# E·XFL

### NXP USA Inc. - KMPC8349EVVAJFB Datasheet



#### Welcome to E-XFL.COM

#### **Understanding Embedded - Microprocessors**

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

#### Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

#### Details

| Product Status                  | Obsolete                                                                |
|---------------------------------|-------------------------------------------------------------------------|
| Core Processor                  | PowerPC e300                                                            |
| Number of Cores/Bus Width       | 1 Core, 32-Bit                                                          |
| Speed                           | 533MHz                                                                  |
| Co-Processors/DSP               | Security; SEC                                                           |
| RAM Controllers                 | DDR, DDR2                                                               |
| Graphics Acceleration           | No                                                                      |
| Display & Interface Controllers | -                                                                       |
| Ethernet                        | 10/100/1000Mbps (2)                                                     |
| SATA                            | -                                                                       |
| USB                             | USB 2.0 + PHY (2)                                                       |
| Voltage - I/O                   | 1.8V, 2.5V, 3.3V                                                        |
| Operating Temperature           | 0°C ~ 105°C (TA)                                                        |
| Security Features               | Cryptography, Random Number Generator                                   |
| Package / Case                  | 672-LBGA                                                                |
| Supplier Device Package         | 672-LBGA (35x35)                                                        |
| Purchase URL                    | https://www.e-xfl.com/product-detail/nxp-semiconductors/kmpc8349evvajfb |
|                                 |                                                                         |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

# NOTE

The information in this document is accurate for revision 3.x silicon and later (in other words, for orderable part numbers ending in A or B). For information on revision 1.1 silicon and earlier versions, see the *MPC8349E PowerQUICC II Pro Integrated Host Processor Hardware Specifications*.

See Section 22.1, "Part Numbers Fully Addressed by This Document," for silicon revision level determination.

# 1 Overview

This section provides a high-level overview of the device features. Figure 1 shows the major functional units within the MPC8349EA.



Figure 1. MPC8349EA Block Diagram

Major features of the device are as follows:

- Embedded PowerPC e300 processor core; operates at up to 667 MHz
  - High-performance, superscalar processor core
  - Floating-point, integer, load/store, system register, and branch processing units
  - 32-Kbyte instruction cache, 32-Kbyte data cache
  - Lockable portion of L1 cache
  - Dynamic power management
  - Software-compatible with the other Freescale processor families that implement Power Architecture technology

#### Overview

- On-chip arbitration supporting five masters on PCI1, three masters on PCI2
- Accesses to all PCI address spaces
- Parity supported
- Selectable hardware-enforced coherency
- Address translation units for address mapping between host and peripheral
- Dual address cycle for target
- Internal configuration registers accessible from PCI
- Security engine is optimized to handle all the algorithms associated with IPSec, SSL/TLS, SRTP, IEEE Std. 802.11i<sup>®</sup>, iSCSI, and IKE processing. The security engine contains four crypto-channels, a controller, and a set of crypto execution units (EUs):
  - Public key execution unit (PKEU) :
    - RSA and Diffie-Hellman algorithms
    - Programmable field size up to 2048 bits
    - Elliptic curve cryptography
    - F2m and F(p) modes
    - Programmable field size up to 511 bits
  - Data encryption standard (DES) execution unit (DEU)
    - DES and 3DES algorithms
    - Two key (K1, K2) or three key (K1, K2, K3) for 3DES
    - ECB and CBC modes for both DES and 3DES
  - Advanced encryption standard unit (AESU)
    - Implements the Rijndael symmetric-key cipher
    - Key lengths of 128, 192, and 256 bits
    - ECB, CBC, CCM, and counter (CTR) modes
  - XOR parity generation accelerator for RAID applications
  - ARC four execution unit (AFEU)
    - Stream cipher compatible with the RC4 algorithm
    - 40- to 128-bit programmable key
  - Message digest execution unit (MDEU)
    - SHA with 160-, 224-, or 256-bit message digest
    - MD5 with 128-bit message digest
    - HMAC with either algorithm
  - Random number generator (RNG)
  - Four crypto-channels, each supporting multi-command descriptor chains
    - Static and/or dynamic assignment of crypto-execution units through an integrated controller
    - Buffer size of 256 bytes for each execution unit, with flow control for large data sizes
- Universal serial bus (USB) dual role controller
  - USB on-the-go mode with both device and host functionality

- Complies with USB specification Rev. 2.0
- Can operate as a stand-alone USB device
  - One upstream facing port
  - Six programmable USB endpoints
- Can operate as a stand-alone USB host controller
  - USB root hub with one downstream-facing port
  - Enhanced host controller interface (EHCI) compatible
  - High-speed (480 Mbps), full-speed (12 Mbps), and low-speed (1.5 Mbps) operations
- External PHY with UTMI, serial and UTMI+ low-pin interface (ULPI)
- Universal serial bus (USB) multi-port host controller
  - Can operate as a stand-alone USB host controller
    - USB root hub with one or two downstream-facing ports
    - Enhanced host controller interface (EHCI) compatible
    - Complies with USB Specification Rev. 2.0
  - High-speed (480 Mbps), full-speed (12 Mbps), and low-speed (1.5 Mbps) operations
  - Direct connection to a high-speed device without an external hub
  - External PHY with serial and low-pin count (ULPI) interfaces
- Local bus controller (LBC)
  - Multiplexed 32-bit address and data operating at up to 133 MHz
  - Eight chip selects for eight external slaves
  - Up to eight-beat burst transfers
  - 32-, 16-, and 8-bit port sizes controlled by an on-chip memory controller
  - Three protocol engines on a per chip select basis:
    - General-purpose chip select machine (GPCM)
    - Three user-programmable machines (UPMs)
    - Dedicated single data rate SDRAM controller
  - Parity support
  - Default boot ROM chip select with configurable bus width (8-, 16-, or 32-bit)
- Programmable interrupt controller (PIC)
  - Functional and programming compatibility with the MPC8260 interrupt controller
  - Support for 8 external and 35 internal discrete interrupt sources
  - Support for 1 external (optional) and 7 internal machine checkstop interrupt sources
  - Programmable highest priority request
  - Four groups of interrupts with programmable priority
  - External and internal interrupts directed to host processor
  - Redirects interrupts to external INTA pin in core disable mode.
  - Unique vector number for each interrupt source

