

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

Product Status	Obsolete
Core Processor	PowerPC e300
Number of Cores/Bus Width	1 Core, 32-Bit
Speed	533MHz
Co-Processors/DSP	-
RAM Controllers	DDR, DDR2
Graphics Acceleration	No
Display & Interface Controllers	-
Ethernet	10/100/1000Mbps (2)
SATA	-
USB	USB 2.0 + PHY (2)
Voltage - I/O	1.8V, 2.5V, 3.3V
Operating Temperature	-40°C ~ 105°C (TA)
Security Features	-
Package / Case	672-LBGA
Supplier Device Package	672-LBGA (35x35)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mpc8349cvvajfb

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

NOTE

The information in this document is accurate for revision 3.x silicon and later (in other words, for orderable part numbers ending in A or B). For information on revision 1.1 silicon and earlier versions, see the *MPC8349E PowerQUICC II Pro Integrated Host Processor Hardware Specifications*.

See Section 22.1, "Part Numbers Fully Addressed by This Document," for silicon revision level determination.

1 Overview

This section provides a high-level overview of the device features. Figure 1 shows the major functional units within the MPC8349EA.

Figure 1. MPC8349EA Block Diagram

Major features of the device are as follows:

- Embedded PowerPC e300 processor core; operates at up to 667 MHz
 - High-performance, superscalar processor core
 - Floating-point, integer, load/store, system register, and branch processing units
 - 32-Kbyte instruction cache, 32-Kbyte data cache
 - Lockable portion of L1 cache
 - Dynamic power management
 - Software-compatible with the other Freescale processor families that implement Power Architecture technology

- Double data rate, DDR1/DDR2 SDRAM memory controller
 - Programmable timing supporting DDR1 and DDR2 SDRAM
 - 32- or 64-bit data interface, up to 400 MHz data rate
 - Up to four physical banks (chip selects), each bank up to 1 Gbyte independently addressable
 - DRAM chip configurations from 64 Mbits to 1 Gbit with $\times 8/\times 16$ data ports
 - Full error checking and correction (ECC) support
 - Support for up to 16 simultaneous open pages (up to 32 pages for DDR2)
 - Contiguous or discontiguous memory mapping
 - Read-modify-write support
 - Sleep-mode support for SDRAM self refresh
 - Auto refresh
 - On-the-fly power management using CKE
 - Registered DIMM support
 - 2.5-V SSTL2 compatible I/O for DDR1, 1.8-V SSTL2 compatible I/O for DDR2
- Dual three-speed (10/100/1000) Ethernet controllers (TSECs)
 - Dual controllers designed to comply with IEEE 802.3TM, 802.3uTM, 820.3xTM, 802.3zTM, 802.3acTM standards
 - Ethernet physical interfaces:
 - 1000 Mbps IEEE Std. 802.3 GMII/RGMII, IEEE Std. 802.3z TBI/RTBI, full-duplex
 - 10/100 Mbps IEEE Std. 802.3 MII full- and half-duplex
 - Buffer descriptors are backward-compatible with MPC8260 and MPC860T 10/100 programming models
 - 9.6-Kbyte jumbo frame support
 - RMON statistics support
 - Internal 2-Kbyte transmit and 2-Kbyte receive FIFOs per TSEC module
 - MII management interface for control and status
 - Programmable CRC generation and checking
- Dual PCI interfaces
 - Designed to comply with PCI Specification Revision 2.3
 - Data bus width options:
 - Dual 32-bit data PCI interfaces operating at up to 66 MHz
 - Single 64-bit data PCI interface operating at up to 66 MHz
 - PCI 3.3-V compatible
 - PCI host bridge capabilities on both interfaces
 - PCI agent mode on PCI1 interface
 - PCI-to-memory and memory-to-PCI streaming
 - Memory prefetching of PCI read accesses and support for delayed read transactions
 - Posting of processor-to-PCI and PCI-to-memory writes

Electrical Characteristics

- Dual industry-standard I²C interfaces
 - Two-wire interface
 - Multiple master support
 - Master or slave I²C mode support
 - On-chip digital filtering rejects spikes on the bus
 - System initialization data optionally loaded from I²C-1 EPROM by boot sequencer embedded hardware
- DMA controller
 - Four independent virtual channels
 - Concurrent execution across multiple channels with programmable bandwidth control
 - Handshaking (external control) signals for all channels: DMA_DREQ[0:3],
 DMA_DACK[0:3], DMA_DDONE[0:3]
 - All channels accessible to local core and remote PCI masters
 - Misaligned transfer capability
 - Data chaining and direct mode
 - Interrupt on completed segment and chain
- DUART
 - Two 4-wire interfaces (RxD, TxD, RTS, CTS)
 - Programming model compatible with the original 16450 UART and the PC16550D
- Serial peripheral interface (SPI) for master or slave
- General-purpose parallel I/O (GPIO)
 - 64 parallel I/O pins multiplexed on various chip interfaces
- System timers
 - Periodic interrupt timer
 - Real-time clock
 - Software watchdog timer
 - Eight general-purpose timers
- Designed to comply with IEEE Std. 1149.1TM, JTAG boundary scan
- Integrated PCI bus and SDRAM clock generation

2 Electrical Characteristics

This section provides the AC and DC electrical specifications and thermal characteristics for the MPC8349EA. The device is currently targeted to these specifications. Some of these specifications are independent of the I/O cell, but are included for a more complete reference. These are not purely I/O buffer design specifications.

