E·XFL

NXP USA Inc. - MPC8349CVVAGDB Datasheet

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

Product Status	Obsolete
Core Processor	PowerPC e300
Number of Cores/Bus Width	1 Core, 32-Bit
Speed	400MHz
Co-Processors/DSP	·
RAM Controllers	DDR, DDR2
Graphics Acceleration	No
Display & Interface Controllers	·
Ethernet	10/100/1000Mbps (2)
SATA	·
USB	USB 2.0 + PHY (2)
Voltage - I/O	1.8V, 2.5V, 3.3V
Operating Temperature	-40°C ~ 105°C (TA)
Security Features	-
Package / Case	672-LBGA
Supplier Device Package	672-LBGA (35x35)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mpc8349cvvagdb

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

- Double data rate, DDR1/DDR2 SDRAM memory controller
 - Programmable timing supporting DDR1 and DDR2 SDRAM
 - 32- or 64-bit data interface, up to 400 MHz data rate
 - Up to four physical banks (chip selects), each bank up to 1 Gbyte independently addressable
 - DRAM chip configurations from 64 Mbits to 1 Gbit with $\times 8/\times 16$ data ports
 - Full error checking and correction (ECC) support
 - Support for up to 16 simultaneous open pages (up to 32 pages for DDR2)
 - Contiguous or discontiguous memory mapping
 - Read-modify-write support
 - Sleep-mode support for SDRAM self refresh
 - Auto refresh
 - On-the-fly power management using CKE
 - Registered DIMM support
 - 2.5-V SSTL2 compatible I/O for DDR1, 1.8-V SSTL2 compatible I/O for DDR2
- Dual three-speed (10/100/1000) Ethernet controllers (TSECs)
 - Dual controllers designed to comply with IEEE 802.3TM, 802.3uTM, 820.3xTM, 802.3zTM, 802.3acTM standards
 - Ethernet physical interfaces:
 - 1000 Mbps IEEE Std. 802.3 GMII/RGMII, IEEE Std. 802.3z TBI/RTBI, full-duplex
 - 10/100 Mbps IEEE Std. 802.3 MII full- and half-duplex
 - Buffer descriptors are backward-compatible with MPC8260 and MPC860T 10/100 programming models
 - 9.6-Kbyte jumbo frame support
 - RMON statistics support
 - Internal 2-Kbyte transmit and 2-Kbyte receive FIFOs per TSEC module
 - MII management interface for control and status
 - Programmable CRC generation and checking
- Dual PCI interfaces
 - Designed to comply with PCI Specification Revision 2.3
 - Data bus width options:
 - Dual 32-bit data PCI interfaces operating at up to 66 MHz
 - Single 64-bit data PCI interface operating at up to 66 MHz
 - PCI 3.3-V compatible
 - PCI host bridge capabilities on both interfaces
 - PCI agent mode on PCI1 interface
 - PCI-to-memory and memory-to-PCI streaming
 - Memory prefetching of PCI read accesses and support for delayed read transactions
 - Posting of processor-to-PCI and PCI-to-memory writes

2.1.1 Absolute Maximum Ratings

Table 1 provides the absolute maximum ratings.

Table 1. Absolute Maximum Ratings	s ¹
-----------------------------------	----------------

	Parameter	Symbol	Max Value	Unit	Notes
Core supply voltage		V _{DD}	–0.3 to 1.32 (1.36 max for 667-MHz core frequency)	V	_
PLL supply voltage		AV _{DD}	-0.3 to 1.32 (1.36 max for 667-MHz core frequency)	V	—
DDR and DDR2 DR	AM I/O voltage	GV _{DD}	-0.3 to 2.75 V -0.3 to 1.98		—
Three-speed Etherr	hree-speed Ethernet I/O, MII management voltage		-0.3 to 3.63	V	—
PCI, local bus, DUA and JTAG I/O voltag	RT, system control and power management, I ² C, le	OV _{DD}	-0.3 to 3.63	V	—
Input voltage	DDR DRAM signals	MV _{IN}	–0.3 to (GV _{DD} + 0.3)	V	2, 5
	DDR DRAM reference	MV _{REF}	–0.3 to (GV _{DD} + 0.3)	V	2, 5
	Three-speed Ethernet signals	LV _{IN}	-0.3 to (LV _{DD} + 0.3)	V	4, 5
	Local bus, DUART, CLKIN, system control and power management, I ² C, and JTAG signals	OV _{IN}	-0.3 to (OV _{DD} + 0.3)	V	3, 5
	PCI	OV _{IN}	-0.3 to (OV _{DD} + 0.3)	V	6
Storage temperature	e range	T _{STG}	-55 to 150	°C	—

Notes:

¹ Functional and tested operating conditions are given in Table 2. Absolute maximum ratings are stress ratings only, and functional operation at the maximums is not guaranteed. Stresses beyond those listed may affect device reliability or cause permanent damage to the device.

- ² Caution: MV_{IN} must not exceed GV_{DD} by more than 0.3 V. This limit can be exceeded for a maximum of 20 ms during power-on reset and power-down sequences.
- ³ **Caution:** OV_{IN} must not exceed OV_{DD} by more than 0.3 V. This limit can be exceeded for a maximum of 20 ms during power-on reset and power-down sequences.
- ⁴ **Caution:** LV_{IN} must not exceed LV_{DD} by more than 0.3 V. This limit can be exceeded for a maximum of 20 ms during power-on reset and power-down sequences.
- ⁵ (M,L,O)V_{IN} and MV_{REF} may overshoot/undershoot to a voltage and for a maximum duration as shown in Figure 2.
- 6 OVIN on the PCI interface can overshoot/undershoot according to the PCI Electrical Specification for 3.3-V operation, as shown in Figure 3.

RESET Initialization

4.3 TSEC Gigabit Reference Clock Timing

Table 8 provides the TSEC gigabit reference clocks (EC_GTX_CLK125) AC timing specifications.