# 2.1.1 Absolute Maximum Ratings

Table 1 provides the absolute maximum ratings.

| Table 1. Absolute Maximum Ratings | s <sup>1</sup> |
|-----------------------------------|----------------|
|-----------------------------------|----------------|

|                                                                                              | Parameter                                                                                        | Symbol            | Max Value                                                | Unit | Notes |
|----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-------------------|----------------------------------------------------------|------|-------|
| Core supply voltage                                                                          |                                                                                                  | V <sub>DD</sub>   | –0.3 to 1.32 (1.36 max<br>for 667-MHz core<br>frequency) | V    | _     |
| PLL supply voltage                                                                           |                                                                                                  | AV <sub>DD</sub>  | -0.3 to 1.32 (1.36 max<br>for 667-MHz core<br>frequency) | V    | —     |
| DDR and DDR2 DRAM I/O voltage                                                                |                                                                                                  | GV <sub>DD</sub>  | GV <sub>DD</sub> -0.3 to 2.75<br>-0.3 to 1.98            |      | —     |
| Three-speed Ethernet I/O, MII management voltage                                             |                                                                                                  | LV <sub>DD</sub>  | -0.3 to 3.63                                             | V    | —     |
| PCI, local bus, DUART, system control and power management, $\rm I^2C,$ and JTAG I/O voltage |                                                                                                  | OV <sub>DD</sub>  | -0.3 to 3.63                                             | V    | —     |
| Input voltage                                                                                | DDR DRAM signals                                                                                 | MV <sub>IN</sub>  | –0.3 to (GV <sub>DD</sub> + 0.3)                         | V    | 2, 5  |
|                                                                                              | DDR DRAM reference                                                                               | MV <sub>REF</sub> | –0.3 to (GV <sub>DD</sub> + 0.3)                         | V    | 2, 5  |
|                                                                                              | Three-speed Ethernet signals                                                                     | LV <sub>IN</sub>  | -0.3 to (LV <sub>DD</sub> + 0.3)                         | V    | 4, 5  |
|                                                                                              | Local bus, DUART, CLKIN, system control and power management, I <sup>2</sup> C, and JTAG signals | OV <sub>IN</sub>  | -0.3 to (OV <sub>DD</sub> + 0.3)                         | V    | 3, 5  |
|                                                                                              | PCI                                                                                              | OV <sub>IN</sub>  | -0.3 to (OV <sub>DD</sub> + 0.3)                         | V    | 6     |
| Storage temperature range                                                                    |                                                                                                  | T <sub>STG</sub>  | -55 to 150                                               | °C   | —     |

Notes:

<sup>1</sup> Functional and tested operating conditions are given in Table 2. Absolute maximum ratings are stress ratings only, and functional operation at the maximums is not guaranteed. Stresses beyond those listed may affect device reliability or cause permanent damage to the device.

- <sup>2</sup> Caution: MV<sub>IN</sub> must not exceed GV<sub>DD</sub> by more than 0.3 V. This limit can be exceeded for a maximum of 20 ms during power-on reset and power-down sequences.
- <sup>3</sup> **Caution:** OV<sub>IN</sub> must not exceed OV<sub>DD</sub> by more than 0.3 V. This limit can be exceeded for a maximum of 20 ms during power-on reset and power-down sequences.
- <sup>4</sup> **Caution:** LV<sub>IN</sub> must not exceed LV<sub>DD</sub> by more than 0.3 V. This limit can be exceeded for a maximum of 20 ms during power-on reset and power-down sequences.
- <sup>5</sup> (M,L,O)V<sub>IN</sub> and MV<sub>REF</sub> may overshoot/undershoot to a voltage and for a maximum duration as shown in Figure 2.
- 6 OVIN on the PCI interface can overshoot/undershoot according to the PCI Electrical Specification for 3.3-V operation, as shown in Figure 3.

Figure 3 shows the undershoot and overshoot voltage of the PCI interface of the MPC8349EA for the 3.3-V signals, respectively.



Figure 3. Maximum AC Waveforms on PCI Interface for 3.3-V Signaling

# 2.1.3 Output Driver Characteristics

Table 3 provides information on the characteristics of the output driver strengths. The values are preliminary estimates.

| Driver Type                                        | Output Impedance<br>(Ω)       | Supply<br>Voltage                                         |
|----------------------------------------------------|-------------------------------|-----------------------------------------------------------|
| Local bus interface utilities signals              | 40                            | OV <sub>DD</sub> = 3.3 V                                  |
| PCI signals (not including PCI output clocks)      | 25                            |                                                           |
| PCI output clocks (including PCI_SYNC_OUT)         | 40                            |                                                           |
| DDR signal                                         | 18                            | GV <sub>DD</sub> = 2.5 V                                  |
| DDR2 signal                                        | 18<br>36 (half-strength mode) | GV <sub>DD</sub> = 1.8 V                                  |
| TSEC/10/100 signals                                | 40                            | LV <sub>DD</sub> = 2.5/3.3 V                              |
| DUART, system control, I <sup>2</sup> C, JTAG, USB | 40                            | OV <sub>DD</sub> = 3.3 V                                  |
| GPIO signals                                       | 40                            | OV <sub>DD</sub> = 3.3 V,<br>LV <sub>DD</sub> = 2.5/3.3 V |

Table 3. Output Drive Capability

# 2.2 **Power Sequencing**

This section details the power sequencing considerations for the MPC8349EA.

# 2.2.1 Power-Up Sequencing

MPC8349EA does not require the core supply voltage ( $V_{DD}$  and  $AV_{DD}$ ) and I/O supply voltages ( $GV_{DD}$ ,  $LV_{DD}$ , and  $OV_{DD}$ ) to be applied in any particular order. During the power ramp up, before the power

| Table 21. DUART DC Electrical Characteristics (continue | ed) |
|---------------------------------------------------------|-----|
|---------------------------------------------------------|-----|

| Parameter                                          | Symbol          | Min                    | Мах | Unit |
|----------------------------------------------------|-----------------|------------------------|-----|------|
| High-level output voltage, $I_{OH} = -100 \ \mu A$ | V <sub>OH</sub> | OV <sub>DD</sub> - 0.2 | _   | V    |
| Low-level output voltage, $I_{OL} = 100 \ \mu A$   | V <sub>OL</sub> | —                      | 0.2 | V    |

# 7.2 DUART AC Electrical Specifications

Table 22 provides the AC timing parameters for the DUART interface of the MPC8349EA.