2.1 **Overall DC Electrical Characteristics**

This section covers the ratings, conditions, and other characteristics.

DDR and DDR2 SDRAM

Table 12. DDR2 SDRAM DC Electrical Characteristics for GV_{DD}(typ) = 1.8 V (continued)

Output low current (V _{OUT} = 0.280 V)	I _{OL}	13.4	_	mA	_

Notes:

1. GV_{DD} is expected to be within 50 mV of the DRAM GV_{DD} at all times.

2. MV_{REF} is expected to equal 0.5 × GV_{DD} , and to track GV_{DD} DC variations as measured at the receiver. Peak-to-peak noise on MV_{REF} cannot exceed ±2% of the DC value.

 V_{TT} is not applied directly to the device. It is the supply to which far end signal termination is made and is expected to equal MV_{REF}. This rail should track variations in the DC level of MV_{REF}.

4. Output leakage is measured with all outputs disabled, 0 V \leq V_{OUT} \leq GV_{DD}.

Table 13 provides the DDR2 capacitance when $GV_{DD}(typ) = 1.8$ V.

Table 13. DDR2 SDRAM Capacitance for GV_{DD}(typ) = 1.8 V

Parameter/Condition	Symbol	Min	Мах	Unit	Notes
Input/output capacitance: DQ, DQS, DQS	C _{IO}	6	8	pF	1
Delta input/output capacitance: DQ, DQS, DQS	C _{DIO}	_	0.5	pF	1

Note:

1. This parameter is sampled. $GV_{DD} = 1.8 \text{ V} \pm 0.090 \text{ V}$, f = 1 MHz, T_A = 25°C, V_{OUT} = $GV_{DD}/2$, V_{OUT} (peak-to-peak) = 0.2 V.

Table 14 provides the recommended operating conditions for the DDR SDRAM component(s) when $GV_{DD}(typ) = 2.5 \text{ V}.$

Table 14. DDR SDRAM DC Electrical Characteristics for GV_{DD}(typ) = 2.5 V

Parameter/Condition	Symbol	Min	Мах	Unit	Notes
I/O supply voltage	GV _{DD}	2.375	2.625	V	1
I/O reference voltage	MV _{REF}	$0.49 imes GV_{DD}$	$0.51 imes GV_{DD}$	V	2
I/O termination voltage	V _{TT}	MV _{REF} - 0.04	MV _{REF} + 0.04	V	3
Input high voltage	V _{IH}	MV _{REF} + 0.18	GV _{DD} + 0.3	V	—
Input low voltage	V _{IL}	-0.3	MV _{REF} – 0.18	V	—
Output leakage current	I _{OZ}	-9.9	-9.9	μA	4
Output high current (V _{OUT} = 1.95 V)	I _{ОН}	-15.2	—	mA	—
Output low current (V _{OUT} = 0.35 V)	I _{OL}	15.2	—	mA	—

Notes:

1. GV_{DD} is expected to be within 50 mV of the DRAM GV_{DD} at all times.

2. MV_{REF} is expected to be equal to 0.5 × GV_{DD}, and to track GV_{DD} DC variations as measured at the receiver. Peak-to-peak noise on MV_{REF} may not exceed ±2% of the DC value.

3. V_{TT} is not applied directly to the device. It is the supply to which far end signal termination is made and is expected to be equal to MV_{REF}. This rail should track variations in the DC level of MV_{REF}.

4. Output leakage is measured with all outputs disabled, 0 V \leq V_{OUT} \leq GV_{DD}.

6.2.2 DDR and DDR2 SDRAM Output AC Timing Specifications

Table 20 shows the DDR and DDR2 output AC timing specifications.

Table 20. DDR and DDR2 SDRAM Output AC Timing Specifications

At recommended operating conditions with GV_{DD} of (1.8 or 2.5 V) ± 5%.