Table 8. EC_GTX_CLK125 AC Timing Specifications

At recommended operating conditions with LV $_{DD}$ = 2.5 \pm 0.125 mV/ 3.3 V \pm 165 mV

Parameter	Symbol	Min	Typical	Max	Unit	Notes
EC_GTX_CLK125 frequency	t _{G125}	—	125	_	MHz	_
EC_GTX_CLK125 cycle time	t _{G125}	—	8		ns	_
EC_GTX_CLK125 rise and fall time $\label{eq:LVDD} LV_{DD} = 2.5 \ V \\ LV_{DD} = 3.3 \ V$	^t G125R ^{/t} G125F	_		0.75 1.0	ns	1
EC_GTX_CLK125 duty cycle GMII, TBI 1000Base-T for RGMII, RTBI		45 47	_	55 53	%	2
EC_GTX_CLK125 jitter	—	_		±150	ps	2

Notes:

1. Rise and fall times for EC_GTX_CLK125 are measured from 0.5 and 2.0 V for LV_{DD} = 2.5 V and from 0.6 and 2.7 V for LV_{DD} = 3.3 V.

2. EC_GTX_CLK125 is used to generate the GTX clock for the eTSEC transmitter with 2% degradation. The EC_GTX_CLK125 duty cycle can be loosened from 47%/53% as long as the PHY device can tolerate the duty cycle generated by the eTSEC GTX_CLK. See Section 8.2.4, "RGMII and RTBI AC Timing Specifications for the duty cycle for 10Base-T and 100Base-T reference clock.

5 **RESET Initialization**

This section describes the DC and AC electrical specifications for the reset initialization timing and electrical requirements of the MPC8349EA.

5.1 **RESET DC Electrical Characteristics**

Table 9 provides the DC electrical characteristics for the RESET pins of the MPC8349EA.

Parameter	Symbol	Condition	Min	Мах	Unit
Input high voltage	V _{IH}	—	2.0	OV _{DD} + 0.3	V
Input low voltage	V _{IL}	—	-0.3	0.8	V
Input current	I _{IN}	—	_	±5	μA
Output high voltage ²	V _{OH}	I _{OH} = -8.0 mA	2.4	—	V
Output low voltage	V _{OL}	I _{OL} = 8.0 mA	_	0.5	V

Table 9. RESET Pins DC Electrical Characteristics¹

Table 11 lists the PLL and DLL lock times.

Table 11. PLL and DLL Lock Times

Parameter/Condition	Min	Мах	Unit	Notes
PLL lock times	—	100	μs	
DLL lock times	7680	122,880	csb_clk cycles	1, 2

Notes:

1. DLL lock times are a function of the ratio between the output clock and the coherency system bus clock (csb_clk). A 2:1 ratio results in the minimum and an 8:1 ratio results in the maximum.

2. The csb_clk is determined by the CLKIN and system PLL ratio. See Section 19, "Clocking."

6 DDR and DDR2 SDRAM

This section describes the DC and AC electrical specifications for the DDR SDRAM interface of the MPC8349EA. Note that DDR SDRAM is $GV_{DD}(typ) = 2.5$ V and DDR2 SDRAM is $GV_{DD}(typ) = 1.8$ V. The AC electrical specifications are the same for DDR and DRR2 SDRAM.

NOTE

The information in this document is accurate for revision 3.0 silicon and later. For information on revision 1.1 silicon and earlier versions see the *MPC8349E PowerQUICC II Pro Integrated Host Processor Hardware Specifications*. See Section 22.1, "Part Numbers Fully Addressed by This Document," for silicon revision level determination.

6.1 DDR and DDR2 SDRAM DC Electrical Characteristics

Table 12 provides the recommended operating conditions for the DDR2 SDRAM component(s) of the MPC8349EA when $GV_{DD}(typ) = 1.8 \text{ V}.$

Parameter/Condition	Symbol	Min	Мах	Unit	Notes
I/O supply voltage	GV _{DD}	1.71	1.89	V	1
I/O reference voltage	MV _{REF}	$0.49 imes GV_{DD}$	$0.51 imes GV_{DD}$	V	2
I/O termination voltage	V _{TT}	MV _{REF} – 0.04	MV _{REF} + 0.04	V	3
Input high voltage	V _{IH}	MV _{REF} + 0.125	GV _{DD} + 0.3	V	—
Input low voltage	V _{IL}	-0.3	MV _{REF} – 0.125	V	—
Output leakage current	I _{OZ}	-9.9	9.9	μA	4
Output high current (V _{OUT} = 1.420 V)	I _{ОН}	-13.4		mA	—

Table 15 provides the DDR capacitance when $GV_{DD}(typ) = 2.5$ V.

Table 15. DDR SDRAM Capacitance for GV_{DD}(typ) = 2.5 V

Parameter/Condition	Symbol	Min	Max	Unit	Notes
Input/output capacitance: DQ, DQS	C _{IO}	6	8	pF	1
Delta input/output capacitance: DQ, DQS	C _{DIO}	_	0.5	pF	1

Note:

1. This parameter is sampled. $GV_{DD} = 2.5 V \pm 0.125 V$, f = 1 MHz, $T_A = 25^{\circ}C$, $V_{OUT} = GV_{DD}/2$, V_{OUT} (peak-to-peak) = 0.2 V.

Table 16 provides the current draw characteristics for MV_{REF}.

Table 16. Current Draw Characteristics for MV_{REF}

Parameter/Condition	Symbol	Min	Max	Unit	Note
Current draw for MV _{REF}	I _{MVREF}	_	500	μA	1

Note:

1. The voltage regulator for MV_{REF} must supply up to 500 μA current.

6.2 DDR and DDR2 SDRAM AC Electrical Characteristics

This section provides the AC electrical characteristics for the DDR and DDR2 SDRAM interface.

6.2.1 DDR and DDR2 SDRAM Input AC Timing Specifications

Table 17 provides the input AC timing specifications for the DDR2 SDRAM when $GV_{DD}(typ) = 1.8 \text{ V}$.