Table 22. DUART AC Timing Specifications

| Parameter         | Value       | Unit | Notes |
|-------------------|-------------|------|-------|
| Minimum baud rate | 256         | baud | _     |
| Maximum baud rate | > 1,000,000 | baud | 1     |
| Oversample rate   | 16          |      | 2     |

Notes:

1. Actual attainable baud rate will be limited by the latency of interrupt processing.

2. The middle of a start bit is detected as the 8<sup>th</sup> sampled 0 after the 1-to-0 transition of the start bit. Subsequent bit values are sampled each 16<sup>th</sup> sample.

# 8 Ethernet: Three-Speed Ethernet, MII Management

This section provides the AC and DC electrical characteristics for three-speeds (10/100/1000 Mbps) and MII management.

# 8.1 Three-Speed Ethernet Controller (TSEC)—GMII/MII/TBI/RGMII/RTBI Electrical Characteristics

The electrical characteristics specified here apply to gigabit media independent interface (GMII), the media independent interface (MII), ten-bit interface (TBI), reduced gigabit media independent interface (RGMII), and reduced ten-bit interface (RTBI) signals except management data input/output (MDIO) and management data clock (MDC). The MII, GMII, and TBI interfaces are defined for 3.3 V, and the RGMII and RTBI interfaces are defined for 2.5 V. The RGMII and RTBI interfaces follow the Hewlett-Packard *Reduced Pin-Count Interface for Gigabit Ethernet Physical Layer Device Specification*, Version 1.2a (9/22/2000). The electrical characteristics for MDIO and MDC are specified in Section 8.3, "Ethernet Management Interface Electrical Characteristics."

# 8.2.3.1 TBI Transmit AC Timing Specifications

Table 29 provides the TBI transmit AC timing specifications.

### Table 29. TBI Transmit AC Timing Specifications

At recommended operating conditions with  $LV_{DD}/OV_{DD}$  of 3.3 V ± 10%.

| Parameter/Condition                              | Symbol <sup>1</sup>                 | Min | Тур | Max | Unit |
|--------------------------------------------------|-------------------------------------|-----|-----|-----|------|
| GTX_CLK clock period                             | t <sub>TTX</sub>                    | —   | 8.0 | —   | ns   |
| GTX_CLK duty cycle                               | t <sub>TTXH</sub> /t <sub>TTX</sub> | 40  | _   | 60  | %    |
| GTX_CLK to TBI data TXD[7:0], TX_ER, TX_EN delay | t <sub>TTKHDX</sub>                 | 1.0 | _   | 5.0 | ns   |
| GTX_CLK clock rise (20%–80%)                     | t <sub>TTXR</sub>                   | _   | _   | 1.0 | ns   |
| GTX_CLK clock fall time (80%–20%)                | t <sub>TTXF</sub>                   | —   |     | 1.0 | ns   |

#### Notes:

1. The symbols for timing specifications follow the pattern of t<sub>(first two letters of functional block)(signal)(state)(reference)(state) for inputs and t<sub>(first two letters of functional block)(reference)(state)(signal)(state)</sub> for outputs. For example, t<sub>TTKHDV</sub> symbolizes the TBI transmit timing (TT) with respect to the time from t<sub>TTX</sub> (K) going high (H) until the referenced data signals (D) reach the valid state (V) or setup time. Also, t<sub>TTKHDX</sub> symbolizes the TBI transmit timing (TT) with respect to the time from t<sub>TTX</sub> (K) going high (H) until the referenced data signals (D) reach the valid state (V) or setup time. Also, t<sub>TTKHDX</sub> symbolizes the TBI transmit timing (TT) with respect to the time from t<sub>TTX</sub> (K) going high (H) until the referenced data signals (D) reach the invalid state (X) or hold time. In general, the clock reference symbol is based on three letters representing the clock of a particular function. For example, the subscript of t<sub>TTX</sub> represents the TBI (T) transmit (TX) clock. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall).</sub>

### Figure 14 shows the TBI transmit AC timing diagram.



Figure 14. TBI Transmit AC Timing Diagram

# 8.2.3.2 TBI Receive AC Timing Specifications

Table 30 provides the TBI receive AC timing specifications.

### Table 30. TBI Receive AC Timing Specifications

At recommended operating conditions with  $LV_{DD}/OV_{DD}$  of 3.3 V ± 10%.

| Parameter/Condition     | Symbol <sup>1</sup>                 | Min | Тур  | Max | Unit |
|-------------------------|-------------------------------------|-----|------|-----|------|
| PMA_RX_CLK clock period | t <sub>TRX</sub>                    |     | 16.0 |     | ns   |
| PMA_RX_CLK skew         | t <sub>SKTRX</sub>                  | 7.5 |      | 8.5 | ns   |
| RX_CLK duty cycle       | t <sub>TRXH</sub> /t <sub>TRX</sub> | 40  |      | 60  | %    |

### Table 30. TBI Receive AC Timing Specifications (continued)

At recommended operating conditions with  $LV_{DD}/OV_{DD}$  of 3.3 V ± 10%.

| Parameter/Condition                                               | Symbol <sup>1</sup>              | Min | Тур | Max | Unit |
|-------------------------------------------------------------------|----------------------------------|-----|-----|-----|------|
| RXD[7:0], RX_DV, RX_ER (RCG[9:0]) setup time to rising PMA_RX_CLK | t <sub>TRDVKH</sub> <sup>2</sup> | 2.5 | —   | —   | ns   |
| RXD[7:0], RX_DV, RX_ER (RCG[9:0]) hold time to rising PMA_RX_CLK  | t <sub>TRDXKH</sub> <sup>2</sup> | 1.5 | —   | —   | ns   |
| RX_CLK clock rise time (20%–80%)                                  | t <sub>TRXR</sub>                | 0.7 | —   | 2.4 | ns   |
| RX_CLK clock fall time (80%–20%)                                  | t <sub>TRXF</sub>                | 0.7 | —   | 2.4 | ns   |

Notes:

The symbols for timing specifications follow the pattern of t<sub>(first two letters of functional block)(signal)(state)(reference)(state) for inputs and t<sub>(first two letters of functional block)(reference)(state)(signal)(state)</sub> for outputs. For example, t<sub>TRDVKH</sub> symbolizes TBI receive timing (TR) with respect to the time data input signals (D) reach the valid state (V) relative to the t<sub>TRX</sub> clock reference (K) going to the high (H) state or setup time. Also, t<sub>TRDXKH</sub> symbolizes TBI receive timing (TR) with respect to the time data input signals (D) went invalid (X) relative to the t<sub>TRX</sub> clock reference (K) going to the high (H) state. In general, the clock reference symbol is based on three letters representing the clock of a particular function. For example, the subscript of t<sub>TRX</sub> represents the TBI (T) receive (RX) clock. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall). For symbols representing skews, the subscript SK followed by the clock that is being skewed (TRX).
</sub>

2. Setup and hold time of even numbered RCG are measured from the riding edge of PMA\_RX\_CLK1. Setup and hold times of odd-numbered RCG are measured from the riding edge of PMA\_RX\_CLK0.

