When the WDT is enabled, the clock source is also enabled. The nominal WDT period is 4 ms and has the same stability as the LFINTOSC oscillator.

The 4 ms period of the WDT is multiplied by a 16-bit postscaler. Any output of the WDT postscaler is selected by a multiplexer, controlled by bits in Configuration Register 2H. Available periods range from 4 ms to 131.072 seconds (2.18 minutes). The WDT and postscaler are cleared when any of the following events occur: a SLEEP or CLRWDT instruction is executed, the IRCF bits of the OSCCON register are changed or a clock failure has occurred.

- Note 1: The CLRWDT and SLEEP instructions clear the WDT and postscaler counts when executed.
 - 2: Changing the setting of the IRCF bits of the OSCCON register clears the WDT and postscaler counts.
 - **3:** When a CLRWDT instruction is executed, the postscaler count will be cleared.

FIGURE 24-1: WDT BLOCK DIAGRAM

24.5.1 PROGRAM MEMORY CODE PROTECTION

The program memory may be read to or written from any location using the table read and table write instructions. The device ID may be read with table reads. The Configuration registers may be read and written with the table read and table write instructions.

In Normal execution mode, the CPn bits have no direct effect. CPn bits inhibit external reads and writes. A block of user memory may be protected from table writes if the WRTn Configuration bit is '0'. The EBTRn bits control table reads. For a block of user memory with the EBTRn bit cleared to '0', a table READ instruction that executes from within that block is allowed to read. A table read instruction that executes from a location outside of that block is not allowed to read and will result in reading '0's. Figures 24-3 through 24-5 illustrate table write and table read protection.

Note:	Code protection bits may only be written						
	to a '0' from a '1' state. It is not possible to						
	write a '1' to a bit in the '0' state. Code pro-						
	tection bits are only set to '1' by a full chip						
	erase or block erase function. The full chip						
	erase and block erase functions can only						
	be initiated via ICSP™ or an external						
	programmer.						

FIGURE 24-3: TABLE WRITE (WRTn) DISALLOWED

Register Values	Program Memory	ry Configuration Bit Settings							
		000000h WRTB, EBTRB = 11 0007FFh 000800h							
TBLPTR = 0008FFh	▶┌►	WRT0, EBTR0 = 01							
PC = 001FFEh	TBLWT*	001FFFh 002000h							
		WRT1, EBTR1 = 11 003FFFh 004000h							
PC = 005FFEh	TBLWT*	WRT2, EBTR2 = 11 005FFFh							
		WRT3, EBTR3 = 11							
Results: All table writes disabled to Blockn whenever WRTn = 0.									

DAV	V	D	Decimal Adjust W Register						
Synta	ax:	DA	DAW						
Oper	ands:	No	one						
Oper	ration:	lf (V) els (V	If $[W<3:0>> 9]$ or $[DC = 1]$ then $(W<3:0>) + 6 \rightarrow W<3:0>;$ else $(W<3:0>) \rightarrow W<3:0>;$						
		lf (V els (W	If $[W<7:4> + DC > 9]$ or $[C = 1]$ then $(W<7:4>) + 6 + DC \rightarrow W<7:4>$; else $(W<7:4>) + DC \rightarrow W<7:4>$						
Statu	is Affected:	С							
Enco	oding:		0000	0000	000	00	0111		
Description:			w adjust g from the les (each oduces a	s the 8-b e earlier a in packe correct p	it valu additic ed BC backe	ie in on of D for d BC	W, result- two vari- mat) and D result.		
Word	ds:	1	1						
Cycle	es:	1	1						
QC	ycle Activity:								
	Q1		Q2	Q3			Q4		
	Decode	l reg	Read jister W	Proce Dat	ess a		Write W		
Exan	nple1:								
		DA	W						
	Before Instruc	tion							
	W C DC	= = =	A5h 0 0						
	After Instruction	n							
Exan	W C DC nple 2:	= = =	05h 1 0						
	Before Instruc	tion							
	W C DC After Instructio	= = = n	CEh 0 0						
	W	=	34h						
	C DC	= =	1 0						

DECF Decrement f									
Synta	ax:	DECF f{,c	l {,a}}						
Oper	ands:	$0 \le f \le 255$ $d \in [0,1]$ $a \in [0,1]$							
Oper	ation:	$(f) - 1 \rightarrow de$	$(f) - 1 \rightarrow dest$						
Statu	is Affected:	C, DC, N, C	C, DC, N, OV, Z						
Enco	oding:	0000	01da	ffff	ffff				
Desc	лриоп.	result is sto result is sto (default). If 'a' is '0', tl If 'a' is '0', tl GPR bank. If 'a' is '0' a set is enabl in Indexed I mode when Section 25. Bit-Oriente Literal Offs	Decrement register 1. If a is 0', the result is stored in W. If 'd' is '1', the result is stored back in register 'f' (default). If 'a' is '0', the Access Bank is selected. If 'a' is '0', the ASR is used to select the GPR bank. If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever $f \le 95$ (5Fh). See Section 25.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed Literal Offset Mode" for details						
Word	ls:	1	1						
Cycles:		1	1						
Q Cycle Activity:									
	Q1	Q2	Q3	3	Q4				
	Decode	Read register 'f'	Proce Dat	ess a c	Write to destination				
Example: DECF CNT, 1, 0									
Before Instruction									
	CNT Z	= 01h = 0							
	After Instruction CNT = 00h Z = 1								