Table 17. DDR2 SDRAM Input AC Timing Specifications for 1.8-V Interface

At recommended operating conditions with GV_{DD} of 1.8 ± 5%.

Parameter	Symbol	Min	Мах	Unit	Notes
AC input low voltage	V _{IL}	_	MV _{REF} – 0.25	V	—
AC input high voltage	V _{IH}	MV _{REF} + 0.25	_	V	—

Table 18 provides the input AC timing specifications for the DDR SDRAM when $GV_{DD}(typ) = 2.5 \text{ V}$.

Table 18. DDR SDRAM Input AC Timing Specifications for 2.5-V Interface

At recommended operating conditions with GV_{DD} of 2.5 ± 5%.

Parameter	Symbol	Min	Мах	Unit	Notes
AC input low voltage	V _{IL}	_	MV _{REF} – 0.31	V	—
AC input high voltage	V _{IH}	MV _{REF} + 0.31	_	V	—

8.1.1 **TSEC DC Electrical Characteristics**

GMII, MII, TBI, RGMII, and RTBI drivers and receivers comply with the DC parametric attributes specified in Table 23 and Table 24. The RGMII and RTBI signals in Table 24 are based on a 2.5-V CMOS interface voltage as defined by JEDEC EIA/JESD8-5.

Parameter	Symbol	Conditions		Min	Max	Unit
Supply voltage 3.3 V	LV _{DD} ²	—		2.97	3.63	V
Output high voltage	V _{OH}	I _{OH} = -4.0 mA	$LV_{DD} = Min$	2.40	LV _{DD} + 0.3	V
Output low voltage	V _{OL}	I _{OL} = 4.0 mA	$LV_{DD} = Min$	GND	0.50	V
Input high voltage	V _{IH}	—	—	2.0	LV _{DD} + 0.3	V
Input low voltage	V _{IL}	—	—	-0.3	0.90	V
Input high current	I _{IH}	$V_{IN}^{1} = LV_{DD}$		_	40	μA
Input low current	۱ _{IL}	V _{IN} ¹ =	GND	-600	—	μA

Table 23. GMII/TBI and MII DC Electrical Characteristics

Notes:

1. The symbol V_{IN} , in this case, represents the LV_{IN} symbol referenced in Table 1 and Table 2.

2. GMII/MII pins not needed for RGMII or RTBI operation are powered by the OV_{DD} supply.

Table 24. RGMII/RTBI (When Operating at 2.5 V) DC Electrical Characteristics

Parameters	Symbol	Conditions		Min	Max	Unit
Supply voltage 2.5 V	LV _{DD}	—		2.37	2.63	V
Output high voltage	V _{OH}	I _{OH} = -1.0 mA	$LV_{DD} = Min$	2.00	LV _{DD} + 0.3	V
Output low voltage	V _{OL}	I _{OL} = 1.0 mA	LV _{DD} = Min	GND – 0.3	0.40	V
Input high voltage	V _{IH}	—	LV _{DD} = Min	1.7	LV _{DD} + 0.3	V
Input low voltage	V _{IL}	—	LV _{DD} = Min	-0.3	0.70	V
Input high current	I _{IH}	$V_{IN}^{1} = LV_{DD}$		—	10	μA
Input low current	Ι _{IL}	V _{IN} ¹ =	GND	-15	—	μA

Note:

1. The symbol V_{IN} , in this case, represents the LV_{IN} symbol referenced in Table 1 and Table 2.

8.2 GMII, MII, TBI, RGMII, and RTBI AC Timing Specifications

The AC timing specifications for GMII, MII, TBI, RGMII, and RTBI are presented in this section.

8.2.1 GMII Timing Specifications

This section describes the GMII transmit and receive AC timing specifications.

8.2.4 RGMII and RTBI AC Timing Specifications

Table 31 presents the RGMII and RTBI AC timing specifications.

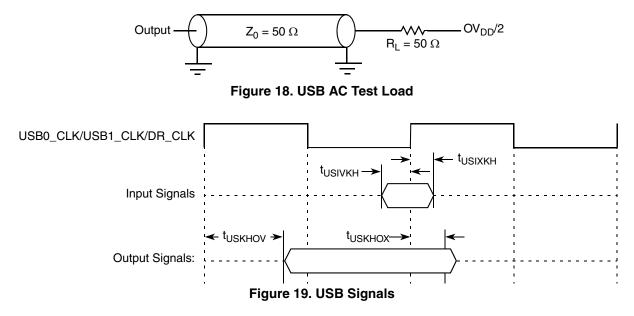
Table 31. RGMII and RTBI AC Timing Specifications

At recommended operating conditions with LV_{DD} of 2.5 V \pm 5%.

Parameter/Condition	Symbol ¹	Min	Тур	Max	Unit
Data to clock output skew (at transmitter)	t _{SKRGT}	-0.5	—	0.5	ns
Data to clock input skew (at receiver) ²	t _{SKRGT}	1.0	—	2.8	ns
Clock cycle duration ³	t _{RGT}	7.2	8.0	8.8	ns
Duty cycle for 1000Base-T ^{4, 5}	t _{RGTH} /t _{RGT}	45	50	55	%
Duty cycle for 10BASE-T and 100BASE-TX ^{3, 5}	t _{RGTH} /t _{RGT}	40	50	60	%
Rise time (20%–80%)	t _{RGTR}	—	—	0.75	ns
Fall time (80%–20%)	t _{RGTF}	_	—	0.75	ns

Notes:

1. In general, the clock reference symbol for this section is based on the symbols RGT to represent RGMII and RTBI timing. For example, the subscript of t_{RGT} represents the TBI (T) receive (RX) clock. Also, the notation for rise (R) and fall (F) times follows the clock symbol. For symbols representing skews, the subscript is SK followed by the clock being skewed (RGT).


2. This implies that PC board design requires clocks to be routed so that an additional trace delay of greater than 1.5 ns is added to the associated clock signal.