### Figure 15 shows the TBI receive AC timing diagram.



Figure 15. TBI Receive AC Timing Diagram

# 10.2 Local Bus AC Electrical Specification

Table 38 and Table 39 describe the general timing parameters of the local bus interface of the MPC8349EA.

| Parameter                                                   | Symbol <sup>1</sup>  | Min | Max | Unit | Notes |
|-------------------------------------------------------------|----------------------|-----|-----|------|-------|
| Local bus cycle time                                        | t <sub>LBK</sub>     | 7.5 | —   | ns   | 2     |
| Input setup to local bus clock (except LUPWAIT)             | t <sub>LBIVKH1</sub> | 1.5 | —   | ns   | 3, 4  |
| LUPWAIT input setup to local bus clock                      | t <sub>LBIVKH2</sub> | 2.2 | —   | ns   | 3, 4  |
| Input hold from local bus clock (except LUPWAIT)            | t <sub>LBIXKH1</sub> | 1.0 | —   | ns   | 3, 4  |
| LUPWAIT Input hold from local bus clock                     | t <sub>LBIXKH2</sub> | 1.0 | —   | ns   | 3, 4  |
| LALE output fall to LAD output transition (LATCH hold time) | t <sub>LBOTOT1</sub> | 1.5 | —   | ns   | 5     |
| LALE output fall to LAD output transition (LATCH hold time) | t <sub>LBOTOT2</sub> | 3   | —   | ns   | 6     |
| LALE output fall to LAD output transition (LATCH hold time) | t <sub>LBOTOT3</sub> | 2.5 | —   | ns   | 7     |
| Local bus clock to LALE rise                                | t <sub>LBKHLR</sub>  | —   | 4.5 | ns   | _     |
| Local bus clock to output valid (except LAD/LDP and LALE)   | t <sub>LBKHOV1</sub> | —   | 4.5 | ns   | _     |
| Local bus clock to data valid for LAD/LDP                   | t <sub>LBKHOV2</sub> | —   | 4.5 | ns   | 3     |
| Local bus clock to address valid for LAD                    | t <sub>LBKHOV3</sub> | —   | 4.5 | ns   | 3     |
| Output hold from local bus clock (except LAD/LDP and LALE)  | t <sub>LBKHOX1</sub> | 1   | —   | ns   | 3     |
| Output hold from local bus clock for LAD/LDP                | t <sub>LBKHOX2</sub> | 1   | —   | ns   | 3     |
| Local bus clock to output high impedance for LAD/LDP        | t <sub>LBKHOZ</sub>  | —   | 3.8 | ns   | 8     |

#### Notes:

 The symbols for timing specifications follow the pattern of t<sub>(first two letters of functional block)(signal)(state)(reference)(state) for inputs and t<sub>(first two letters of functional block)(reference)(state)(signal)(state)</sub> for outputs. For example, t<sub>LBIXKH1</sub> symbolizes local bus timing (LB) for the input (I) to go invalid (X) with respect to the time the t<sub>LBK</sub> clock reference (K) goes high (H), in this case for clock one (1). Also, t<sub>LBKHOX</sub> symbolizes local bus timing (LB) for the t<sub>LBK</sub> clock reference (K) to go high (H), with respect to the output (O) going invalid (X) or output hold time.
</sub>

- 2. All timings are in reference to the rising edge of LSYNC\_IN.
- 3. All signals are measured from  $OV_{DD}/2$  of the rising edge of LSYNC\_IN to  $0.4 \times OV_{DD}$  of the signal in question for 3.3 V signaling levels.
- 4. Input timings are measured at the pin.
- 5. t<sub>LBOTOT1</sub> should be used when RCWH[LALE] is not set and when the load on the LALE output pin is at least 10 pF less than the load on the LAD output pins.
- 6. t<sub>LBOTOT2</sub> should be used when RCWH[LALE] is set and when the load on the LALE output pin is at least 10 pF less than the load on the LAD output pins.
- 7. t<sub>LBOTOT3</sub> should be used when RCWH[LALE] is set and when the load on the LALE output pin equals the load on the LAD output pins.
- 8. For active/float timing measurements, the Hi-Z or off-state is defined to be when the total current delivered through the component pin is less than or equal to that of the leakage current specification.

#### Local Bus

Figure 21 through Figure 26 show the local bus signals.



Figure 21. Local Bus Signals, Nonspecial Signals Only (DLL Enabled)



Figure 22. Local Bus Signals, Nonspecial Signals Only (DLL Bypass Mode)





Figure 23. Local Bus Signals, GPCM/UPM Signals for LCCR[CLKDIV] = 2 (DLL Enabled)



Figure 24. Local Bus Signals, GPCM/UPM Signals for LCCR[CLKDIV] = 2 (DLL Bypass Mode)

| Table 45. PCI AC Timing Specifications at 66 MHz <sup>1</sup> ( | (continued) |
|-----------------------------------------------------------------|-------------|
|-----------------------------------------------------------------|-------------|

| Parameter                  | Symbol <sup>2</sup> | Min | Мах | Unit | Notes |
|----------------------------|---------------------|-----|-----|------|-------|
| PORESET to REQ64 hold time | t <sub>PCRHRX</sub> | 0   | 50  | ns   | 6     |

Notes:

- 1. PCI timing depends on M66EN and the ratio between PCI1/PCI2. Refer to the PCI chapter of the reference manual for a description of M66EN.
- 2. The symbols for timing specifications follow the pattern of t<sub>(first two letters of functional block)(signal)(state)(reference)(state) for inputs and t<sub>(first two letters of functional block)</sub>(reference)(state)(signal)(state) for outputs. For example, t<sub>PCIVKH</sub> symbolizes PCI timing (PC) with respect to the time the input signals (I) reach the valid state (V) relative to the PCI\_SYNC\_IN clock, t<sub>SYS</sub>, reference (K) going to the high (H) state or setup time. Also, t<sub>PCRHFV</sub> symbolizes PCI timing (PC) with respect to the time hard reset (R) went high (H) relative to the frame signal (F) going to the valid (V) state.</sub>
- 3. See the timing measurement conditions in the PCI 2.3 Local Bus Specifications.
- 4. For active/float timing measurements, the Hi-Z or off-state is defined to be when the total current delivered through the component pin is less than or equal to the leakage current specification.
- 5. Input timings are measured at the pin.
- 6. The setup and hold time is with respect to the rising edge of PORESET.

### Table 46 provides the PCI AC timing specifications at 33 MHz.

#### Table 46. PCI AC Timing Specifications at 33 MHz

| Parameter                      | Symbol <sup>1</sup> | Min | Мах | Unit   | Notes |
|--------------------------------|---------------------|-----|-----|--------|-------|
| Clock to output valid          | <sup>t</sup> PCKHOV | —   | 11  | ns     | 2     |
| Output hold from clock         | t <sub>PCKHOX</sub> | 2   | —   | ns     | 2     |
| Clock to output high impedance | t <sub>PCKHOZ</sub> | —   | 14  | ns     | 2, 3  |
| Input setup to clock           | t <sub>PCIVKH</sub> | 3.0 | —   | ns     | 2, 4  |
| Input hold from clock          | t <sub>PCIXKH</sub> | 0   | —   | ns     | 2, 4  |
| REQ64 to PORESET setup time    | t <sub>PCRVRH</sub> | 5   | —   | clocks | 5     |
| PORESET to REQ64 hold time     | t <sub>PCRHRX</sub> | 0   | 50  | ns     | 5     |

Notes:

2. See the timing measurement conditions in the PCI 2.3 Local Bus Specifications.

3. For active/float timing measurements, the Hi-Z or off-state is defined to be when the total current delivered through the component pin is less than or equal to the leakage current specification.

4. Input timings are measured at the pin.

5. The setup and hold time is with respect to the rising edge of PORESET.

The symbols for timing specifications follow the pattern of t<sub>(first two letters of functional block)(signal)(state)(reference)(state) for inputs and t<sub>(first two letters of functional block)</sub>(reference)(state)(signal)(state) for outputs. For example, t<sub>PCIVKH</sub> symbolizes PCI timing (PC) with respect to the time the input signals (I) reach the valid state (V) relative to the PCI\_SYNC\_IN clock, t<sub>SYS</sub>, reference (K) going to the high (H) state or setup time. Also, t<sub>PCRHFV</sub> symbolizes PCI timing (PC) with respect to the time hard reset (R) went high (H) relative to the frame signal (F) going to the valid (V) state.
</sub>

Package and Pin Listings

### Table 55. MPC8349EA (TBGA) Pinout Listing (continued)

| Signal                                 | Package Pin Number                | Pin Type | Power<br>Supply   | Notes |
|----------------------------------------|-----------------------------------|----------|-------------------|-------|
| MPH1_PWRFAULT/<br>DR_RX_ERROR_PWRFAULT | E27                               | 1        | OV <sub>DD</sub>  | —     |
| MPH1_PCTL0/DR_TX_VALID_PCTL0           | A29                               | 0        | OV <sub>DD</sub>  | —     |
| MPH1_PCTL1/DR_TX_VALIDH_PCTL1          | D28                               | 0        | OV <sub>DD</sub>  | —     |
| MPH1_CLK/DR_CLK                        | B29                               | I        | OV <sub>DD</sub>  | —     |
|                                        | USB Port 0                        |          |                   |       |
| MPH0_D0_ENABLEN/<br>DR_D8_CHGVBUS      | C29                               | I/O      | OV <sub>DD</sub>  | _     |
| MPH0_D1_SER_TXD/<br>DR_D9_DCHGVBUS     | A30                               | I/O      | OV <sub>DD</sub>  | —     |
| MPH0_D2_VMO_SE0/DR_D10_DPPD            | E28                               | I/O      | OV <sub>DD</sub>  | —     |
| MPH0_D3_SPEED/DR_D11_DMMD              | B30                               | I/O      | OV <sub>DD</sub>  | —     |
| MPH0_D4_DP/DR_D12_VBUS_VLD             | C30                               | I/O      | OV <sub>DD</sub>  | —     |
| MPH0_D5_DM/DR_D13_SESS_END             | A31                               | I/O      | OV <sub>DD</sub>  | —     |
| MPH0_D6_SER_RCV/DR_D14                 | B31                               | I/O      | OV <sub>DD</sub>  | —     |
| MPH0_D7_DRVVBUS/<br>DR_D15_IDPULLUP    | C31                               | I/O      | OV <sub>DD</sub>  | —     |
| MPH0_NXT/DR_RX_ACTIVE_ID               | B32                               | I        | OV <sub>DD</sub>  | —     |
| MPH0_DIR_DPPULLUP/DR_RESET             | A32                               | I/O      | OV <sub>DD</sub>  | —     |
| MPH0_STP_SUSPEND/<br>DR_TX_READY       | A33                               | I/O      | OV <sub>DD</sub>  | —     |
| MPH0_PWRFAULT/DR_RX_VALIDH             | C32                               | I        | OV <sub>DD</sub>  | —     |
| MPH0_PCTL0/DR_LINE_STATE0              | D31                               | I/O      | OV <sub>DD</sub>  | —     |
| MPH0_PCTL1/DR_LINE_STATE1              | E30                               | I/O      | OV <sub>DD</sub>  | —     |
| MPH0_CLK/DR_RX_VALID                   | B33                               | I        | OV <sub>DD</sub>  | —     |
|                                        | Programmable Interrupt Controller |          |                   |       |
| MCP_OUT                                | AN33                              | 0        | OV <sub>DD</sub>  | 2     |
| IRQ0/MCP_IN/GPIO2[12]                  | C19                               | I/O      | OV <sub>DD</sub>  | —     |
| IRQ[1:5]/GPIO2[13:17]                  | C22, A22, D21, C21, B21           | I/O      | OV <sub>DD</sub>  | —     |
| IRQ[6]/GPIO2[18]/CKSTOP_OUT            | A21                               | I/O      | OV <sub>DD</sub>  | —     |
| IRQ[7]/GPIO2[19]/CKSTOP_IN             | C20                               | I/O      | OV <sub>DD</sub>  | _     |
|                                        | Ethernet Management Interface     |          | 1                 |       |
| EC_MDC                                 | Α7                                | 0        | LV <sub>DD1</sub> | _     |
| EC_MDIO                                | E9                                | I/O      | LV <sub>DD1</sub> | 11    |