Parameter	Symbol ¹	Min	Max	Unit	Notes
ADDR/CMD/MODT output setup with respect to MCK	t _{DDKHAS}			ns	3
400 MHz		1.95	—		
333 MHz		2.40	—		
266 MHz		3.15	—		
200 MHz		4.20	—		
ADDR/CMD/MODT output hold with respect to MCK	t _{DDKHAX}			ns	3
400 MHz		1.95	—		
333 MHz		2.40	—		
266 MHz		3.15	—		
200 MHz		4.20	—		
MCS(n) output setup with respect to MCK	t _{DDKHCS}			ns	3
400 MHz		1.95	—		
333 MHz		2.40	—		
266 MHz		3.15	—		
200 MHz		4.20	—		
MCS(n) output hold with respect to MCK	t _{DDKHCX}			ns	3
400 MHz		1.95	—		
333 MHz		2.40	—		
266 MHz		3.15	—		
200 MHz		4.20	_		
MCK to MDQS Skew	t _{DDKHMH}	-0.6	0.6	ns	4
MDQ/MECC/MDM output setup with respect to MDQS	t _{DDKHDS,} t _{DDKLDS}			ps	5
400 MHz		700	—		
333 MHz		775	—		
266 MHz		1100	—		
200 MHz		1200	—		
MDQ/MECC/MDM output hold with respect to MDQS	t _{DDKHDX,} t _{DDKLDX}			ps	5
400 MHz		700	—		
333 MHz		900	—		
266 MHz		1100	—		
200 MHz		1200	—		
MDQS preamble start	t _{DDKHMP}	$-0.5\times t_{\text{MCK}}-0.6$	$-0.5\times t_{MCK}+0.6$	ns	6

8.1.1 **TSEC DC Electrical Characteristics**

GMII, MII, TBI, RGMII, and RTBI drivers and receivers comply with the DC parametric attributes specified in Table 23 and Table 24. The RGMII and RTBI signals in Table 24 are based on a 2.5-V CMOS interface voltage as defined by JEDEC EIA/JESD8-5.

Parameter	Symbol	Conditions		Min	Max	Unit
Supply voltage 3.3 V	LV _{DD} ²	—		2.97	3.63	V
Output high voltage	V _{OH}	I _{OH} = -4.0 mA	$LV_{DD} = Min$	2.40	LV _{DD} + 0.3	V
Output low voltage	V _{OL}	I _{OL} = 4.0 mA	$LV_{DD} = Min$	GND	0.50	V
Input high voltage	V _{IH}	—	_	2.0	LV _{DD} + 0.3	V
Input low voltage	V _{IL}	—	_	-0.3	0.90	V
Input high current	I _{IH}	$V_{IN}^{1} = LV_{DD}$		_	40	μA
Input low current	IIL	V _{IN} ¹ = GND		-600	_	μÂ

Table 23. GMII/TBI and MII DC Electrical Characteristics

Notes:

1. The symbol V_{IN} , in this case, represents the LV_{IN} symbol referenced in Table 1 and Table 2.

2. GMII/MII pins not needed for RGMII or RTBI operation are powered by the OV_{DD} supply.

Table 24. RGMII/RTBI (When Operating at 2.5 V) DC Electrical Characteristics

Parameters	Symbol	Conditions		Min	Max	Unit
Supply voltage 2.5 V	LV _{DD}	-	—		2.63	V
Output high voltage	V _{OH}	I _{OH} = -1.0 mA	$LV_{DD} = Min$	2.00	LV _{DD} + 0.3	V
Output low voltage	V _{OL}	I _{OL} = 1.0 mA	$LV_{DD} = Min$	GND – 0.3	0.40	V
Input high voltage	V _{IH}	—	— LV _{DD} = Min		LV _{DD} + 0.3	V
Input low voltage	V _{IL}	—	$LV_{DD} = Min$	-0.3	0.70	V
Input high current	I _{IH}	$V_{IN}^{1} = LV_{DD}$		—	10	μA
Input low current	۱ _{IL}	V _{IN} ¹ = GND		-15	—	μA

Note:

1. The symbol V_{IN} , in this case, represents the LV_{IN} symbol referenced in Table 1 and Table 2.

8.2 GMII, MII, TBI, RGMII, and RTBI AC Timing Specifications

The AC timing specifications for GMII, MII, TBI, RGMII, and RTBI are presented in this section.

8.2.1 GMII Timing Specifications

This section describes the GMII transmit and receive AC timing specifications.

Ethernet: Three-Speed Ethernet, MII Management

Table 27. MII Transmit AC Timing Specifications (continued)

At recommended operating conditions with LV_{DD}/OV_{DD} of 3.3 V \pm 10%.

Parameter/Condition	Symbol ¹	Min	Тур	Мах	Unit
TX_CLK data clock rise (20%-80%)	t _{MTXR}	1.0	_	4.0	ns
TX_CLK data clock fall (80%–20%)	t _{MTXF}	1.0		4.0	ns

Note:

The symbols for timing specifications follow the pattern of t<sub>(first two letters of functional block)(signal)(state)(reference)(state) for inputs and t<sub>(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, t_{MTKHDX} symbolizes MII transmit timing (MT) for the time t_{MTX} clock reference (K) going high (H) until data outputs (D) are invalid (X). In general, the clock reference symbol is based on two to three letters representing the clock of a particular function. For example, the subscript of t_{MTX} represents the MII(M) transmit (TX) clock. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall).
</sub></sub>

Figure 11 shows the MII transmit AC timing diagram.

Figure 11. MII Transmit AC Timing Diagram

8.2.2.2 MII Receive AC Timing Specifications

Table 28 provides the MII receive AC timing specifications.