3. For 10 and 100 Mbps, t_{RGT} scales to 400 ns \pm 40 ns and 40 ns \pm 4 ns, respectively.

4. Duty cycle may be stretched/shrunk during speed changes or while transitioning to a received packet clock domains as long as the minimum duty cycle is not violated and stretching occurs for no more than three t_{RGT} of the lowest speed transitioned.

5. Duty cycle reference is $LV_{DD}/2$.

Figure 18 and Figure 19 provide the AC test load and signals for the USB, respectively.

10 Local Bus

This section describes the DC and AC electrical specifications for the local bus interface of the MPC8349EA.

10.1 Local Bus DC Electrical Characteristics

Table 37 provides the DC electrical characteristics for the local bus interface.

 Table 37. Local Bus DC Electrical Characteristics

Parameter	Symbol	Min	Мах	Unit
High-level input voltage	V _{IH}	2	OV _{DD} + 0.3	V
Low-level input voltage	V _{IL}	-0.3	0.8	V
Input current	I _{IN}	—	±5	μA
High-level output voltage, $I_{OH} = -100 \ \mu A$	V _{OH}	OV _{DD} - 0.2	_	V
Low-level output voltage, $I_{OL} = 100 \ \mu A$	V _{OL}	—	0.2	V

JTAG

Parameter	Symbol	Condition	Min	Мах	Unit
Output low voltage	V _{OL}	I _{OL} = 8.0 mA	—	0.5	V
Output low voltage	V _{OL}	I _{OL} = 3.2 mA	—	0.4	V

Table 40. JTAG Interface DC Electrical Characteristics (continued)

11.2 JTAG AC Timing Specifications

This section describes the AC electrical specifications for the IEEE Std. 1149.1 (JTAG) interface of the MPC8349EA. Table 41 provides the JTAG AC timing specifications as defined in Figure 28 through Figure 31.

Table 41. JTAG AC Timing Specifications (Independent of CLKIN)¹

At recommended operating conditions (see Table 2).

Parameter		Symbol ²	Min	Мах	Unit	Notes
JTAG external clock frequency of operation		f _{JTG}	0	33.3	MHz	—
JTAG external clock cycle time		t _{JTG}	30	—	ns	—
JTAG external clock pulse width mea	asured at 1.4 V	t _{JTKHKL}	15	_	ns	—
JTAG external clock rise and fall times		t _{JTGR} , t _{JTGF}	0	2	ns	—
TRST assert time		t _{TRST}	25	_	ns	3
Input setup times:	Boundary-scan data TMS, TDI	t _{JTDVKH} t _{JTIVKH}	4 4	_ _	ns	4
Input hold times:	Boundary-scan data TMS, TDI	t _{JTDXKH} t _{JTIXKH}	10 10		ns	4
Valid times:	Boundary-scan data TDO	t _{jtkldv} t _{jtklov}	2 2	11 11	ns	5
Output hold times:	Boundary-scan data TDO	t _{jtkldx} t _{jtklox}	2 2		ns	5

13 PCI

This section describes the DC and AC electrical specifications for the PCI bus of the MPC8349EA.

13.1 PCI DC Electrical Characteristics

Table 44 provides the DC electrical characteristics for the PCI interface of the MPC8349EA.

Parameter	Symbol	Test Condition	Min	Мах	Unit
High-level input voltage	V _{IH}	$V_{OUT} \ge V_{OH}$ (min) or	2	OV _{DD} + 0.3	V
Low-level input voltage	V _{IL}	$V_{OUT} \le V_{OL}$ (max)	-0.3	0.8	V
Input current	I _{IN}	$V_{IN}^{1} = 0 V \text{ or } V_{IN} = OV_{DD}$	_	±5	μA
High-level output voltage	V _{OH}	OV _{DD} = min, I _{OH} = −100 μA	OV _{DD} – 0.2	_	V
Low-level output voltage	V _{OL}	OV _{DD} = min, I _{OL} = 100 μA		0.2	V

Table 44. PCI DC Electrical Characteristics

Note:

1. The symbol V_{IN} , in this case, represents the OV_{IN} symbol referenced in Table 1.

13.2 PCI AC Electrical Specifications

This section describes the general AC timing parameters of the PCI bus of the MPC8349EA. Note that the PCI_CLK or PCI_SYNC_IN signal is used as the PCI input clock depending on whether the device is configured as a host or agent device. Table 45 provides the PCI AC timing specifications at 66 MHz.

Parameter	Symbol ²	Min	Max	Unit	Notes
Clock to output valid	^t PCKHOV	—	6.0	ns	3
Output hold from clock	^t РСКНОХ	1	_	ns	3
Clock to output high impedance	t _{PCKHOZ}	—	14	ns	3, 4
Input setup to clock	t _{PCIVKH}	3.0	_	ns	3, 5
Input hold from clock	t _{PCIXKH}	0	_	ns	3, 5
REQ64 to PORESET setup time	t _{PCRVRH}	5	—	clocks	6

15.2 GPIO AC Timing Specifications

Table 50 provides the GPIO input and output AC timing specifications.

Table 50	. GPIO Inpu	t AC Timing	Specifications ¹
----------	-------------	-------------	-----------------------------

Parameter	Symbol ²	Min	Unit
GPIO inputs—minimum pulse width	t _{PIWID}	20	ns

Notes:

1. Input specifications are measured from the 50 percent level of the signal to the 50 percent level of the rising edge of CLKIN. Timings are measured at the pin.

2. GPIO inputs and outputs are asynchronous to any visible clock. GPIO outputs should be synchronized before use by external synchronous logic. GPIO inputs must be valid for at least t_{PIWID} ns to ensure proper operation.

16 IPIC

This section describes the DC and AC electrical specifications for the external interrupt pins.

16.1 IPIC DC Electrical Characteristics

Table 51 provides the DC electrical characteristics for the external interrupt pins.