Package and Pin Listings

|                    |                          | .g (                                                             |                    | 1     |  |
|--------------------|--------------------------|------------------------------------------------------------------|--------------------|-------|--|
| Signal             | Package Pin Number       | Pin Type                                                         | Power<br>Supply    | Notes |  |
| TDO                | B20                      | 0                                                                | $OV_{DD}$          | 3     |  |
| TMS                | A20                      | I                                                                | $OV_{DD}$          | 4     |  |
| TRST               | B19                      | I                                                                | $OV_{DD}$          | 4     |  |
|                    | Test                     |                                                                  |                    |       |  |
| TEST               | D22                      | I                                                                | $OV_{DD}$          | 6     |  |
| TEST_SEL           | AL13                     | I                                                                | $OV_{DD}$          | 6     |  |
|                    | РМС                      |                                                                  |                    |       |  |
| QUIESCE            | A18                      | 0                                                                | $OV_{DD}$          | _     |  |
|                    | System Control           |                                                                  |                    | •     |  |
| PORESET            | C18                      | I                                                                | $OV_{DD}$          | _     |  |
| HRESET             | B18                      | I/O                                                              | $OV_{DD}$          | 1     |  |
| SRESET             | D18                      | I/O                                                              | $OV_{DD}$          | 2     |  |
|                    | Thermal Management       |                                                                  |                    | •     |  |
| THERM0             | K32                      | I                                                                | _                  | 8     |  |
|                    | Power and Ground Signals |                                                                  |                    |       |  |
| AV <sub>DD</sub> 1 | L31                      | Power for e300<br>PLL (1.2 V<br>nominal, 1.3 V<br>for 667 MHz)   | AV <sub>DD</sub> 1 | —     |  |
| AV <sub>DD</sub> 2 | AP12                     | Power for<br>system PLL (1.2<br>V nominal, 1.3 V<br>for 667 MHz) | AV <sub>DD</sub> 2 | _     |  |
| AV <sub>DD</sub> 3 | AE1                      | Power for DDR<br>DLL (1.2 V<br>nominal, 1.3 V<br>for 667 MHz)    | _                  | _     |  |
| AV <sub>DD</sub> 4 | AJ13                     | Power for LBIU<br>DLL (1.2 V<br>nominal, 1.3 V<br>for 667 MHz)   | AV <sub>DD</sub> 4 | _     |  |

## Table 55. MPC8349EA (TBGA) Pinout Listing (continued)

Package and Pin Listings

| Signal            | Package Pin Number                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Pin Type                                                                                                     | Power<br>Supply             | Notes |
|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|-----------------------------|-------|
| GND               | <ul> <li>A1, A34, C1, C7, C10, C11, C15, C23,<br/>C25, C28, D1, D8, D20, D30, E7, E13,<br/>E15, E17, E18, E21, E23, E25, E32, F6,</li> <li>F19, F27, F30, F34, G31, H5, J4, J34, K30,<br/>L5, M2, M5, M30, M33, N3, N5, P30, R5,</li> <li>R32, T5, T30, U6, U29, U33, V2, V5, V30,<br/>W6, W30, Y30, AA2, AA30, AB2, AB6,</li> <li>AB30, AC3, AC6, AD31, AE5, AF2, AF5,<br/>AF31, AG30, AG31, AH4, AJ3, AJ19,</li> <li>AJ22, AK7, AK13, AK14, AK16, AK18,<br/>AK20, AK25, AK28, AL3, AL5, AL10,<br/>AL12, AL22, AL27, AM1, AM6, AM7,<br/>AN12, AN17, AN34, AP1, AP8, AP34</li> </ul> | _                                                                                                            | _                           | _     |
| GV <sub>DD</sub>  | A2, E2, G5, G6, J5, K4, K5, L4, N4, P5, R6,<br>T6, U5, V1, W5, Y5, AA4, AB3, AC4, AD5,<br>AF3, AG5, AH2, AH5, AH6, AJ6, AK6,<br>AK8, AK9, AL6                                                                                                                                                                                                                                                                                                                                                                                                                                        | Power for DDR<br>DRAM I/O<br>voltage<br>(2.5 V)                                                              | GV <sub>DD</sub>            | —     |
| LV <sub>DD1</sub> | C9, D11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Power for three<br>speed Ethernet<br>#1 and for<br>Ethernet<br>management<br>interface I/O<br>(2.5 V, 3.3 V) | LV <sub>DD1</sub>           | _     |
| LV <sub>DD2</sub> | C6, D9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Power for three<br>speed Ethernet<br>#2 I/O (2.5 V,<br>3.3 V)                                                | LV <sub>DD2</sub>           | _     |
| V <sub>DD</sub>   | E19, E29, F7, F9, F11, F13, F15, F17, F18,<br>F21, F23, F25, F29, H29, J6, K29, M29,<br>N6, P29, T29, U30, V6, V29, W29, AB29,<br>AC5, AD29, AF6, AF29, AH29, AJ8, AJ12,<br>AJ14, AJ16, AJ18, AJ20, AJ21, AJ23,<br>AJ25, AJ26, AJ27, AJ28, AJ29, AK10                                                                                                                                                                                                                                                                                                                                | Power for core<br>(1.2 V nominal,<br>1.3 V for<br>667 MHz)                                                   | V <sub>DD</sub>             |       |
| OV <sub>DD</sub>  | B22, B28, C16, C17, C24, C26, D13, D15,<br>D19, D29, E31, F28, G33, H30, L29, L32,<br>N32, P31, R31, U32, W31, Y29, AA29,<br>AC30, AE31, AF30, AG29, AJ17, AJ30,<br>AK11, AL15, AL19, AL21, AL29, AL30,<br>AM20, AM23, AM24, AM26, AM28, AN11,<br>AN13                                                                                                                                                                                                                                                                                                                               | PCI, 10/100<br>Ethernet, and<br>other standard<br>(3.3 V)                                                    | OV <sub>DD</sub>            | _     |
| MVREF1            | M3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | I                                                                                                            | DDR<br>reference<br>voltage |       |