Table 28. MII Receive AC Timing Specifications

At recommended operating conditions with LV_{DD}/OV_{DD} of 3.3 V ± 10%.

Parameter/Condition	Symbol ¹	Min	Тур	Мах	Unit
RX_CLK clock period 10 Mbps	t _{MRX}	—	400	—	ns
RX_CLK clock period 100 Mbps	t _{MRX}	—	40	—	ns
RX_CLK duty cycle	t _{MRXH} /t _{MRX}	35	_	65	%
RXD[3:0], RX_DV, RX_ER setup time to RX_CLK	t _{MRDVKH}	10.0	_	—	ns
RXD[3:0], RX_DV, RX_ER hold time to RX_CLK	t _{MRDXKH}	10.0	_		ns

Table 28. MII Receive AC Timing Specifications (continued)

At recommended operating conditions with LV_{DD}/OV_{DD} of 3.3 V ± 10%.

Parameter/Condition	Symbol ¹	Min	Тур	Max	Unit
RX_CLK clock rise (20%–80%)	t _{MRXR}	1.0	_	4.0	ns
RX_CLK clock fall time (80%-20%)	t _{MRXF}	1.0	_	4.0	ns

Note:

The symbols for timing specifications follow the pattern of t<sub>(first two letters of functional block)(signal)(state)(reference)(state) for inputs and t_{(first two letters of functional block)(reference)(state)(signal)(state)} for outputs. For example, t_{MRDVKH} symbolizes MII receive timing (MR) with respect to the time data input signals (D) reach the valid state (V) relative to the t_{MRX} clock reference (K) going to the high (H) state or setup time. Also, t_{MRDXKL} symbolizes MII receive timing (GR) with respect to the time data input signals (D) went invalid (X) relative to the t_{MRX} clock reference (K) going to the low (L) state or hold time. In general, the clock reference symbol is based on three letters representing the clock of a particular function. For example, the subscript of t_{MRX} represents the MII (M) receive (RX) clock. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall).
</sub>

Figure 12 provides the AC test load for TSEC.

Figure 12. TSEC AC Test Load

Figure 13 shows the MII receive AC timing diagram.

Figure 13. MII Receive AC Timing Diagram

8.2.3 TBI AC Timing Specifications

This section describes the TBI transmit and receive AC timing specifications.

USB

9 USB

This section provides the AC and DC electrical specifications for the USB interface of the MPC8349EA.

9.1 USB DC Electrical Characteristics

Table 35 provides the DC electrical characteristics for the USB interface.

Table 35. USB	DC Electrical	Characteristics
---------------	----------------------	-----------------

Parameter	Symbol	Min	Мах	Unit
High-level input voltage	V _{IH}	2	OV _{DD} + 0.3	V
Low-level input voltage	V _{IL}	-0.3	0.8	V
Input current	I _{IN}	—	±5	μA
High-level output voltage, $I_{OH} = -100 \ \mu A$	V _{OH}	OV _{DD} - 0.2	—	V
Low-level output voltage, $I_{OL} = 100 \ \mu A$	V _{OL}	_	0.2	V

9.2 USB AC Electrical Specifications

Table 36 describes the general timing parameters of the USB interface of the MPC8349EA.

Table 36. USB General Timing Parameters (ULPI Mode Only)

Parameter	Symbol ¹	Min	Max	Unit	Notes
USB clock cycle time	t _{USCK}	15		ns	2–5
Input setup to USB clock—all inputs	t _{USIVKH}	4	-	ns	2–5
Input hold to USB clock—all inputs	t _{USIXKH}	1	-	ns	2–5
USB clock to output valid—all outputs	t _{USKHOV}	—	7	ns	2–5
Output hold from USB clock—all outputs	t _{USKHOX}	2	_	ns	2–5

Notes:

 The symbols for timing specifications follow the pattern of t_{(first two letters of functional block)(signal)(state)(reference)(state)} for inputs and t_(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, t_{USIXKH} symbolizes USB timing (US) for the input (I) to go invalid (X) with respect to the time the USB clock reference (K) goes high (H). Also, t_{USKHOX} symbolizes USB timing (US) for the USB clock reference (K) to go high (H), with respect to the output (O) going invalid (X) or output hold time.

2. All timings are in reference to USB clock.

3. All signals are measured from $OV_{DD}/2$ of the rising edge of the USB clock to $0.4 \times OV_{DD}$ of the signal in question for 3.3 V signaling levels.

4. Input timings are measured at the pin.

5. For active/float timing measurements, the Hi-Z or off-state is defined to be when the total current delivered through the component pin is less than or equal to that of the leakage current specification.

Figure 18 and Figure 19 provide the AC test load and signals for the USB, respectively.

10 Local Bus

This section describes the DC and AC electrical specifications for the local bus interface of the MPC8349EA.

10.1 Local Bus DC Electrical Characteristics

Table 37 provides the DC electrical characteristics for the local bus interface.

