

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

Product Status	Obsolete
Core Processor	PowerPC e300
Number of Cores/Bus Width	1 Core, 32-Bit
Speed	400MHz
Co-Processors/DSP	Security; SEC
RAM Controllers	DDR, DDR2
Graphics Acceleration	No
Display & Interface Controllers	-
Ethernet	10/100/1000Mbps (2)
SATA	-
USB	USB 2.0 + PHY (2)
Voltage - I/O	1.8V, 2.5V, 3.3V
Operating Temperature	0°C ~ 105°C (TA)
Security Features	Cryptography, Random Number Generator
Package / Case	672-LBGA
Supplier Device Package	672-LBGA (35x35)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/kmpc8349evvagdb

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

NOTE

The information in this document is accurate for revision 3.x silicon and later (in other words, for orderable part numbers ending in A or B). For information on revision 1.1 silicon and earlier versions, see the *MPC8349E PowerQUICC II Pro Integrated Host Processor Hardware Specifications*.

See Section 22.1, "Part Numbers Fully Addressed by This Document," for silicon revision level determination.

1 Overview

This section provides a high-level overview of the device features. Figure 1 shows the major functional units within the MPC8349EA.

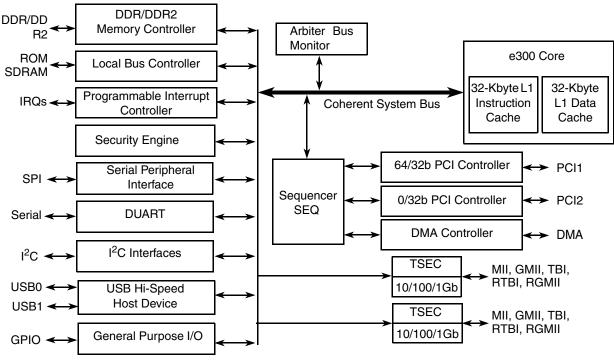


Figure 1. MPC8349EA Block Diagram

Major features of the device are as follows:

- Embedded PowerPC e300 processor core; operates at up to 667 MHz
 - High-performance, superscalar processor core
 - Floating-point, integer, load/store, system register, and branch processing units
 - 32-Kbyte instruction cache, 32-Kbyte data cache
 - Lockable portion of L1 cache
 - Dynamic power management
 - Software-compatible with the other Freescale processor families that implement Power Architecture technology

Overview

- On-chip arbitration supporting five masters on PCI1, three masters on PCI2
- Accesses to all PCI address spaces
- Parity supported
- Selectable hardware-enforced coherency
- Address translation units for address mapping between host and peripheral
- Dual address cycle for target
- Internal configuration registers accessible from PCI
- Security engine is optimized to handle all the algorithms associated with IPSec, SSL/TLS, SRTP, IEEE Std. 802.11i[®], iSCSI, and IKE processing. The security engine contains four crypto-channels, a controller, and a set of crypto execution units (EUs):
 - Public key execution unit (PKEU) :
 - RSA and Diffie-Hellman algorithms
 - Programmable field size up to 2048 bits
 - Elliptic curve cryptography
 - F2m and F(p) modes
 - Programmable field size up to 511 bits
 - Data encryption standard (DES) execution unit (DEU)
 - DES and 3DES algorithms
 - Two key (K1, K2) or three key (K1, K2, K3) for 3DES
 - ECB and CBC modes for both DES and 3DES
 - Advanced encryption standard unit (AESU)
 - Implements the Rijndael symmetric-key cipher
 - Key lengths of 128, 192, and 256 bits
 - ECB, CBC, CCM, and counter (CTR) modes
 - XOR parity generation accelerator for RAID applications
 - ARC four execution unit (AFEU)
 - Stream cipher compatible with the RC4 algorithm
 - 40- to 128-bit programmable key
 - Message digest execution unit (MDEU)
 - SHA with 160-, 224-, or 256-bit message digest
 - MD5 with 128-bit message digest
 - HMAC with either algorithm
 - Random number generator (RNG)
 - Four crypto-channels, each supporting multi-command descriptor chains
 - Static and/or dynamic assignment of crypto-execution units through an integrated controller
 - Buffer size of 256 bytes for each execution unit, with flow control for large data sizes
- Universal serial bus (USB) dual role controller
 - USB on-the-go mode with both device and host functionality

- Complies with USB specification Rev. 2.0
- Can operate as a stand-alone USB device
 - One upstream facing port
 - Six programmable USB endpoints
- Can operate as a stand-alone USB host controller
 - USB root hub with one downstream-facing port
 - Enhanced host controller interface (EHCI) compatible
 - High-speed (480 Mbps), full-speed (12 Mbps), and low-speed (1.5 Mbps) operations
- External PHY with UTMI, serial and UTMI+ low-pin interface (ULPI)
- Universal serial bus (USB) multi-port host controller
 - Can operate as a stand-alone USB host controller
 - USB root hub with one or two downstream-facing ports
 - Enhanced host controller interface (EHCI) compatible
 - Complies with USB Specification Rev. 2.0
 - High-speed (480 Mbps), full-speed (12 Mbps), and low-speed (1.5 Mbps) operations
 - Direct connection to a high-speed device without an external hub
 - External PHY with serial and low-pin count (ULPI) interfaces
- Local bus controller (LBC)
 - Multiplexed 32-bit address and data operating at up to 133 MHz
 - Eight chip selects for eight external slaves
 - Up to eight-beat burst transfers
 - 32-, 16-, and 8-bit port sizes controlled by an on-chip memory controller
 - Three protocol engines on a per chip select basis:
 - General-purpose chip select machine (GPCM)
 - Three user-programmable machines (UPMs)
 - Dedicated single data rate SDRAM controller
 - Parity support
 - Default boot ROM chip select with configurable bus width (8-, 16-, or 32-bit)
- Programmable interrupt controller (PIC)
 - Functional and programming compatibility with the MPC8260 interrupt controller
 - Support for 8 external and 35 internal discrete interrupt sources
 - Support for 1 external (optional) and 7 internal machine checkstop interrupt sources
 - Programmable highest priority request
 - Four groups of interrupts with programmable priority
 - External and internal interrupts directed to host processor
 - Redirects interrupts to external INTA pin in core disable mode.
 - Unique vector number for each interrupt source

2.1.1 Absolute Maximum Ratings

Table 1 provides the absolute maximum ratings.