### Table 55. MPC8349EA (TBGA) Pinout Listing (continued)

|                         | RC   | WL          | 400 MHz Device                               |                      | 533 MHz Device        |                                              |                      | 667 MHz Device        |                                              |                      |                       |
|-------------------------|------|-------------|----------------------------------------------|----------------------|-----------------------|----------------------------------------------|----------------------|-----------------------|----------------------------------------------|----------------------|-----------------------|
| Ref<br>No. <sup>1</sup> | SPMF | CORE<br>PLL | Input<br>Clock<br>Freq<br>(MHz) <sup>2</sup> | CSB<br>Freq<br>(MHz) | Core<br>Freq<br>(MHz) | Input<br>Clock<br>Freq<br>(MHz) <sup>2</sup> | CSB<br>Freq<br>(MHz) | Core<br>Freq<br>(MHz) | Input<br>Clock<br>Freq<br>(MHz) <sup>2</sup> | CSB<br>Freq<br>(MHz) | Core<br>Freq<br>(MHz) |
| 306                     | 0011 | 0000110     |                                              | —                    |                       |                                              | _                    |                       | 66                                           | 200                  | 600                   |
| 405                     | 0100 | 0000101     | _                                            |                      |                       | _                                            |                      | 66                    | 266                                          | 667                  |                       |
| 504                     | 0101 | 0000100     |                                              | _                    |                       |                                              | _                    |                       | 66                                           | 333                  | 667                   |

Table 62. Suggested PLL Configurations (continued)

<sup>1</sup> The PLL configuration reference number is the hexadecimal representation of RCWL, bits 4–15 associated with the SPMF and COREPLL settings given in the table.

<sup>2</sup> The input clock is CLKIN for PCI host mode or PCI\_CLK for PCI agent mode.

# 20 Thermal

This section describes the thermal specifications of the MPC8349EA.

# 20.1 Thermal Characteristics

Table 63 provides the package thermal characteristics for the 672  $35 \times 35$  mm TBGA of the MPC8349EA.

| Table 63. Package Thermal | Characteristics for TBGA |
|---------------------------|--------------------------|
|---------------------------|--------------------------|

| Characteristic                                                    | Symbol               | Value | Unit | Notes |
|-------------------------------------------------------------------|----------------------|-------|------|-------|
| Junction-to-ambient natural convection on single-layer board (1s) | $R_{	ext{	heta}JA}$  | 14    | °C/W | 1, 2  |
| Junction-to-ambient natural convection on four-layer board (2s2p) | $R_{	ext{	heta}JMA}$ | 11    | °C/W | 1, 3  |
| Junction-to-ambient (at 200 ft/min) on single-layer board (1s)    | $R_{	ext{	heta}JMA}$ | 11    | °C/W | 1, 3  |
| Junction-to-ambient (at 200 ft/min) on four-layer board (2s2p)    | $R_{	ext{	heta}JMA}$ | 8     | °C/W | 1, 3  |
| Junction-to-ambient (at 2 m/s) on single-layer board (1s)         | $R_{	ext{	heta}JMA}$ | 9     | °C/W | 1, 3  |
| Junction-to-ambient (at 2 m/s) on four-layer board (2s2p)         | $R_{	ext{	heta}JMA}$ | 7     | °C/W | 1, 3  |
| Junction-to-board thermal                                         | $R_{	hetaJB}$        | 3.8   | °C/W | 4     |
| Junction-to-case thermal                                          | $R_{	ext{	heta}JC}$  | 1.7   | °C/W | 5     |

#### Thermal

(edge) of the package is approximately the same as the local air temperature near the device. Specifying the local ambient conditions explicitly as the board temperature provides a more precise description of the local ambient conditions that determine the temperature of the device.

At a known board temperature, the junction temperature is estimated using the following equation:

 $T_J = T_A + (R_{\theta JA} \times P_D)$ 

where:

 $T_J$  = junction temperature (°C)

 $T_A$  = ambient temperature for the package (°C)

 $R_{\theta JA}$  = junction-to-ambient thermal resistance (°C/W)

 $P_D$  = power dissipation in the package (W)

When the heat loss from the package case to the air can be ignored, acceptable predictions of junction temperature can be made. The application board should be similar to the thermal test condition: the component is soldered to a board with internal planes.

# 20.2.3 Experimental Determination of Junction Temperature

To determine the junction temperature of the device in the application after prototypes are available, use the thermal characterization parameter ( $\Psi_{JT}$ ) to determine the junction temperature and a measure of the temperature at the top center of the package case using the following equation:

$$T_J = T_T + (\Psi_{JT} \times P_D)$$

where:

 $T_J$  = junction temperature (°C)

 $T_T$  = thermocouple temperature on top of package (°C)

 $\Psi_{JT}$  = junction-to-ambient thermal resistance (°C/W)

 $P_D$  = power dissipation in the package (W)

The thermal characterization parameter is measured per the JESD51-2 specification using a 40 gauge type T thermocouple epoxied to the top center of the package case. The thermocouple should be positioned so that the thermocouple junction rests on the package. A small amount of epoxy is placed over the thermocouple junction and over about 1 mm of wire extending from the junction. The thermocouple wire is placed flat against the package case to avoid measurement errors caused by cooling effects of the thermocouple wire.

# 20.2.4 Heat Sinks and Junction-to-Case Thermal Resistance

Some application environments require a heat sink to provide the necessary thermal management of the device. When a heat sink is used, the thermal resistance is expressed as the sum of a junction-to-case thermal resistance and a case-to-ambient thermal resistance:

$$R_{\theta JA} = R_{\theta JC} + R_{\theta CA}$$

#### System Design Information

2. The e300 core PLL generates the core clock as a slave to the platform clock. The frequency ratio between the e300 core clock and the platform clock is selected using the e300 PLL ratio configuration bits as described in Section 19.2, "Core PLL Configuration."