Table 51.	IPIC DC	Electrical	Characteristics ¹
-----------	---------	------------	------------------------------

Parameter	Symbol	Condition	Min	Мах	Unit	Notes
Input high voltage	V _{IH}	—	2.0	OV _{DD} + 0.3	V	—
Input low voltage	V _{IL}	_	-0.3	0.8	V	—
Input current	I _{IN}	_	—	±5	μA	—
Output low voltage	V _{OL}	I _{OL} = 8.0 mA	—	0.5	V	2
Output low voltage	V _{OL}	l _{OL} = 3.2 mA	—	0.4	V	2

Notes:

1. This table applies for pins \overline{IRQ} [0:7], \overline{IRQ} _OUT, and \overline{MCP} _OUT.

2. IRQ_OUT and MCP_OUT are open-drain pins; thus VOH is not relevant for those pins.

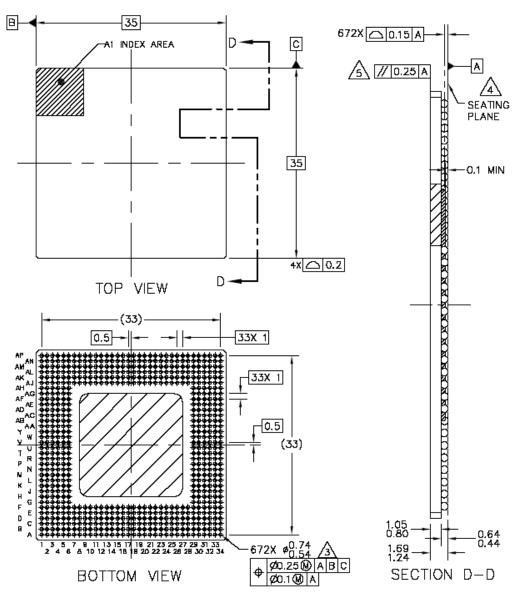
16.2 IPIC AC Timing Specifications

Table 52 provides the IPIC input and output AC timing specifications.

Table 52. IPIC Input AC Timing Specifications¹

Parameter	Symbol ²	Min	Unit
IPIC inputs—minimum pulse width	t _{PICWID}	20	ns

Notes:


1. Input specifications are measured at the 50 percent level of the IPIC input signals. Timings are measured at the pin.

 IPIC inputs and outputs are asynchronous to any visible clock. IPIC outputs should be synchronized before use by external synchronous logic. IPIC inputs must be valid for at least t_{PICWID} ns to ensure proper operation in edge triggered mode.

Package and Pin Listings

18.2 Mechanical Dimensions for the MPC8349EA TBGA

Figure 40 shows the mechanical dimensions and bottom surface nomenclature for the MPC8349EA, 672-TBGA package.

Notes:

- 1. All dimensions are in millimeters.
- 2. Dimensions and tolerances per ASME Y14.5M-1994.
- 3. Maximum solder ball diameter measured parallel to datum A.
- 4. Datum A, the seating plane, is determined by the spherical crowns of the solder balls.
- 5. Parallelism measurement must exclude any effect of mark on top surface of package.

Figure 40. Mechanical Dimensions and Bottom Surface Nomenclature for the MPC8349EA TBGA

18.3 Pinout Listings

Table 55 provides the pin-out listing for the MPC8349EA, 672 TBGA package.

Table 55. MPC8349EA (TBGA) Pinout Listing

Signal	Package Pin Number	Pin Type Power Supply			
	PCI1 and PCI2 (One 64-Bit or Two 32-Bit)				
PCI1_INTA/IRQ_OUT	B34	0	OV _{DD}	2	
PCI1_RESET_OUT	C33	0	OV _{DD}	—	
PCI1_AD[31:0]	G30, G32, G34, H31, H32, H33, H34, J29, J32, J33, L30, K31, K33, K34, L33, L34, P34, R29, R30, R33, R34, T31, T32, T33, U31, U34, V31, V32, V33, V34, W33, W34	I/O	OV _{DD}	_	
PCI1_C/BE[3:0]	J30, M31, P33, T34	I/O	OV _{DD}	—	
PCI1_PAR	P32	I/O	OV _{DD}	—	
PCI1_FRAME	M32	I/O	OV _{DD}	5	
PCI1_TRDY	N29	I/O	OV _{DD}	5	
PCI1_IRDY	M34	I/O	OV _{DD}	5	
PCI1_STOP	N31	I/O	OV _{DD}	5	
PCI1_DEVSEL	N30	I/O	OV _{DD}	5	
PCI1_IDSEL	J31	I	OV _{DD}	—	
PCI1_SERR	N34	I/O	OV _{DD}	5	
PCI1_PERR	N33	I/O	OV _{DD}	5	
PCI1_REQ[0]	D32	I/O	OV _{DD}	—	
PCI1_REQ[1]/CPCI1_HS_ES	D34	I	OV _{DD}	—	
PCI1_REQ[2:4]	E34, F32, G29	I	OV _{DD}	—	
PCI1_GNT0	C34	I/O	OV _{DD}	—	
PCI1_GNT1/CPCI1_HS_LED	D33	0	OV _{DD}	—	
PCI1_GNT2/CPCI1_HS_ENUM	E33	0	OV _{DD}	—	
PCI1_GNT[3:4]	F31, F33	0	OV _{DD}	—	
PCI2_RESET_OUT/GPIO2[0]	W32	I/O	OV _{DD}	—	
PCI2_AD[31:0]/PCI1[63:32]	AA33, AA34, AB31, AB32, AB33, AB34, AC29, AC31, AC33, AC34, AD30, AD32, AD33, AD34, AE29, AE30, AH32, AH33, AH34, AM33, AJ31, AJ32, AJ33, AJ34, AK32, AK33, AK34, AM34, AL33, AL34, AK31, AH30	I/O	OV _{DD}	_	
PCI2_C/BE[3:0]/PCI1_C/BE[7:4]	AC32, AE32, AH31, AL32	I/O	OV _{DD}	_	
PCI2_PAR/PCI1_PAR64	AG34	I/O	OV _{DD}	—	