Table 1. Absolute Maximum Ratings	s ¹
-----------------------------------	----------------

	Parameter	Symbol	Max Value	Unit	Notes
Core supply voltage		V _{DD}	–0.3 to 1.32 (1.36 max for 667-MHz core frequency)	V	_
PLL supply voltage		AV _{DD}	-0.3 to 1.32 (1.36 max for 667-MHz core frequency)	V	—
DDR and DDR2 DR	AM I/O voltage	GV _{DD}	-0.3 to 2.75 -0.3 to 1.98	V	—
Three-speed Etherr	net I/O, MII management voltage	LV _{DD}	-0.3 to 3.63	V	—
PCI, local bus, DUA and JTAG I/O voltag	RT, system control and power management, I ² C, le	OV _{DD}	-0.3 to 3.63	V	—
Input voltage	DDR DRAM signals	MV _{IN}	–0.3 to (GV _{DD} + 0.3)	V	2, 5
	DDR DRAM reference	MV _{REF}	–0.3 to (GV _{DD} + 0.3)	V	2, 5
	Three-speed Ethernet signals	LV _{IN}	-0.3 to (LV _{DD} + 0.3)	V	4, 5
Local bus, DUART, CLKIN, system control and power management, I ² C, and JTAG signals PCI		OV _{IN}	-0.3 to (OV _{DD} + 0.3)	V	3, 5
		OV _{IN}	-0.3 to (OV _{DD} + 0.3)	V	6
Storage temperature	Storage temperature range		-55 to 150	°C	—

Notes:

¹ Functional and tested operating conditions are given in Table 2. Absolute maximum ratings are stress ratings only, and functional operation at the maximums is not guaranteed. Stresses beyond those listed may affect device reliability or cause permanent damage to the device.

- ² Caution: MV_{IN} must not exceed GV_{DD} by more than 0.3 V. This limit can be exceeded for a maximum of 20 ms during power-on reset and power-down sequences.
- ³ **Caution:** OV_{IN} must not exceed OV_{DD} by more than 0.3 V. This limit can be exceeded for a maximum of 20 ms during power-on reset and power-down sequences.
- ⁴ **Caution:** LV_{IN} must not exceed LV_{DD} by more than 0.3 V. This limit can be exceeded for a maximum of 20 ms during power-on reset and power-down sequences.
- ⁵ (M,L,O)V_{IN} and MV_{REF} may overshoot/undershoot to a voltage and for a maximum duration as shown in Figure 2.
- 6 OVIN on the PCI interface can overshoot/undershoot according to the PCI Electrical Specification for 3.3-V operation, as shown in Figure 3.

- ² Typical power is based on a voltage of V_{DD} = 1.2 V, a junction temperature of T_J = 105°C, and a Dhrystone benchmark application.
- ³ Thermal solutions may need to design to a value higher than typical power based on the end application, T_A target, and I/O power.
- ⁴ Maximum power is based on a voltage of V_{DD} = 1.2 V, worst case process, a junction temperature of T_J = 105°C, and an artificial smoke test.
- ⁵ Typical power is based on a voltage of V_{DD} = 1.3 V, a junction temperature of T_J = 105°C, and a Dhrystone benchmark application.
- ⁶ Maximum power is based on a voltage of V_{DD} = 1.3 V, worst case process, a junction temperature of T_J = 105°C, and an artificial smoke test.

Table 5 shows the estimated typical I/O power dissipation for MPC8349EA.

Interface	Parameter	GV _{DD} (1.8 V)	GV _{DD} (2.5 V)	OV _{DD} (3.3 V)	LV _{DD} (3.3 V)	LV _{DD} (2.5 V)	Unit	Comments
DDR I/O	200 MHz, 32 bits	0.31	0.42	—	_		W	—
65% utilization 2.5 V	200 MHz, 64 bits	0.42	0.55				W	—
Rs = 20 Ω Rt = 50 Ω	266 MHz, 32 bits	0.35	0.5	_	_	_	W	—
2 pair of clocks	266 MHz, 64 bits	0.47	0.66	—	_	—	W	—
	300 MHz, 32 bits	0.37	0.54	—	_	—	W	—
	300 MHz, 64 bits	0.50	0.7	—	_	—	W	—
	333 MHz, 32 bits	0.39	0.58	—	_	—	W	—
	333 MHz, 64 bits	0.53	0.76	—	_	—	W	—
	400 MHz, 32 bits	0.44	—	—	_	—	_	—
	400 MHz, 64 bits	0.59	—	—	_	—	_	—
PCI I/O	33 MHz, 64 bits	—	—	0.08	_	—	W	—
load = 30 pF	66 MHz, 64 bits	—	—	0.14	_	—	W	—
	33 MHz, 32 bits	—	—	0.04	_	—	W	Multiply by 2 if using
	66 MHz, 32 bits	—	—	0.07	_	—	W	2 ports.
Local bus I/O	133 MHz, 32 bits	—	—	0.27	_	—	W	—
load = 25 pF	83 MHz, 32 bits	—	—	0.17	_	—	W	—
	66 MHz, 32 bits	—	—	0.14	_	—	W	—
	50 MHz, 32 bits	—	—	0.11	_	—	W	—
TSEC I/O	MII	—	—	—	0.01	—	W	Multiply by number of
load = 25 pF	GMII or TBI	—	—	—	0.06	—	W	interfaces used.
	RGMII or RTBI	—	—	—	_	0.04	W	
USB	12 MHz	—	—	0.01		—	W	Multiply by 2 if using
	480 MHz	—	—	0.2		—	W	2 ports.
Other I/O	—	—	—	0.01	_	_	W	—

Table 5. MPC8349EA Typical I/O Power Dissipation

RESET Initialization

Table 9. RESET Pins DC Electrical Characteristics¹ (continued)

Parameter	Symbol	Condition	Min	Max	Unit
Output low voltage	V _{OL}	l _{OL} = 3.2 mA	_	0.4	V

Notes:

1. This table applies for pins PORESET, HRESET, SRESET, and QUIESCE.

2. HRESET and SRESET are open drain pins, thus V_{OH} is not relevant for those pins.

5.2 **RESET AC Electrical Characteristics**

Table 10 provides the reset initialization AC timing specifications of the MPC8349EA.