 Table 37. Local Bus DC Electrical Characteristics

Parameter	Symbol	Min	Мах	Unit
High-level input voltage	V _{IH}	2	OV _{DD} + 0.3	V
Low-level input voltage	V _{IL}	-0.3	0.8	V
Input current	I _{IN}	_	±5	μA
High-level output voltage, $I_{OH} = -100 \ \mu A$	V _{OH}	OV _{DD} - 0.2	_	V
Low-level output voltage, $I_{OL} = 100 \ \mu A$	V _{OL}	_	0.2	V

Local Bus

Figure 25. Local Bus Signals, GPCM/UPM Signals for LCCR[CLKDIV] = 4 (DLL Bypass Mode)

JTAG

Parameter	Symbol	Condition	Min	Max	Unit
Output low voltage	V _{OL}	I _{OL} = 8.0 mA	_	0.5	V
Output low voltage	V _{OL}	I _{OL} = 3.2 mA	_	0.4	V

Table 40. JTAG Interface DC Electrical Characteristics (continued)

11.2 JTAG AC Timing Specifications

This section describes the AC electrical specifications for the IEEE Std. 1149.1 (JTAG) interface of the MPC8349EA. Table 41 provides the JTAG AC timing specifications as defined in Figure 28 through Figure 31.

Table 41. JTAG AC Timing Specifications (Independent of CLKIN)¹

At recommended operating conditions (see Table 2).

Para	Symbol ²	Min	Max	Unit	Notes	
JTAG external clock frequer	ncy of operation	f _{JTG}	0	33.3	MHz	—
JTAG external clock cycle ti	me	t _{JTG}	30	_	ns	—
JTAG external clock pulse w	vidth measured at 1.4 V	t _{JTKHKL}	15	—	ns	—
JTAG external clock rise and	d fall times	t _{JTGR} , t _{JTGF}	0	2	ns	—
TRST assert time		t _{TRST}	25	—	ns	3
Input setup times:	Boundary-scan data TMS, TDI	t _{JTDVKH} t _{JTIVKH}	4 4	_ _	ns	4
Input hold times:	Boundary-scan data TMS, TDI	t _{JTDXKH} t _{JTIXKH}	10 10		ns	4
Valid times:	Boundary-scan data TDO	t _{jtkldv} t _{jtklov}	2 2	11 11	ns	5
Output hold times:	Boundary-scan data TDO	t _{jtkldx} t _{jtklox}	2 2		ns	5

SPI

17 SPI

This section describes the SPI DC and AC electrical specifications.

17.1 SPI DC Electrical Characteristics

Table 53 provides the SPI DC electrical characteristics.

Table 53. SPI DC Electrical Characteristics

Parameter	Symbol	Condition	Min	Мах	Unit
Input high voltage	V _{IH}	—	2.0	OV _{DD} + 0.3	V
Input low voltage	V _{IL}	—	-0.3	0.8	V
Input current	I _{IN}	—	—	±5	μA
Output high voltage	V _{OH}	I _{OH} = -8.0 mA	2.4	—	V
Output low voltage	V _{OL}	I _{OL} = 8.0 mA	—	0.5	V
Output low voltage	V _{OL}	I _{OL} = 3.2 mA	—	0.4	V

17.2 SPI AC Timing Specifications

Table 54 provides the SPI input and output AC timing specifications.

Table 54. SPI AC Timing Specifications¹

Parameter	Symbol ²	Min	Мах	Unit
SPI outputs valid—Master mode (internal clock) delay	t _{NIKHOV}	_	6	ns
SPI outputs hold—Master mode (internal clock) delay	t _{NIKHOX}	0.5	—	ns
SPI outputs valid—Slave mode (external clock) delay	t _{NEKHOV}	_	8	ns
SPI outputs hold—Slave mode (external clock) delay	t _{NEKHOX}	2	—	ns
SPI inputs—Master mode (internal clock input setup time	t _{NIIVKH}	4	—	ns
SPI inputs—Master mode (internal clock input hold time	t _{NIIXKH}	0	—	ns
SPI inputs—Slave mode (external clock) input setup time	t _{NEIVKH}	4	—	ns
SPI inputs—Slave mode (external clock) input hold time	t _{NEIXKH}	2	—	ns

Notes:

1. Output specifications are measured from the 50 percent level of the rising edge of CLKIN to the 50 percent level of the signal. Timings are measured at the pin.

The symbols for timing specifications follow the pattern of t<sub>(first two letters of functional block)(signal)(state)(reference)(state) for inputs and t_{(first two letters of functional block)(reference)(state)(signal)(state)} for outputs. For example, t_{NIKHOX} symbolizes the internal timing (NI) for the time SPICLK clock reference (K) goes to the high state (H) until outputs (O) are invalid (X).
</sub>

18.3 Pinout Listings

Table 55 provides the pin-out listing for the MPC8349EA, 672 TBGA package.