Package and Pin Listings

Signal	Package Pin Number	Pin Type	Power Supply	Notes
PCI2_FRAME/GPIO2[1]	AE33	I/O	OV _{DD}	5
PCI2_TRDY/GPIO2[2]	AF32	I/O	OV _{DD}	5
PCI2_IRDY/GPIO2[3]	AE34	I/O	OV _{DD}	5
PCI2_STOP/GPIO2[4]	AF34	I/O	OV _{DD}	5
PCI2_DEVSEL/GPIO2[5]	AF33	I/O	OV _{DD}	5
PCI2_SERR/PCI1_ACK64	AG33	I/O	OV _{DD}	5
PCI2_PERR/PCI1_REQ64	AG32	I/O	OV _{DD}	5
PCI2_REQ[0:2]/GPIO2[6:8]	Y32, Y34, AA32	I/O	OV _{DD}	
PCI2_GNT[0:2]/GPIO2[9:11]	Y31, Y33, AA31	I/O	OV _{DD}	
M66EN	A19	I	OV _{DD}	
	DDR SDRAM Memory Interface			I
MDQ[0:63]	D5, A3, C3, D3, C4, B3, C2, D4, D2, E5, G2, H6, E4, F3, G4, G3, H1, J2, L6, M6, H2, K6, L2, M4, N2, P4, R2, T4, P6, P3, R1, T2, AB5, AA3, AD6, AE4, AB4, AC2, AD3, AE6, AE3, AG4, AK5, AK4, AE2, AG6, AK3, AK2, AL2, AL1, AM5, AP5, AM2, AN1, AP4, AN5, AJ7, AN7, AM8, AJ9, AP6, AL7, AL9, AN8	I/O	GV _{DD}	_
MECC[0:4]/MSRCID[0:4]	W4, W3, Y3, AA6, T1	I/O	GV _{DD}	—
MECC[5]/MDVAL	U1	I/O	GV _{DD}	—
MECC[6:7]	Y1, Y6	I/O	GV _{DD}	—
MDM[0:8]	B1, F1, K1, R4, AD4, AJ1, AP3, AP7, Y4	0	GV _{DD}	—
MDQS[0:8]	B2, F5, J1, P2, AC1, AJ2, AN4, AL8, W2	I/O	GV _{DD}	—
MBA[0:1]	AD1, AA5	0	GV _{DD}	—
MA[0:14]	W1, U4, T3, R3, P1, M1, N1, L3, L1, K2, Y2, K3, J3, AP2, AN6	0	GV _{DD}	—
MWE	AF1	0	GV _{DD}	—
MRAS	AF4	0	GV _{DD}	—
MCAS	AG3	0	GV _{DD}	—
MCS[0:3]	AG2, AG1, AK1, AL4	0	GV _{DD}	—
MCKE[0:1]	H3, G1	0	GV _{DD}	3
MCK[0:5]	U2, F4, AM3, V3, F2, AN3	0	GV _{DD}	—
MCK[0:5]	U3, E3, AN2, V4, E1, AM4	0	GV _{DD}	—
MODT[0:3]	AH3, AJ5, AH1, AJ4	0	GV _{DD}	—

Package and Pin Listings

Table 55. MPC8349EA	(TBGA) Pinout Listing (cor	itinued)
---------------------	----------------------------	----------

Signal	Package Pin Number	Pin Type	Power Supply	Notes
GPIO1[2]/DMA_DDONE0/ GTM1_TOUT1	B25	I/O	OV _{DD}	—
GPIO1[3]/DMA_DREQ1/GTM1_TIN2/ GTM2_TIN1	D24	I/O	OV _{DD}	—
GPIO1[4]/DMA_DACK1/ GTM1_TGATE2/GTM2_TGATE1	A25	I/O	OV _{DD}	—
GPIO1[5]/DMA_DDONE1/ GTM1_TOUT2/GTM2_TOUT1	B24	I/O	OV _{DD}	—
GPIO1[6]/DMA_DREQ2/GTM1_TIN3/ GTM2_TIN4	A24	I/O	OV _{DD}	—
GPIO1[7]/DMA_DACK2/ GTM1_TGATE3/GTM2_TGATE4	D23	I/O	OV _{DD}	—
GPIO1[8]/DMA_DDONE2/ GTM1_TOUT3	B23	I/O	OV _{DD}	—
GPIO1[9]/DMA_DREQ3/GTM1_TIN4/ GTM2_TIN3	A23	I/O	OV _{DD}	—
GPIO1[10]/DMA_DACK3/ GTM1_TGATE4/GTM2_TGATE3	F22	I/O	OV _{DD}	—
GPIO1[11]/DMA_DDONE3/ GTM1_TOUT4/GTM2_TOUT3	E22	I/O	OV _{DD}	—
	USB Port 1			
MPH1_D0_ENABLEN/ DR_D0_ENABLEN	A26	I/O	OV _{DD}	—
MPH1_D1_SER_TXD/ DR_D1_SER_TXD	B26	I/O	OV _{DD}	—
MPH1_D2_VMO_SE0/ DR_D2_VMO_SE0	D25	I/O	OV _{DD}	—
MPH1_D3_SPEED/DR_D3_SPEED	A27	I/O	OV _{DD}	—
MPH1_D4_DP/DR_D4_DP	B27	I/O	OV _{DD}	—
MPH1_D5_DM/DR_D5_DM	C27	I/O	OV _{DD}	—
MPH1_D6_SER_RCV/ DR_D6_SER_RCV	D26	I/O	OV _{DD}	—
MPH1_D7_DRVVBUS/ DR_D7_DRVVBUS	E26	I/O	OV _{DD}	—
MPH1_NXT/DR_SESS_VLD_NXT	D27	I	OV _{DD}	_
MPH1_DIR_DPPULLUP/ DR_XCVR_SEL_DPPULLUP	A28	I/O	OV _{DD}	—
MPH1_STP_SUSPEND/ DR_STP_SUSPEND	F26	0	OV _{DD}	—