Table 10. RESET Initialization Timing Specifications

Parameter	Min	Мах	Unit	Notes
Required assertion time of HRESET or SRESET (input) to activate reset flow	32	—	t _{PCI_SYNC_IN}	1
Required assertion time of $\overrightarrow{\text{PORESET}}$ with stable clock applied to CLKIN when the MPC8349EA is in PCI host mode	32	—	t _{CLKIN}	2
Required assertion time of PORESET with stable clock applied to PCI_SYNC_IN when the MPC8349EA is in PCI agent mode	32	_	t _{PCI_SYNC_IN}	1
HRESET/SRESET assertion (output)	512	—	t _{PCI_SYNC_IN}	1
HRESET negation to SRESET negation (output)	16	—	t _{PCI_SYNC_IN}	1
Input setup time for POR configuration signals (CFG_RESET_SOURCE[0:2] and CFG_CLKIN_DIV) with respect to negation of PORESET when the MPC8349EA is in PCI host mode	4	—	t _{CLKIN}	2
Input setup time for POR configuration signals (CFG_RESET_SOURCE[0:2] and CFG_CLKIN_DIV) with respect to negation of PORESET when the MPC8349EA is in PCI agent mode	4	_	^t PCI_SYNC_IN	1
Input hold time for POR configuration signals with respect to negation of HRESET	0	—	ns	—
Time for the MPC8349EA to turn off POR configuration signals with respect to the assertion of HRESET	—	4	ns	3
Time for the MPC8349EA to turn on POR configuration signals with respect to the negation of $\overline{\text{HRESET}}$	1	—	t _{PCI_SYNC_IN}	1, 3

Notes:

1. t_{PCI_SYNC_IN} is the clock period of the input clock applied to PCI_SYNC_IN. In PCI host mode, the primary clock is applied to the CLKIN input, and PCI_SYNC_IN period depends on the value of CFG_CLKIN_DIV. See the *MPC8349EA PowerQUICC II Pro Integrated Host Processor Family Reference Manual*.

2. t_{CLKIN} is the clock period of the input clock applied to CLKIN. It is valid only in PCI host mode. See the MPC8349EA PowerQUICC II Pro Integrated Host Processor Family Reference Manual.

3. POR configuration signals consist of CFG_RESET_SOURCE[0:2] and CFG_CLKIN_DIV.

DDR and DDR2 SDRAM

Table 19 provides the input AC timing specifications for the DDR SDRAM interface.

Table 19. DDR and DDR2 SDRAM Input AC Timing Specifications

At recommended operating conditions with GV_{DD} of (1.8 or 2.5 V) ± 5%.

Parameter	Symbol	Min	Max	Unit	Notes
Controller Skew for MDQS—MDQ/MECC/MDM	t _{CISKEW}			ps	1, 2
400 MHz		-600	600		3
333 MHz		-750	750		—
266 MHz		-750	750		—
200 MHz		-750	750		—

Notes:

1. t_{CISKEW} represents the total amount of skew consumed by the controller between MDQS[n] and any corresponding bit that will be captured with MDQS[n]. This should be subtracted from the total timing budget.

- The amount of skew that can be tolerated from MDQS to a corresponding MDQ signal is called t_{DISKEW}. This can be determined by the equation: t_{DISKEW} = ± (T/4 – abs (t_{CISKEW})); where T is the clock period and abs (t_{CISKEW}) is the absolute value of t_{CISKEW}.
- 3. This specification applies only to the DDR interface.

Figure 5 illustrates the DDR input timing diagram showing the t_{DISKEW} timing parameter.

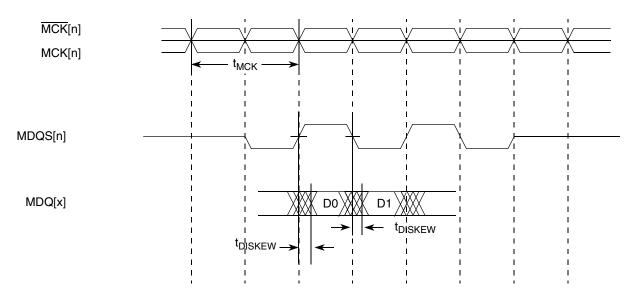


Figure 5. DDR Input Timing Diagram

Figure 7 shows the DDR SDRAM output timing diagram.

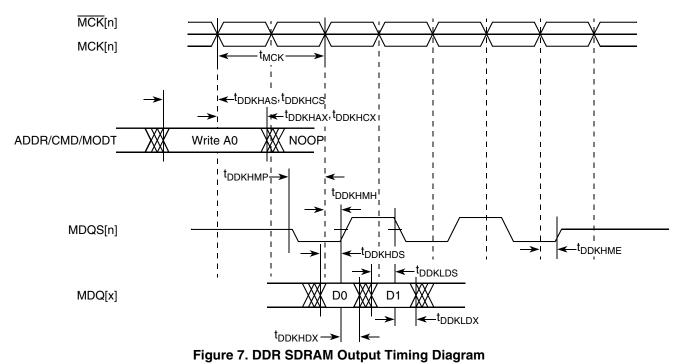


Figure 8 provides the AC test load for the DDR bus.