Table 55. MPC8349EA (TBGA) Pinout Listing

Signal	Package Pin Number	Pin Type	Power Supply	Notes
	PCI1 and PCI2 (One 64-Bit or Two 32-Bit)			
PCI1_INTA/IRQ_OUT	B34	0	OV _{DD}	2
PCI1_RESET_OUT	C33	0	OV _{DD}	_
PCI1_AD[31:0]	G30, G32, G34, H31, H32, H33, H34, J29, J32, J33, L30, K31, K33, K34, L33, L34, P34, R29, R30, R33, R34, T31, T32, T33, U31, U34, V31, V32, V33, V34, W33, W34	I/O	OV _{DD}	—
PCI1_C/BE[3:0]	J30, M31, P33, T34	I/O	OV _{DD}	
PCI1_PAR	P32	I/O	OV _{DD}	_
PCI1_FRAME	M32	I/O	OV _{DD}	5
PCI1_TRDY	N29	I/O	OV _{DD}	5
PCI1_IRDY	M34	I/O	OV _{DD}	5
PCI1_STOP	N31	I/O	OV _{DD}	5
PCI1_DEVSEL	N30	I/O	OV _{DD}	5
PCI1_IDSEL	J31	I	OV _{DD}	_
PCI1_SERR	N34	I/O	OV _{DD}	5
PCI1_PERR	N33	I/O	OV _{DD}	5
PCI1_REQ[0]	D32	I/O	OV _{DD}	_
PCI1_REQ[1]/CPCI1_HS_ES	D34	I	OV _{DD}	_
PCI1_REQ[2:4]	E34, F32, G29	I	OV _{DD}	_
PCI1_GNT0	C34	I/O	OV _{DD}	_
PCI1_GNT1/CPCI1_HS_LED	D33	0	OV _{DD}	_
PCI1_GNT2/CPCI1_HS_ENUM	E33	0	OV _{DD}	_
PCI1_GNT[3:4]	F31, F33	0	OV _{DD}	_
PCI2_RESET_OUT/GPIO2[0]	W32	I/O	OV _{DD}	_
PCI2_AD[31:0]/PCI1[63:32]	AA33, AA34, AB31, AB32, AB33, AB34, AC29, AC31, AC33, AC34, AD30, AD32, AD33, AD34, AE29, AE30, AH32, AH33, AH34, AM33, AJ31, AJ32, AJ33, AJ34, AK32, AK33, AK34, AM34, AL33, AL34, AK31, AH30	I/O	OV _{DD}	
PCI2_C/BE[3:0]/PCI1_C/BE[7:4]	AC32, AE32, AH31, AL32	I/O	OV _{DD}	—
PCI2_PAR/PCI1_PAR64	AG34	I/O	OV _{DD}	_

RCWL[SPMF]	System PLL Multiplication Factor
0111	× 7
1000	× 8
1001	× 9
1010	× 10
1011	× 11
1100	× 12
1101	× 13
1110	× 14
1111	× 15

Table 58. System	n PLL Multi	plication	Factors	(continued))
------------------	-------------	-----------	---------	-------------	---

As described in Section 19, "Clocking," the LBIUCM, DDRCM, and SPMF parameters in the reset configuration word low and the CFG_CLKIN_DIV configuration input signal select the ratio between the primary clock input (CLKIN or PCI_CLK) and the internal coherent system bus clock (*csb_clk*). Table 59 and Table 60 show the expected frequency values for the CSB frequency for select *csb_clk* to CLKIN/PCI_SYNC_IN ratios.

			In	put Clock Fre	quency (MHz) ²
CFG_CLKIN_DIV at Reset ¹	SPMF	<i>csb_clk</i> : Input Clock Ratio ²	16.67	25	33.33	66.67
			csb_clk Frequency (MHz)			
Low	0010	2 : 1				133
Low	0011	3 : 1			100	200
Low	0100	4 : 1		100	133	266
Low	0101	5 : 1		125	166	333

Table 59. CSB Frequency Options for Host Mode

	RC	WL	400 MHz Device		533 MHz Device			667 MHz Device			
Ref No. ¹	SPMF	CORE PLL	Input Clock Freq (MHz) ²	CSB Freq (MHz)	Core Freq (MHz)	Input Clock Freq (MHz) ²	CSB Freq (MHz)	Core Freq (MHz)	Input Clock Freq (MHz) ²	CSB Freq (MHz)	Core Freq (MHz)
306	0011	0000110					_		66	200	600
405	0100	0000101	—		_			66	266	667	
504	0101	0000100		—		_		66	333	667	

Table 62. Suggested PLL Configurations (continued)

¹ The PLL configuration reference number is the hexadecimal representation of RCWL, bits 4–15 associated with the SPMF and COREPLL settings given in the table.

² The input clock is CLKIN for PCI host mode or PCI_CLK for PCI agent mode.

20 Thermal

This section describes the thermal specifications of the MPC8349EA.

20.1 Thermal Characteristics

Table 63 provides the package thermal characteristics for the 672 35×35 mm TBGA of the MPC8349EA.