Table 55. MPC8349EA (TBGA) Pinout Listing (continued)

Signal	Package Pin Number	Pin Type	Power Supply	Notes
TSEC2_TX_ER/GPIO1[24]	F14	I/O	OV _{DD}	—
TSEC2_TX_EN/GPIO1[12]	C5	I/O	LV _{DD2}	—
TSEC2_TX_CLK/GPIO1[30]	E14	I/O	OV _{DD}	—
	DUART			
UART_SOUT[1:2]/MSRCID[0:1]/ LSRCID[0:1]	AK27, AN29	0	OV _{DD}	—
UART_SIN[1:2]/MSRCID[2:3]/ LSRCID[2:3]	AL28, AM29	I/O	OV _{DD}	—
UART_CTS[1]/MSRCID4/LSRCID4	AP30	I/O	OV _{DD}	—
UART_CTS[2]/MDVAL/ LDVAL	AN30	I/O	OV _{DD}	—
UART_RTS[1:2]	AP31, AM30	0	OV _{DD}	—
	I ² C interface		•	
IIC1_SDA	AK29	I/O	OV _{DD}	2
IIC1_SCL	AP32	I/O	OV _{DD}	2
IIC2_SDA	AN31	I/O	OV _{DD}	2
IIC2_SCL	AM31	I/O	OV _{DD}	2
	SPI			
SPIMOSI/LCS[6]	AN32	I/O	OV _{DD}	_
SPIMISO/LCS[7]	AP33	I/O	OV _{DD}	—
SPICLK	AK30	I/O	OV _{DD}	—
SPISEL	AL31	I	OV _{DD}	—
	Clocks			
PCI_CLK_OUT[0:2]	AN9, AP9, AM10,	0	OV _{DD}	_
PCI_CLK_OUT[3]/LCS[6]	AN10	0	OV _{DD}	—
PCI_CLK_OUT[4]/LCS[7]	AJ11	0	OV _{DD}	—
PCI_CLK_OUT[5:7]	AP10, AL11, AM11	0	OV _{DD}	—
PCI_SYNC_IN/PCI_CLOCK	AK12	I	OV _{DD}	—
PCI_SYNC_OUT	AP11	0	OV _{DD}	3
RTC/PIT_CLOCK	AM32	I	OV _{DD}	—
CLKIN	AM9	I	OV _{DD}	—
	JTAG		•	
ТСК	E20	I	OV _{DD}	
TDI	F20	I	OV _{DD}	4

Clocking

Table 57 provides the operating frequencies for the MPC8349EA TBGA under recommended operating conditions (see Table 2).

Characteristic ¹	400 MHz	533 MHz	667 MHz	Unit
e300 core frequency (<i>core_clk</i>)	266–400	266–533	266–667	MHz
Coherent system bus frequency (<i>csb_clk</i>)	100–266	100–333	100–333	MHz
DDR1 memory bus frequency (MCK) ²	100–133	100–133	100–166.67	MHz
DDR2 memory bus frequency (MCK) ³	100–133	100–133	100–200	MHz
Local bus frequency (LCLKn) ⁴	16.67–133	16.67–133	16.67–133	MHz
PCI input frequency (CLKIN or PCI_CLK)	25–66	25–66	25–66	MHz
Security core maximum internal operating frequency	133	133	166	MHz
USB_DR, USB_MPH maximum internal operating frequency	133	133	166	MHz

Table 57. Operating Frequencies for TBGA

¹ The CLKIN frequency, RCWL[SPMF], and RCWL[COREPLL] settings must be chosen so that the resulting *csb_clk*, MCK, LCLK[0:2], and *core_clk* frequencies do not exceed their respective maximum or minimum operating frequencies. The value of SCCR[ENCCM], SCCR[USBDRCM] and SCCR[USBMPHCM] must be programmed so that the maximum internal operating frequency of the security core and USB modules does not exceed the respective values listed in this table.

² The DDR data rate is 2x the DDR memory bus frequency.

³ The DDR data rate is 2x the DDR memory bus frequency.

⁴ The local bus frequency is 1/2, 1/4, or 1/8 of the *lbiu_clk* frequency (depending on LCCR[CLKDIV]) which is in turn 1x or 2x the *csb_clk* frequency (depending on RCWL[LBIUCM]).

All frequency combinations shown in the table below may not be available. Maximum operating frequencies depend on the part ordered, see Section 22.1, "Part Numbers Fully Addressed by This Document," for part ordering details and contact your Freescale Sales Representative or authorized distributor for more information.

19.1 System PLL Configuration

The system PLL is controlled by the RCWL[SPMF] parameter. Table 58 shows the multiplication factor encodings for the system PLL.

RCWL[SPMF]	System PLL Multiplication Factor
0000	× 16
0001	Reserved
0010	× 2
0011	× 3
0100	× 4
0101	× 5
0110	× 6

Table 58. System PLL Multiplication Factors

19.3 Suggested PLL Configurations

Table 62 shows suggested PLL configurations for 33 and 66 MHz input clocks.