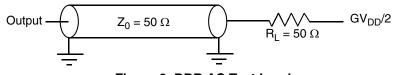


Figure 8. DDR AC Test Load

7 DUART

This section describes the DC and AC electrical specifications for the DUART interface of the MPC8349EA.

7.1 DUART DC Electrical Characteristics

Table 21 provides the DC electrical characteristics for the DUART interface of the MPC8349EA.

Table 21. DUART DC Electrical Characteristics

Parameter	Symbol	Min	Мах	Unit
High-level input voltage	V _{IH}	2	OV _{DD} + 0.3	V
Low-level input voltage	V _{IL}	-0.3	0.8	V
Input current (0.8 V \leq V _{IN} \leq 2 V)	I _{IN}	—	±5	μA

8.1.1 **TSEC DC Electrical Characteristics**

GMII, MII, TBI, RGMII, and RTBI drivers and receivers comply with the DC parametric attributes specified in Table 23 and Table 24. The RGMII and RTBI signals in Table 24 are based on a 2.5-V CMOS interface voltage as defined by JEDEC EIA/JESD8-5.

Parameter	Symbol	Conditions		Min	Max	Unit
Supply voltage 3.3 V	LV _{DD} ²	—		2.97	3.63	V
Output high voltage	V _{OH}	$I_{OH} = -4.0 \text{ mA}$ $LV_{DD} = Min$		2.40	LV _{DD} + 0.3	V
Output low voltage	V _{OL}	$I_{OL} = 4.0 \text{ mA}$ $LV_{DD} = Mir$		GND	0.50	V
Input high voltage	V _{IH}	—	—	2.0	LV _{DD} + 0.3	V
Input low voltage	V _{IL}	—	—	-0.3	0.90	V
Input high current	I _{IH}	$V_{IN}^{1} = LV_{DD}$		_	40	μA
Input low current	۱ _{IL}	V _{IN} ¹ = GND		-600	—	μA

Table 23. GMII/TBI and MII DC Electrical Characteristics

Notes:

1. The symbol V_{IN} , in this case, represents the LV_{IN} symbol referenced in Table 1 and Table 2.

2. GMII/MII pins not needed for RGMII or RTBI operation are powered by the OV_{DD} supply.

Table 24. RGMII/RTBI (When Operating at 2.5 V) DC Electrical Characteristics

Parameters	Symbol	Conditions		Min	Max	Unit
Supply voltage 2.5 V	LV _{DD}	—		2.37	2.63	V
Output high voltage	V _{OH}	$I_{OH} = -1.0 \text{ mA}$ $LV_{DD} = Min$		2.00	LV _{DD} + 0.3	V
Output low voltage	V _{OL}	$I_{OL} = 1.0 \text{ mA}$ $LV_{DD} = Min$		GND – 0.3	0.40	V
Input high voltage	V _{IH}	—	— LV _{DD} = Min		LV _{DD} + 0.3	V
Input low voltage	V _{IL}	—	— LV _{DD} = Min		0.70	V
Input high current	I _{IH}	$V_{IN}^{1} = LV_{DD}$		—	10	μA
Input low current	Ι _{IL}	V _{IN} ¹ = GND		-15	—	μA

Note:

1. The symbol V_{IN} , in this case, represents the LV_{IN} symbol referenced in Table 1 and Table 2.

8.2 GMII, MII, TBI, RGMII, and RTBI AC Timing Specifications

The AC timing specifications for GMII, MII, TBI, RGMII, and RTBI are presented in this section.

8.2.1 GMII Timing Specifications

This section describes the GMII transmit and receive AC timing specifications.

8.2.1.1 GMII Transmit AC Timing Specifications

Table 25 provides the GMII transmit AC timing specifications.

Table 25. GMII Transmit AC Timing Specifications

At recommended operating conditions with LV_{DD}/OV_{DD} of 3.3 V ± 10%.

Parameter/Condition	Symbol ¹	Min	Тур	Max	Unit
GTX_CLK clock period	t _{GTX}	_	8.0	_	ns
GTX_CLK duty cycle	t _{GTXH} /t _{GTX}	43.75		56.25	%
GTX_CLK to GMII data TXD[7:0], TX_ER, TX_EN delay	t _{GTKHDX}	0.5		5.0	ns
GTX_CLK clock rise time (20%-80%)	t _{GTXR}	_		1.0	ns
GTX_CLK clock fall time (80%–20%)	t _{GTXF}	_		1.0	ns

Notes:

1. The symbols for timing specifications follow the pattern t_{(first two letters of functional block)(signal)(state)(reference)(state)} for inputs and t_{(first two letters of functional block)(reference)(state)(signal)(state)} for outputs. For example, t_{GTKHDV} symbolizes GMII transmit timing (GT) with respect to the t_{GTX} clock reference (K) going to the high state (H) relative to the time date input signals (D) reaching the valid state (V) to state or setup time. Also, t_{GTKHDX} symbolizes GMII transmit timing (GT) with respect to the high state (H) relative to the time date input signals (D) reaching the clock reference (K) going to the high state (H) relative to the time date input signals (D) with respect to the t_{GTX} clock reference (K) going to the high state (H) relative to the time date input signals (D) going invalid (X) or hold time. In general, the clock reference symbol is based on three letters representing the clock of a particular function. For example, the subscript of t_{GTX} represents the GMII(G) transmit (TX) clock. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall).

Figure 9 shows the GMII transmit AC timing diagram.

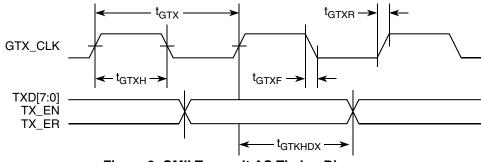


Figure 9. GMII Transmit AC Timing Diagram

8.2.1.2 GMII Receive AC Timing Specifications

Table 26 provides the GMII receive AC timing specifications.