Table 63. Package Thermal	Characteristics for TBGA
---------------------------	--------------------------

Characteristic	Symbol	Value	Unit	Notes
Junction-to-ambient natural convection on single-layer board (1s)	R _{θJA}	14	°C/W	1, 2
Junction-to-ambient natural convection on four-layer board (2s2p)	$R_{ ext{ heta}JMA}$	11	°C/W	1, 3
Junction-to-ambient (at 200 ft/min) on single-layer board (1s)	R_{\thetaJMA}	11	°C/W	1, 3
Junction-to-ambient (at 200 ft/min) on four-layer board (2s2p)	R_{\thetaJMA}	8	°C/W	1, 3
Junction-to-ambient (at 2 m/s) on single-layer board (1s)	R_{\thetaJMA}	9	°C/W	1, 3
Junction-to-ambient (at 2 m/s) on four-layer board (2s2p)	$R_{ ext{ heta}JMA}$	7	°C/W	1, 3
Junction-to-board thermal	$R_{\theta JB}$	3.8	°C/W	4
Junction-to-case thermal	$R_{ ext{ heta}JC}$	1.7	°C/W	5

Table 63. Package Thermal Characteristics for TBGA (continued)

Characteristic	Symbol	Value	Unit	Notes
Junction-to-package natural convection on top	Ψ_{JT}	1	°C/W	6

Notes:

- 1. Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal resistance.
- 2. Per SEMI G38-87 and JEDEC JESD51-2 with the single-layer board horizontal.
- 3. Per JEDEC JESD51-6 with the board horizontal, 1 m/s is approximately equal to 200 linear feet per minute (LFM).
- 4. Thermal resistance between the die and the printed-circuit board per JEDEC JESD51-8. Board temperature is measured on the top surface of the board near the package.
- 5. Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883 Method 1012.1).
- 6. Thermal characterization parameter indicating the temperature difference between package top and the junction temperature per JEDEC JESD51-2. When Greek letters are not available, the thermal characterization parameter is written as Psi-JT.

20.2 Thermal Management Information

For the following sections, $P_D = (V_{DD} \times I_{DD}) + P_{I/O}$ where $P_{I/O}$ is the power dissipation of the I/O drivers. See Table 5 for I/O power dissipation values.

20.2.1 Estimation of Junction Temperature with Junction-to-Ambient Thermal Resistance

An estimation of the chip junction temperature, T_J, can be obtained from the equation:

$$T_J = T_A + (R_{\theta JA} \times P_D)$$

where:

 T_J = junction temperature (°C)

 T_A = ambient temperature for the package (°C)

 $R_{\theta JA}$ = junction-to-ambient thermal resistance (°C/W)

 P_D = power dissipation in the package (W)

The junction-to-ambient thermal resistance is an industry-standard value that provides a quick and easy estimation of thermal performance. Generally, the value obtained on a single-layer board is appropriate for a tightly packed printed-circuit board. The value obtained on the board with the internal planes is usually appropriate if the board has low power dissipation and the components are well separated. Test cases have demonstrated that errors of a factor of two (in the quantity $T_J - T_A$) are possible.

20.2.2 Estimation of Junction Temperature with Junction-to-Board Thermal Resistance

The thermal performance of a device cannot be adequately predicted from the junction-to-ambient thermal resistance. The thermal performance of any component is strongly dependent on the power dissipation of surrounding components. In addition, the ambient temperature varies widely within the application. For many natural convection and especially closed box applications, the board temperature at the perimeter

where:

 $R_{\theta JA}$ = junction-to-ambient thermal resistance (°C/W)

 $R_{\theta JC}$ = junction-to-case thermal resistance (°C/W)

 $R_{\theta CA}$ = case-to-ambient thermal resistance (°C/W)

 $R_{\theta JC}$ is device-related and cannot be influenced by the user. The user controls the thermal environment to change the case-to-ambient thermal resistance, $R_{\theta CA}$. For instance, the user can change the size of the heat sink, the air flow around the device, the interface material, the mounting arrangement on printed-circuit board, or change the thermal dissipation on the printed-circuit board surrounding the device.

The thermal performance of devices with heat sinks has been simulated with a few commercially available heat sinks. The heat sink choice is determined by the application environment (temperature, air flow, adjacent component power dissipation) and the physical space available. Because there is not a standard application environment, a standard heat sink is not required.

Table 64 shows heat sink thermal resistance for TBGA of the MPC8349EA.