27.5 DC Characteristics: Primary Run Supply Current, PIC18(L)F2X/4XK22

PIC18LF2X/4XK22		Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +125^{\circ}C$						
PIC18F2X/4XK22		Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +125^{\circ}C$						
Param No.	Device Characteristics	Тур	Max	Units	Conditions			
D070	Supply Current (IDD)(1),(2)	0.11	0.20	mA	-40°C to +125°C	Vdd = 1.8V	Fosc = 1 MHz	
D071		0.17	0.25	mA	-40°C to +125°C	VDD = 3.0V	(PRI_RUN mode, ECM source)	
D072		0.15	0.25	mA	-40°C to +125°C	VDD = 2.3V	Fosc = 1 MHz (PRI_RUN mode, ECM source)	
D073		0.20	0.30	mA	-40°C to +125°C	VDD = 3.0V		
D074		0.25	0.35	mA	-40°C to +125°C	VDD = 5.0V		
D075		1.45	2.0	mA	-40°C to +125°C	VDD = 1.8V	Fosc = 20 MHz	
D076		2.60	3.5	mA	-40°C to +125°C	VDD = 3.0V	(PRI_RUN mode, ECH source)	
D077		1.95	2.5	mA	-40°C to +125°C	VDD = 2.3V	Fosc = 20 MHz (PRI_RUN mode, ECH source)	
D078		2.65	3.5	mA	-40°C to +125°C	VDD = 3.0V		
D079		2.95	4.5	mA	-40°C to +125°C	VDD = 5.0V		
D080		7.5	10	mA	-40°C to +125°C	Vdd = 3.0V	Fosc = 64 MHz (PRI_RUN , ECH oscillator)	
D081		7.5	10	mA	-40°C to +125°C	VDD = 3.0V	Fosc = 64 MHz	
D082		8.5	11.5	mA	-40°C to +125°C	VDD = 5.0V	(PRI_RUN mode, ECH source)	
D083		1.0	1.5	mA	-40°C to +125°C	VDD = 1.8V	Fosc = 4 MHz	
D084		1.8	3.0	mA	-40°C to +125°C	VDD = 3.0V	16 MHz Internal (PRI_RUN mode, ECM + PLL source)	
D085		1.4	2.0	mA	-40°C to +125°C	VDD = 2.3V	Fosc = 4 MHz 16 MHz Internal (PRI_RUN mode, ECM + PLL source)	
D086		1.85	2.5	mA	-40°C to +125°C	VDD = 3.0V		
D087		2.1	3.0	mA	-40°C to +125°C	VDD = 5.0V		
D088		6.35	9.0	mA	-40°C to +125°C	VDD = 3.0V	Fosc = 16 MHz 64 MHz Internal (PRI_RUN mode, ECH + PLL source)	
D089		6.35	9.0	mA	-40°C to +125°C	VDD = 3.0V	Fosc = 16 MHz	
D090		7.0	10	mA	-40°C to +125°C	VDD = 5.0V	64 MHz Internal (PRI_RUN mode, ECH + PLL source)	

Note 1: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on the current consumption.

Test condition: All Peripheral Module Control bits in PMD0, PMD1 and PMD2 set to '1'.

2: The test conditions for all IDD measurements in active operation mode are:

All I/O pins set as outputs driven to Vss;

 $\overline{MCLR} = VDD;$

OSC1 = external square wave, from rail-to-rail (PRI_RUN and PRI_IDLE only).

Param. No.	Symbol	Characteristic		Min	Max	Units	Conditions
50	TccL	CCPx Input Low	No prescaler	0.5 TCY + 20	—	ns	
	Time	With prescaler	10	—	ns		
51 TccH	TccH	CCPx Input High Time	No prescaler	0.5 Tcy + 20	—	ns	
			With prescaler	10	—	ns	
52	TccP	CCPx Input Period		<u>3 Tcy + 40</u> N	_	ns	N = prescale value (1, 4 or 16)
53	TccR	CCPx Output Fall Time		—	25	ns	
54	TccF	CCPx Output Fall Time		—	25	ns	

TABLE 27-13: CAPTURE/COMPARE/PWM REQUIREMENTS (ALL CCP MODULES)

FIGURE 28-92: PIC18LF2X/4XK22 COMPARATOR OFFSET VOLTAGE, LOW-POWER MODE; VDD=1.8V

28-Lead Ultra Thin Plastic Quad Flat, No Lead Package (MV) - 4x4 mm Body [UQFN] With 0.40 mm Contact Length

	MILLIMETERS			
Dimension Limits		MIN	NOM	MAX
Contact Pitch	Е	0.40 BSC		
Optional Center Pad Width	W2			2.35
Optional Center Pad Length	T2			2.35
Contact Pad Spacing	C1		4.00	
Contact Pad Spacing	C2		4.00	
Contact Pad Width (X28)	X1			0.20
Contact Pad Length (X28)	Y1			0.80
Distance Between Pads	G	0.20		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2152A