Table 26. GMII Receive AC Timing Specifications

At recommended operating conditions with LV_DD/OV_DD of 3.3 V \pm 10%.

Parameter/Condition	Symbol ¹	Min	Тур	Max	Unit
RX_CLK clock period	t _{GRX}	_	8.0	_	ns
RX_CLK duty cycle	t _{GRXH} /t _{GRX}	40	_	60	%
RXD[7:0], RX_DV, RX_ER setup time to RX_CLK	t _{GRDVKH}	2.0	_		ns
RXD[7:0], RX_DV, RX_ER hold time to RX_CLK	t _{GRDXKH}	0.5	_	_	ns

Ethernet: Three-Speed Ethernet, MII Management

Table 27. MII Transmit AC Timing Specifications (continued)

At recommended operating conditions with LV_{DD}/OV_{DD} of 3.3 V \pm 10%.

Parameter/Condition	Symbol ¹	Min	Тур	Max	Unit
TX_CLK data clock rise (20%-80%)	t _{MTXR}	1.0	_	4.0	ns
TX_CLK data clock fall (80%-20%)	t _{MTXF}	1.0		4.0	ns

Note:

The symbols for timing specifications follow the pattern of t<sub>(first two letters of functional block)(signal)(state)(reference)(state) for inputs and t<sub>(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, t_{MTKHDX} symbolizes MII transmit timing (MT) for the time t_{MTX} clock reference (K) going high (H) until data outputs (D) are invalid (X). In general, the clock reference symbol is based on two to three letters representing the clock of a particular function. For example, the subscript of t_{MTX} represents the MII(M) transmit (TX) clock. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall).
</sub></sub>

Figure 11 shows the MII transmit AC timing diagram.

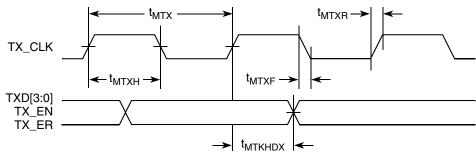


Figure 11. MII Transmit AC Timing Diagram

8.2.2.2 MII Receive AC Timing Specifications

Table 28 provides the MII receive AC timing specifications.

Table 28. MII Receive AC Timing Specifications

At recommended operating conditions with LV_{DD}/OV_{DD} of 3.3 V ± 10%.

Parameter/Condition	Symbol ¹	Min	Тур	Max	Unit
RX_CLK clock period 10 Mbps	t _{MRX}	_	400	—	ns
RX_CLK clock period 100 Mbps	t _{MRX}	_	40	_	ns
RX_CLK duty cycle	t _{MRXH} /t _{MRX}	35	_	65	%
RXD[3:0], RX_DV, RX_ER setup time to RX_CLK	t _{MRDVKH}	10.0	_	—	ns
RXD[3:0], RX_DV, RX_ER hold time to RX_CLK	t _{MRDXKH}	10.0		—	ns

8.2.3.1 TBI Transmit AC Timing Specifications

Table 29 provides the TBI transmit AC timing specifications.

Table 29. TBI Transmit AC Timing Specifications

At recommended operating conditions with LV_{DD}/OV_{DD} of 3.3 V ± 10%.

Parameter/Condition	Symbol ¹	Min	Тур	Max	Unit
GTX_CLK clock period	t _{TTX}	—	8.0	—	ns
GTX_CLK duty cycle	t _{TTXH} /t _{TTX}	40	_	60	%
GTX_CLK to TBI data TXD[7:0], TX_ER, TX_EN delay	t _{TTKHDX}	1.0	_	5.0	ns
GTX_CLK clock rise (20%–80%)	t _{TTXR}	_	_	1.0	ns
GTX_CLK clock fall time (80%–20%)	t _{TTXF}	—		1.0	ns

Notes:

1. The symbols for timing specifications follow the pattern of t_{(first two letters of functional block)(signal)(state)(reference)(state) for inputs and t_{(first two letters of functional block)(reference)(state)(signal)(state)} for outputs. For example, t_{TTKHDV} symbolizes the TBI transmit timing (TT) with respect to the time from t_{TTX} (K) going high (H) until the referenced data signals (D) reach the valid state (V) or setup time. Also, t_{TTKHDX} symbolizes the TBI transmit timing (TT) with respect to the time from t_{TTX} (K) going high (H) until the referenced data signals (D) reach the valid state (V) or setup time. Also, t_{TTKHDX} symbolizes the TBI transmit timing (TT) with respect to the time from t_{TTX} (K) going high (H) until the referenced data signals (D) reach the invalid state (X) or hold time. In general, the clock reference symbol is based on three letters representing the clock of a particular function. For example, the subscript of t_{TTX} represents the TBI (T) transmit (TX) clock. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall).}

Figure 14 shows the TBI transmit AC timing diagram.

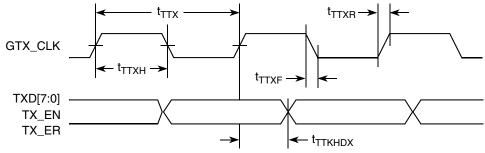


Figure 14. TBI Transmit AC Timing Diagram

8.2.3.2 TBI Receive AC Timing Specifications

Table 30 provides the TBI receive AC timing specifications.

Table 30. TBI Receive AC Timing Specifications

At recommended operating conditions with LV_{DD}/OV_{DD} of 3.3 V ± 10%.