# 21.2 PLL Power Supply Filtering

Each PLL gets power through independent power supply pins ( $AV_{DD}1$ ,  $AV_{DD}2$ , respectively). The  $AV_{DD}$  level should always equal to  $V_{DD}$ , and preferably these voltages are derived directly from  $V_{DD}$  through a low frequency filter scheme.

There are a number of ways to provide power reliably to the PLLs, but the recommended solution is to provide four independent filter circuits as illustrated in Figure 42, one to each of the four  $AV_{DD}$  pins. Independent filters to each PLL reduce the opportunity to cause noise injection from one PLL to the other.

The circuit filters noise in the PLL resonant frequency range from 500 kHz to 10 MHz. It should be built with surface mount capacitors with minimum effective series inductance (ESL). Consistent with the recommendations of Dr. Howard Johnson in *High Speed Digital Design: A Handbook of Black Magic* (Prentice Hall, 1993), multiple small capacitors of equal value are recommended over a single large value capacitor.

To minimize noise coupled from nearby circuits, each circuit should be placed as closely as possible to the specific  $AV_{DD}$  pin being supplied. It should be possible to route directly from the capacitors to the  $AV_{DD}$  pin, which is on the periphery of package, without the inductance of vias.

Figure 42 shows the PLL power supply filter circuit.



Figure 42. PLL Power Supply Filter Circuit

# 21.3 Decoupling Recommendations

Due to large address and data buses and high operating frequencies, the MPC8349EA can generate transient power surges and high frequency noise in its power supply, especially while driving large capacitive loads. This noise must be prevented from reaching other components in the MPC8349EA system, and the device itself requires a clean, tightly regulated source of power. Therefore, the system designer should place at least one decoupling capacitor at each  $V_{DD}$ ,  $OV_{DD}$ ,  $GV_{DD}$ , and  $LV_{DD}$  pin of the device. These capacitors should receive their power from separate  $V_{DD}$ ,  $OV_{DD}$ ,  $GV_{DD}$ ,  $LV_{DD}$ , and GND power planes in the PCB, with short traces to minimize inductance. Capacitors can be placed directly under the device using a standard escape pattern. Others can surround the part.

These capacitors should have a value of 0.01 or 0.1  $\mu$ F. Only ceramic SMT (surface mount technology) capacitors should be used to minimize lead inductance, preferably 0402 or 0603 sizes.

In addition, distribute several bulk storage capacitors around the PCB, feeding the  $V_{DD}$ ,  $OV_{DD}$ ,  $GV_{DD}$ , and  $LV_{DD}$  planes, to enable quick recharging of the smaller chip capacitors. These bulk capacitors should

# 22.1 Part Numbers Fully Addressed by This Document

Table 66 shows an analysis of the Freescale part numbering nomenclature for the MPC8349EA. The individual part numbers correspond to a maximum processor core frequency. Each part number also contains a revision code that refers to the die mask revision number. For available frequency configuration parts including extended temperatures, refer to the device product summary page on our website listed on the back cover of this document or, contact your local Freescale sales office.

| MPC             | nnnn               | е                                       | t                                      | рр                            | aa                                                     | а                               | r                 |
|-----------------|--------------------|-----------------------------------------|----------------------------------------|-------------------------------|--------------------------------------------------------|---------------------------------|-------------------|
| Product<br>Code | Part<br>Identifier | Encryption<br>Acceleration              | Temperature <sup>1</sup><br>Range      | Package <sup>2</sup>          | Processor<br>Frequency <sup>3</sup>                    | Platform<br>Frequency           | Revision<br>Level |
| MPC             | 8349               | Blank = Not<br>included<br>E = included | Blank = 0 to 105°C<br>C = -40 to 105°C | ZU =TBGA<br>VV = PB free TBGA | e300 core<br>speed<br>AG = 400<br>AJ = 533<br>AL = 667 | D = 266<br>F = 333 <sup>4</sup> | B = 3.1           |

### Table 66. Part Numbering Nomenclature

Notes:

1. For temperature range = C, processor frequency is limited to with a platform frequency of 266 and up to 533 with a platform frequency of 333

2. See Section 18, "Package and Pin Listings," for more information on available package types.

- Processor core frequencies supported by parts addressed by this specification only. Not all parts described in this specification support all core frequencies. Additionally, parts addressed by Part Number Specifications may support other maximum core frequencies.
- 4. ALF marked parts support DDR1 data rate up to 333 MHz (at 333 MHz CSB as the 'F' marking implies) and DDR2 data rate up to 400 MHz (at 200 MHz CSB). AJF marked parts support DDR1 and DDR2 data rate up to 333 MHz (at a CSB of 333 MHz).

Table 67 shows the SVR settings by device and package type.

#### Table 67. SVR Settings

| Device    | Package        | SVR (Rev. 3.0) |
|-----------|----------------|----------------|
| MPC8349EA | TBGA 8050_0030 |                |
| MPC8349A  | TBGA           | 8051_0030      |

#### How to Reach Us:

Home Page: www.freescale.com

Web Support: http://www.freescale.com/support

#### **USA/Europe or Locations Not Listed:**

Freescale Semiconductor, Inc. Technical Information Center, EL516 2100 East Elliot Road Tempe, Arizona 85284 1-800-521-6274 or +1-480-768-2130 www.freescale.com/support

#### Europe, Middle East, and Africa:

Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) www.freescale.com/support

#### Japan:

Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku Tokyo 153-0064 Japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com

#### Asia/Pacific:

Freescale Semiconductor China Ltd. Exchange Building 23F No. 118 Jianguo Road Chaoyang District Beijing 100022 China +86 10 5879 8000 support.asia@freescale.com

#### For Literature Requests Only:

Freescale Semiconductor Literature Distribution Center 1-800 441-2447 or +1-303-675-2140 Fax: +1-303-675-2150 LDCForFreescaleSemiconductor @hibbertgroup.com Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.

Freescale, the Freescale logo and PowerQUICC are trademarks of Freescale Semiconductor, Inc. Reg. U.S. Pat. & Tm. Off. The Power Architecture and Power.org word marks and the Power and Power.org logos and related marks are trademarks and service marks licensed by Power.org.

© 2006–2011 Freescale Semiconductor, Inc.

Document Number: MPC8349EAEC Rev. 13 09/2011