Table 62. Sug	gested PLL	Configurations
---------------	------------	----------------

	RC	WL	40	0 MHz Dev	ice	533	3 MHz Dev	ice	667	7 MHz Dev	ice
Ref No. ¹	SPMF	CORE PLL	Input Clock Freq (MHz) ²	CSB Freq (MHz)	Core Freq (MHz)	Input Clock Freq (MHz) ²	CSB Freq (MHz)	Core Freq (MHz)	Input Clock Freq (MHz) ²	CSB Freq (MHz)	Core Freq (MHz)
				33 N	MHz CLKIN	/PCI_CLK	Options				
922	1001	0100010	—	—	—	_	—	f300	33	300	300
723	0111	0100011	33	233	350	33	233	350	33	233	350
604	0110	0000100	33	200	400	33	200	400	33	200	400
624	0110	0100100	33	200	400	33	200	400	33	200	400
803	1000	0000011	33	266	400	33	266	400	33	266	400
823	1000	0100011	33	266	400	33	266	400	33	266	400
903	1001	0000011		_		33	300	450	33	300	450
923	1001	0100011		_		33	300	450	33	300	450
704	0111	0000011		_			233	466	33	233	466
724	0111	0100011		_		33	233	466	33	233	466
A03	1010	0000011		_		33	333	500	33	333	500
804	1000	0000100		_		33	266	533	33	266	533
705	0111	0000101		_			_		33	233	583
606	0110	0000110		_			_		33	200	600
904	1001	0000100		_			—		33	300	600
805	1000	0000101		_			_		33	266	667
A04	1010	0000100		_			_		33	333	667
				66 N	MHz CLKIN	/PCI_CLK	Options				
304	0011	0000100	66	200	400	66	200	400	66	200	400
324	0011	0100100	66	200	400	66	200	400	66	200	400
403	0100	0000011	66	266	400	66	266	400	66	266	400
423	0100	0100011	66	266	400	66	266	400	66	266	400
305	0011	0000101				66	200	500	66	200	500
503	0101	0000011		_		66	333	500	66	333	500
404	0100	0000100		_		66	266	533	66	266	533

System Design Information

2. The e300 core PLL generates the core clock as a slave to the platform clock. The frequency ratio between the e300 core clock and the platform clock is selected using the e300 PLL ratio configuration bits as described in Section 19.2, "Core PLL Configuration."

21.2 PLL Power Supply Filtering

Each PLL gets power through independent power supply pins ($AV_{DD}1$, $AV_{DD}2$, respectively). The AV_{DD} level should always equal to V_{DD} , and preferably these voltages are derived directly from V_{DD} through a low frequency filter scheme.

There are a number of ways to provide power reliably to the PLLs, but the recommended solution is to provide four independent filter circuits as illustrated in Figure 42, one to each of the four AV_{DD} pins. Independent filters to each PLL reduce the opportunity to cause noise injection from one PLL to the other.

The circuit filters noise in the PLL resonant frequency range from 500 kHz to 10 MHz. It should be built with surface mount capacitors with minimum effective series inductance (ESL). Consistent with the recommendations of Dr. Howard Johnson in *High Speed Digital Design: A Handbook of Black Magic* (Prentice Hall, 1993), multiple small capacitors of equal value are recommended over a single large value capacitor.

To minimize noise coupled from nearby circuits, each circuit should be placed as closely as possible to the specific AV_{DD} pin being supplied. It should be possible to route directly from the capacitors to the AV_{DD} pin, which is on the periphery of package, without the inductance of vias.

Figure 42 shows the PLL power supply filter circuit.

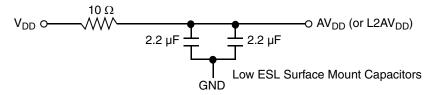


Figure 42. PLL Power Supply Filter Circuit

21.3 Decoupling Recommendations

Due to large address and data buses and high operating frequencies, the MPC8349EA can generate transient power surges and high frequency noise in its power supply, especially while driving large capacitive loads. This noise must be prevented from reaching other components in the MPC8349EA system, and the device itself requires a clean, tightly regulated source of power. Therefore, the system designer should place at least one decoupling capacitor at each V_{DD} , OV_{DD} , GV_{DD} , and LV_{DD} pin of the device. These capacitors should receive their power from separate V_{DD} , OV_{DD} , GV_{DD} , LV_{DD} , and GND power planes in the PCB, with short traces to minimize inductance. Capacitors can be placed directly under the device using a standard escape pattern. Others can surround the part.

These capacitors should have a value of 0.01 or 0.1 μ F. Only ceramic SMT (surface mount technology) capacitors should be used to minimize lead inductance, preferably 0402 or 0603 sizes.

In addition, distribute several bulk storage capacitors around the PCB, feeding the V_{DD} , OV_{DD} , GV_{DD} , and LV_{DD} planes, to enable quick recharging of the smaller chip capacitors. These bulk capacitors should

22.1 Part Numbers Fully Addressed by This Document

Table 66 shows an analysis of the Freescale part numbering nomenclature for the MPC8349EA. The individual part numbers correspond to a maximum processor core frequency. Each part number also contains a revision code that refers to the die mask revision number. For available frequency configuration parts including extended temperatures, refer to the device product summary page on our website listed on the back cover of this document or, contact your local Freescale sales office.

MPC	nnnn	е	t	рр	aa	а	r
Product Code	Part Identifier	Encryption Acceleration	Temperature ¹ Range	Package ²	Processor Frequency ³	Platform Frequency	Revision Level
MPC	8349	Blank = Not included E = included	Blank = 0 to 105°C C = -40 to 105°C	ZU =TBGA VV = PB free TBGA	e300 core speed AG = 400 AJ = 533 AL = 667	D = 266 F = 333 ⁴	B = 3.1

Table 66. Part Numbering Nomenclature

Notes:

1. For temperature range = C, processor frequency is limited to with a platform frequency of 266 and up to 533 with a platform frequency of 333

2. See Section 18, "Package and Pin Listings," for more information on available package types.

- Processor core frequencies supported by parts addressed by this specification only. Not all parts described in this specification support all core frequencies. Additionally, parts addressed by Part Number Specifications may support other maximum core frequencies.
- 4. ALF marked parts support DDR1 data rate up to 333 MHz (at 333 MHz CSB as the 'F' marking implies) and DDR2 data rate up to 400 MHz (at 200 MHz CSB). AJF marked parts support DDR1 and DDR2 data rate up to 333 MHz (at a CSB of 333 MHz).

Table 67 shows the SVR settings by device and package type.

Table 67. SVR Settings

Device	Package	SVR (Rev. 3.0)		
MPC8349EA	TBGA	8050_0030		
MPC8349A	TBGA	8051_0030		