Parameter/Condition	Symbol ¹	Min	Тур	Max	Unit
PMA_RX_CLK clock period	t _{TRX}		16.0		ns
PMA_RX_CLK skew	t _{SKTRX}	7.5		8.5	ns
RX_CLK duty cycle	t _{TRXH} /t _{TRX}	40		60	%

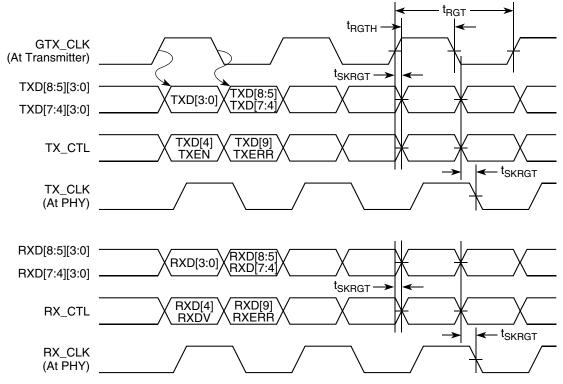


Figure 16 shows the RBMII and RTBI AC timing and multiplexing diagrams.

Figure 16. RGMII and RTBI AC Timing and Multiplexing Diagrams

8.3 Ethernet Management Interface Electrical Characteristics

The electrical characteristics specified here apply to the MII management interface signals management data input/output (MDIO) and management data clock (MDC). The electrical characteristics for GMII, RGMII, TBI and RTBI are specified in Section 8.1, "Three-Speed Ethernet Controller (TSEC)—GMII/MII/TBI/RGMII/RTBI Electrical Characteristics."

8.3.1 MII Management DC Electrical Characteristics

The MDC and MDIO are defined to operate at a supply voltage of 2.5 or 3.3 V. The DC electrical characteristics for MDIO and MDC are provided in Table 32 and Table 33.

Parameter	Symbol	Conditions		Min	Max	Unit
Supply voltage (2.5 V)	LV _{DD}	-	_	2.37	2.63	V
Output high voltage	V _{OH}	$I_{OH} = -1.0 \text{ mA}$	$LV_{DD} = Min$	2.00	LV _{DD} + 0.3	V
Output low voltage	V _{OL}	I _{OL} = 1.0 mA	$LV_{DD} = Min$	GND – 0.3	0.40	V
Input high voltage	V _{IH}	—	$LV_{DD} = Min$	1.7	—	V
Input low voltage	V _{IL}	—	$LV_{DD} = Min$	-0.3	0.70	V

Local Bus

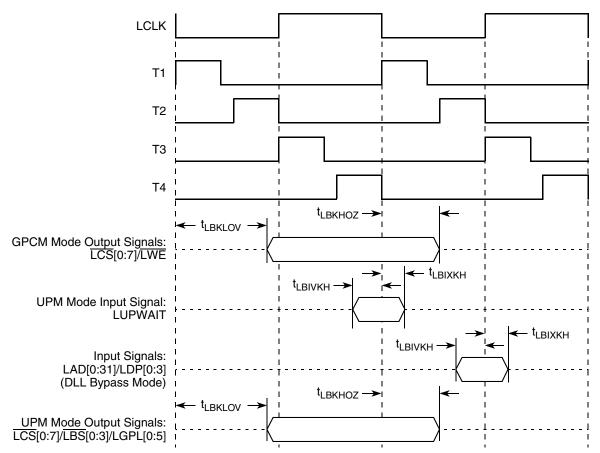


Figure 25. Local Bus Signals, GPCM/UPM Signals for LCCR[CLKDIV] = 4 (DLL Bypass Mode)

Parameter	Symbol ¹	Min	Max	Unit
Fall time of both SDA and SCL signals ⁵	t _{I2CF}	_	300	ns
Setup time for STOP condition	t _{I2PVKH}	0.6	—	μS
Bus free time between a STOP and START condition	t _{I2KHDX}	1.3	—	μS
Noise margin at the LOW level for each connected device (including hysteresis)	V _{NL}	$0.1 \times OV_{DD}$	—	V
Noise margin at the HIGH level for each connected device (including hysteresis)	V _{NH}	$0.2 \times OV_{DD}$	_	V

Table 43. I²C AC Electrical Specifications (continued)

Notes:

- 1. The symbols for timing specifications follow the pattern of t_{(first two letters of functional block)(signal)(state)(reference)(state) for inputs and t_{(first two letters of functional block)(reference)(state)(signal)(state)} for outputs. For example, t_{I2DVKH} symbolizes I²C timing (I2) with respect to the time data input signals (D) reach the valid state (V) relative to the t_{I2C} clock reference (K) going to the high (H) state or setup time. Also, t_{I2DVKH} symbolizes I²C timing (I2) for the time that the data with respect to the start condition (S) goes invalid (X) relative to the t_{I2C} clock reference (K) going to the stop condition (P) reaches the valid state (V) relative to the t_{I2C} clock reference (K) going to the high (H) state or setup time. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall).}
- The device provides a hold time of at least 300 ns for the SDA signal (referred to the V_{IH}(min) of the SCL signal) to bridge the undefined region of the falling edge of SCL.
- 3. The maximum t_{I2DVKH} must be met only if the device does not stretch the LOW period (t_{I2CL}) of the SCL signal.
- 4. C_B = capacitance of one bus line in pF.
- 5.) The device does not follow the "I2C-BUS Specifications" version 2.1 regarding the tI2CF AC parameter.

Figure 32 provides the AC test load for the I^2C .

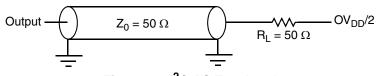


Figure 32. I²C AC Test Load

Figure 33 shows the AC timing diagram for the I^2C bus.

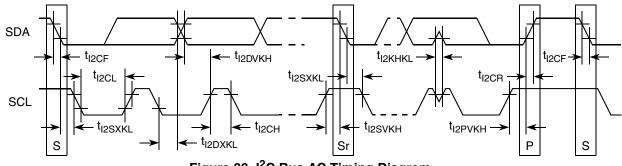


Figure 33. I²C Bus AC Timing Diagram

15.2 GPIO AC Timing Specifications

Table 50 provides the GPIO input and output AC timing specifications.

Table 50	. GPIO	Input AC	Timing	Specifications ¹
----------	--------	----------	--------	-----------------------------

Parameter	Symbol ²	Min	Unit
GPIO inputs—minimum pulse width	t _{PIWID}	20	ns

Notes:

1. Input specifications are measured from the 50 percent level of the signal to the 50 percent level of the rising edge of CLKIN. Timings are measured at the pin.