Host Sink Assuming Thermal Grosse	Air Flow	35 imes 35 mm TBGA	
neat Sink Assuming Merinai Grease		Thermal Resistance	
AAVID $30 \times 30 \times 9.4$ mm pin fin	Natural convection	10	
AAVID $30 \times 30 \times 9.4$ mm pin fin	1 m/s	6.5	
AAVID $30 \times 30 \times 9.4$ mm pin fin	2 m/s	5.6	
AAVID 31 \times 35 \times 23 mm pin fin	Natural convection	8.4	
AAVID 31 \times 35 \times 23 mm pin fin	1 m/s	4.7	
AAVID 31 \times 35 \times 23 mm pin fin	2 m/s	4	
Wakefield, $53 \times 53 \times 25$ mm pin fin	Natural convection	5.7	
Wakefield, $53 \times 53 \times 25$ mm pin fin	1 m/s	3.5	
Wakefield, $53 \times 53 \times 25$ mm pin fin	2 m/s	2.7	
MEI, $75 \times 85 \times 12$ no adjacent board, extrusion	Natural convection	6.7	
MEI, 75 \times 85 \times 12 no adjacent board, extrusion	1 m/s	4.1	
MEI, $75 \times 85 \times 12$ no adjacent board, extrusion	2 m/s	2.8	
MEI, $75 \times 85 \times 12$ mm, adjacent board, 40 mm side bypass	1 m/s	3.1	

Table 64. Heat Sink and Thermal Resistance of MPC8349EA (TBGA)

Accurate thermal design requires thermal modeling of the application environment using computational fluid dynamics software which can model both the conduction cooling and the convection cooling of the air moving through the application. Simplified thermal models of the packages can be assembled using the junction-to-case and junction-to-board thermal resistances listed in the thermal resistance table. More detailed thermal models can be made available on request.

Ordering Information

 $V_2 = (1 \div (1/R_1 + 1/R_2)) \times I_{source}$. Solving for the output impedance gives $R_{source} = R_{term} \times (V_1 \div V_2 - 1)$. The drive current is then $I_{source} = V_1 \div R_{source}$.

Table 65 summarizes the signal impedance targets. The driver impedance are targeted at minimum V_{DD} , nominal OV_{DD} , 105°C.

Impedance	Local Bus, Ethernet, DUART, Control, Configuration, Power Management	PCI Signals (Not Including PCI Output Clocks)	PCI Output Clocks (Including PCI_SYNC_OUT)	DDR DRAM	Symbol	Unit
R _N	42 Target	25 Target	42 Target	20 Target	Z ₀	W
R _P	42 Target	25 Target	42 Target	20 Target	Z ₀	W
Differential	NA	NA	NA	NA	Z _{DIFF}	W

Table 65. Impedance Characteristics

Note: Nominal supply voltages. See Table 1, $T_j = 105^{\circ}C$.

21.6 Configuration Pin Multiplexing

The MPC8349EA power-on configuration options can be set through external pull-up or pull-down resistors of 4.7 k Ω on certain output pins (see the customer-visible configuration pins). These pins are used as output only pins in normal operation.

However, while HRESET is asserted, these pins are treated as inputs, and the value on these pins is latched when PORESET deasserts. Then the input receiver is disabled and the I/O circuit takes on its normal function. Careful board layout with stubless connections to these pull-up/pull-down resistors coupled with the large value of the pull-up/pull-down resistor should minimize the disruption of signal quality or speed for the output pins.

21.7 Pull-Up Resistor Requirements

The MPC8349EA requires high resistance pull-up resistors (10 k Ω is recommended) on open-drain pins, including I²C pins, and IPIC interrupt pins.

For more information on required pull-up resistors and the connections required for the JTAG interface, refer to application note AN2931, "PowerQUICC Design Checklist."

22 Ordering Information

This section presents ordering information for the device discussed in this document, and it shows an example of how the parts are marked.

NOTE

The information in this document is accurate for revision 3.x silicon and later (in other words, for orderable part numbers ending in A or B). For information on revision 1.1 silicon and earlier versions, see the *MPC8349E PowerQUICC II Pro Integrated Host Processor Hardware Specifications* (Document Order No. MPC8349EEC).

How to Reach Us:

Home Page: www.freescale.com

Web Support: http://www.freescale.com/support

USA/Europe or Locations Not Listed:

Freescale Semiconductor, Inc. Technical Information Center, EL516 2100 East Elliot Road Tempe, Arizona 85284 1-800-521-6274 or +1-480-768-2130 www.freescale.com/support

Europe, Middle East, and Africa:

Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) www.freescale.com/support

Japan:

Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku Tokyo 153-0064 Japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor China Ltd. Exchange Building 23F No. 118 Jianguo Road Chaoyang District Beijing 100022 China +86 10 5879 8000 support.asia@freescale.com

For Literature Requests Only:

Freescale Semiconductor Literature Distribution Center 1-800 441-2447 or +1-303-675-2140 Fax: +1-303-675-2150 LDCForFreescaleSemiconductor @hibbertgroup.com Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.

Freescale, the Freescale logo and PowerQUICC are trademarks of Freescale Semiconductor, Inc. Reg. U.S. Pat. & Tm. Off. The Power Architecture and Power.org word marks and the Power and Power.org logos and related marks are trademarks and service marks licensed by Power.org.

© 2006–2011 Freescale Semiconductor, Inc.

Document Number: MPC8349EAEC Rev. 13 09/2011