2. GPIO inputs and outputs are asynchronous to any visible clock. GPIO outputs should be synchronized before use by external synchronous logic. GPIO inputs must be valid for at least t_{PIWID} ns to ensure proper operation.

16 IPIC

This section describes the DC and AC electrical specifications for the external interrupt pins.

16.1 IPIC DC Electrical Characteristics

Table 51 provides the DC electrical characteristics for the external interrupt pins.

Table 51.	IPIC DC	Electrical	Characteristics ¹
-----------	---------	------------	------------------------------

Parameter	Symbol	Condition	Min	Мах	Unit	Notes
Input high voltage	V _{IH}	—	2.0	OV _{DD} + 0.3	V	—
Input low voltage	V _{IL}	_	-0.3	0.8	V	—
Input current	I _{IN}	_	—	±5	μA	—
Output low voltage	V _{OL}	I _{OL} = 8.0 mA	—	0.5	V	2
Output low voltage	V _{OL}	l _{OL} = 3.2 mA	—	0.4	V	2

Notes:

1. This table applies for pins \overline{IRQ} [0:7], \overline{IRQ} _OUT, and \overline{MCP} _OUT.

2. IRQ_OUT and MCP_OUT are open-drain pins; thus VOH is not relevant for those pins.

16.2 IPIC AC Timing Specifications

Table 52 provides the IPIC input and output AC timing specifications.

Table 52. IPIC Input AC Timing Specifications¹

Parameter	Symbol ²	Min	Unit
IPIC inputs—minimum pulse width	t _{PICWID}	20	ns

Notes:

1. Input specifications are measured at the 50 percent level of the IPIC input signals. Timings are measured at the pin.

 IPIC inputs and outputs are asynchronous to any visible clock. IPIC outputs should be synchronized before use by external synchronous logic. IPIC inputs must be valid for at least t_{PICWID} ns to ensure proper operation in edge triggered mode.

Figure 37 provides the AC test load for the SPI.

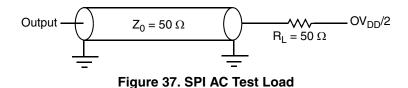
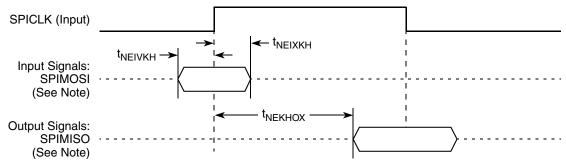



Figure 38 and Figure 39 represent the AC timings from Table 54. Note that although the specifications generally reference the rising edge of the clock, these AC timing diagrams also apply when the falling edge is the active edge.

Figure 38 shows the SPI timings in slave mode (external clock).

Note: The clock edge is selectable on SPI.

Figure 39 shows the SPI timings in master mode (internal clock).

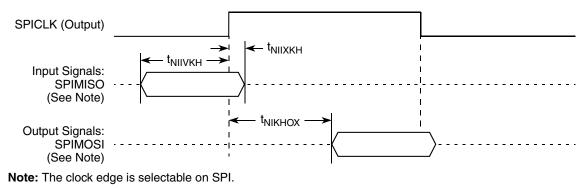


Figure 39. SPI AC Timing in Master Mode (Internal Clock) Diagram

18 Package and Pin Listings

This section details package parameters, pin assignments, and dimensions. The MPC8349EA is available in a tape ball grid array (TBGA). See Section 18.1, "Package Parameters for the MPC8349EA TBGA" and Section 18.2, "Mechanical Dimensions for the MPC8349EA TBGA.

Package and Pin Listings

Signal	Package Pin Number	Pin Type	Power Supply	Notes		
GND	 A1, A34, C1, C7, C10, C11, C15, C23, C25, C28, D1, D8, D20, D30, E7, E13, E15, E17, E18, E21, E23, E25, E32, F6, F19, F27, F30, F34, G31, H5, J4, J34, K30, L5, M2, M5, M30, M33, N3, N5, P30, R5, R32, T5, T30, U6, U29, U33, V2, V5, V30, W6, W30, Y30, AA2, AA30, AB2, AB6, AB30, AC3, AC6, AD31, AE5, AF2, AF5, AF31, AG30, AG31, AH4, AJ3, AJ19, AJ22, AK7, AK13, AK14, AK16, AK18, AK20, AK25, AK28, AL3, AL5, AL10, AL12, AL22, AL27, AM1, AM6, AM7, AN12, AN17, AN34, AP1, AP8, AP34 	D8, D20, D30, E7, E13, E21, E23, E25, E32, F6, 34, G31, H5, J4, J34, K30, b, M33, N3, N5, P30, R5, 5, U29, U33, V2, V5, V30, AA2, AA30, AB2, AB6, 5, AD31, AE5, AF2, AF5, AG31, AH4, AJ3, AJ19, 13, AK14, AK16, AK18, AK28, AL3, AL5, AL10, JL27, AM1, AM6, AM7,				
GV _{DD}	A2, E2, G5, G6, J5, K4, K5, L4, N4, P5, R6, T6, U5, V1, W5, Y5, AA4, AB3, AC4, AD5, AF3, AG5, AH2, AH5, AH6, AJ6, AK6, AK8, AK9, AL6	Power for DDR DRAM I/O voltage (2.5 V) GV _{DD}		—		
LV _{DD1}	C9, D11	Power for three speed Ethernet #1 and for Ethernet management interface I/O (2.5 V, 3.3 V)	LV _{DD1}	_		
LV _{DD2}	C6, D9	Power for three speed Ethernet #2 I/O (2.5 V, 3.3 V)	LV _{DD2}	_		
V _{DD}	E19, E29, F7, F9, F11, F13, F15, F17, F18, F21, F23, F25, F29, H29, J6, K29, M29, N6, P29, T29, U30, V6, V29, W29, AB29, AC5, AD29, AF6, AF29, AH29, AJ8, AJ12, AJ14, AJ16, AJ18, AJ20, AJ21, AJ23, AJ25, AJ26, AJ27, AJ28, AJ29, AK10	Power for core (1.2 V nominal, 1.3 V for 667 MHz)	V _{DD}			
OV _{DD}	B22, B28, C16, C17, C24, C26, D13, D15, D19, D29, E31, F28, G33, H30, L29, L32, N32, P31, R31, U32, W31, Y29, AA29, AC30, AE31, AF30, AG29, AJ17, AJ30, AK11, AL15, AL19, AL21, AL29, AL30, AM20, AM23, AM24, AM26, AM28, AN11, AN13	PCI, 10/100 Ethernet, and other standard (3.3 V)	OV _{DD}	_		
MVREF1	МЗ		DDR reference voltage			

Table 55. MPC8349EA (TBGA) Pinout Listing (continued)

19.3 Suggested PLL Configurations

Table 62 shows suggested PLL configurations for 33 and 66 MHz input clocks.

Table 62. Suggested	PLL Configurations
---------------------	--------------------

	RCWL		400 MHz Device		533 MHz Device			667 MHz Device			
Ref No. ¹	SPMF	CORE PLL	Input Clock Freq (MHz) ²	CSB Freq (MHz)	Core Freq (MHz)	Input Clock Freq (MHz) ²	CSB Freq (MHz)	Core Freq (MHz)	Input Clock Freq (MHz) ²	CSB Freq (MHz)	Core Freq (MHz)
				33 N	/Hz CLKIN	/PCI_CLK	Options				
922	1001	0100010	—	_	—	—	—	f300	33	300	300
723	0111	0100011	33	233	350	33	233	350	33	233	350
604	0110	0000100	33	200	400	33	200	400	33	200	400
624	0110	0100100	33	200	400	33	200	400	33	200	400
803	1000	0000011	33	266	400	33	266	400	33	266	400
823	1000	0100011	33	266	400	33	266	400	33	266	400
903	1001	0000011		_		33	300	450	33	300	450
923	1001	0100011	—		33	300	450	33	300	450	
704	0111	0000011				33	233	466	33	233	466
724	0111	0100011	—			33	233	466	33	233	466
A03	1010	0000011	—			33	333	500	33	333	500
804	1000	0000100	—		33	266	533	33	266	533	
705	0111	0000101	—		—		33	233	583		
606	0110	0000110	—		—		33	200	600		
904	1001	0000100	—		—		33	300	600		
805	1000	0000101			—		33	266	667		
A04	1010	0000100		_			_		33	333	667
	66 MHz CLKIN/PCI_CLK Options										
304	0011	0000100	66	200	400	66	200	400	66	200	400
324	0011	0100100	66	200	400	66	200	400	66	200	400
403	0100	0000011	66	266	400	66	266	400	66	266	400
423	0100	0100011	66	266	400	66	266	400	66	266	400
305	0011	0000101	—			66	200	500	66	200	500
503	0101	0000011	—		66	333	500	66	333	500	
404	0100	0000100	—		66	266	533	66	266	533	

where:

 $R_{\theta JA}$ = junction-to-ambient thermal resistance (°C/W)

 $R_{\theta JC}$ = junction-to-case thermal resistance (°C/W)

 $R_{\theta CA}$ = case-to-ambient thermal resistance (°C/W)

 $R_{\theta JC}$ is device-related and cannot be influenced by the user. The user controls the thermal environment to change the case-to-ambient thermal resistance, $R_{\theta CA}$. For instance, the user can change the size of the heat sink, the air flow around the device, the interface material, the mounting arrangement on printed-circuit board, or change the thermal dissipation on the printed-circuit board surrounding the device.

The thermal performance of devices with heat sinks has been simulated with a few commercially available heat sinks. The heat sink choice is determined by the application environment (temperature, air flow, adjacent component power dissipation) and the physical space available. Because there is not a standard application environment, a standard heat sink is not required.

Table 64 shows heat sink thermal resistance for TBGA of the MPC8349EA.

Heat Sink Assuming Thermal Crasse	Air Flow	35 × 35 mm TBGA		
Heat Sink Assuming Thermal Grease		Thermal Resistance		
AAVID $30 \times 30 \times 9.4$ mm pin fin	Natural convection	10		
AAVID $30 \times 30 \times 9.4$ mm pin fin	1 m/s	6.5		
AAVID $30 \times 30 \times 9.4$ mm pin fin	2 m/s	5.6		
AAVID 31 \times 35 \times 23 mm pin fin	Natural convection	8.4		
AAVID 31 \times 35 \times 23 mm pin fin	1 m/s	4.7		
AAVID 31 \times 35 \times 23 mm pin fin	2 m/s	4		
Wakefield, $53 \times 53 \times 25$ mm pin fin	Natural convection	5.7		
Wakefield, $53 \times 53 \times 25$ mm pin fin	1 m/s	3.5		
Wakefield, $53 \times 53 \times 25$ mm pin fin	2 m/s	2.7		
MEI, $75 \times 85 \times 12$ no adjacent board, extrusion	Natural convection	6.7		
MEI, 75 \times 85 \times 12 no adjacent board, extrusion	1 m/s	4.1		
MEI, $75 \times 85 \times 12$ no adjacent board, extrusion	2 m/s	2.8		
MEI, $75 \times 85 \times 12$ mm, adjacent board, 40 mm side bypass	1 m/s	3.1		

Table 64. Heat Sink and Thermal Resistance of MPC8349EA (TBGA)

Accurate thermal design requires thermal modeling of the application environment using computational fluid dynamics software which can model both the conduction cooling and the convection cooling of the air moving through the application. Simplified thermal models of the packages can be assembled using the junction-to-case and junction-to-board thermal resistances listed in the thermal resistance table. More detailed thermal models can be made available on request.