

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

E·XF

Product Status	Active
Core Processor	PowerPC e300
Number of Cores/Bus Width	1 Core, 32-Bit
Speed	533MHz
Co-Processors/DSP	-
RAM Controllers	DDR, DDR2
Graphics Acceleration	No
Display & Interface Controllers	-
Ethernet	10/100/1000Mbps (2)
SATA	-
USB	USB 2.0 + PHY (2)
Voltage - I/O	1.8V, 2.5V, 3.3V
Operating Temperature	-40°C ~ 105°C (TA)
Security Features	-
Package / Case	672-LBGA
Supplier Device Package	672-TBGA (35x35)
Purchase URL	https://www.e-xfl.com/pro/item?MUrl=&PartUrl=mpc8349czuajdb

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

- Complies with USB specification Rev. 2.0
- Can operate as a stand-alone USB device
 - One upstream facing port
 - Six programmable USB endpoints
- Can operate as a stand-alone USB host controller
 - USB root hub with one downstream-facing port
 - Enhanced host controller interface (EHCI) compatible
 - High-speed (480 Mbps), full-speed (12 Mbps), and low-speed (1.5 Mbps) operations
- External PHY with UTMI, serial and UTMI+ low-pin interface (ULPI)
- Universal serial bus (USB) multi-port host controller
 - Can operate as a stand-alone USB host controller
 - USB root hub with one or two downstream-facing ports
 - Enhanced host controller interface (EHCI) compatible
 - Complies with USB Specification Rev. 2.0
 - High-speed (480 Mbps), full-speed (12 Mbps), and low-speed (1.5 Mbps) operations
 - Direct connection to a high-speed device without an external hub
 - External PHY with serial and low-pin count (ULPI) interfaces
- Local bus controller (LBC)
 - Multiplexed 32-bit address and data operating at up to 133 MHz
 - Eight chip selects for eight external slaves
 - Up to eight-beat burst transfers
 - 32-, 16-, and 8-bit port sizes controlled by an on-chip memory controller
 - Three protocol engines on a per chip select basis:
 - General-purpose chip select machine (GPCM)
 - Three user-programmable machines (UPMs)
 - Dedicated single data rate SDRAM controller
 - Parity support
 - Default boot ROM chip select with configurable bus width (8-, 16-, or 32-bit)
- Programmable interrupt controller (PIC)
 - Functional and programming compatibility with the MPC8260 interrupt controller
 - Support for 8 external and 35 internal discrete interrupt sources
 - Support for 1 external (optional) and 7 internal machine checkstop interrupt sources
 - Programmable highest priority request
 - Four groups of interrupts with programmable priority
 - External and internal interrupts directed to host processor
 - Redirects interrupts to external INTA pin in core disable mode.
 - Unique vector number for each interrupt source

Figure 3 shows the undershoot and overshoot voltage of the PCI interface of the MPC8349EA for the 3.3-V signals, respectively.

Figure 3. Maximum AC Waveforms on PCI Interface for 3.3-V Signaling

2.1.3 Output Driver Characteristics

Table 3 provides information on the characteristics of the output driver strengths. The values are preliminary estimates.

Driver Type	Output Impedance (Ω)	Supply Voltage
Local bus interface utilities signals	40	OV _{DD} = 3.3 V
PCI signals (not including PCI output clocks)	25	
PCI output clocks (including PCI_SYNC_OUT)	40	
DDR signal	18	GV _{DD} = 2.5 V
DDR2 signal	18 36 (half-strength mode)	GV _{DD} = 1.8 V
TSEC/10/100 signals	40	LV _{DD} = 2.5/3.3 V
DUART, system control, I ² C, JTAG, USB	40	OV _{DD} = 3.3 V
GPIO signals	40	OV _{DD} = 3.3 V, LV _{DD} = 2.5/3.3 V

Table 3. Output Drive Capability

2.2 **Power Sequencing**

This section details the power sequencing considerations for the MPC8349EA.

2.2.1 Power-Up Sequencing

MPC8349EA does not require the core supply voltage (V_{DD} and AV_{DD}) and I/O supply voltages (GV_{DD} , LV_{DD} , and OV_{DD}) to be applied in any particular order. During the power ramp up, before the power

DDR and DDR2 SDRAM

Table 12. DDR2 SDRAM DC Electrical Characteristics for GV_{DD}(typ) = 1.8 V (continued)

Output low current (V _{OUT} = 0.280 V)	I _{OL}	13.4	_	mA	_

Notes:

1. GV_{DD} is expected to be within 50 mV of the DRAM GV_{DD} at all times.

2. MV_{REF} is expected to equal 0.5 × GV_{DD} , and to track GV_{DD} DC variations as measured at the receiver. Peak-to-peak noise on MV_{REF} cannot exceed ±2% of the DC value.

 V_{TT} is not applied directly to the device. It is the supply to which far end signal termination is made and is expected to equal MV_{REF}. This rail should track variations in the DC level of MV_{REF}.

4. Output leakage is measured with all outputs disabled, 0 V \leq V_{OUT} \leq GV_{DD}.

Table 13 provides the DDR2 capacitance when $GV_{DD}(typ) = 1.8$ V.

Table 13. DDR2 SDRAM Capacitance for GV_{DD}(typ) = 1.8 V

Parameter/Condition	Symbol	Min	Мах	Unit	Notes
Input/output capacitance: DQ, DQS, DQS	C _{IO}	6	8	pF	1
Delta input/output capacitance: DQ, DQS, DQS	C _{DIO}	_	0.5	pF	1

Note:

1. This parameter is sampled. $GV_{DD} = 1.8 \text{ V} \pm 0.090 \text{ V}$, f = 1 MHz, T_A = 25°C, V_{OUT} = $GV_{DD}/2$, V_{OUT} (peak-to-peak) = 0.2 V.

Table 14 provides the recommended operating conditions for the DDR SDRAM component(s) when $GV_{DD}(typ) = 2.5 \text{ V}.$

Table 14. DDR SDRAM DC Electrical Characteristics for GV_{DD}(typ) = 2.5 V

Parameter/Condition	Symbol	Min	Мах	Unit	Notes
I/O supply voltage	GV _{DD}	2.375	2.625	V	1
I/O reference voltage	MV _{REF}	$0.49 imes GV_{DD}$	$0.51 imes GV_{DD}$	V	2
I/O termination voltage	V _{TT}	MV _{REF} - 0.04	MV _{REF} + 0.04	V	3
Input high voltage	V _{IH}	MV _{REF} + 0.18	GV _{DD} + 0.3	V	—
Input low voltage	V _{IL}	-0.3	MV _{REF} – 0.18	V	—
Output leakage current	I _{OZ}	-9.9	-9.9	μA	4
Output high current (V _{OUT} = 1.95 V)	I _{ОН}	-15.2	—	mA	—
Output low current (V _{OUT} = 0.35 V)	I _{OL}	15.2	—	mA	—

Notes:

1. GV_{DD} is expected to be within 50 mV of the DRAM GV_{DD} at all times.

2. MV_{REF} is expected to be equal to 0.5 × GV_{DD}, and to track GV_{DD} DC variations as measured at the receiver. Peak-to-peak noise on MV_{REF} may not exceed ±2% of the DC value.

3. V_{TT} is not applied directly to the device. It is the supply to which far end signal termination is made and is expected to be equal to MV_{REF}. This rail should track variations in the DC level of MV_{REF}.

4. Output leakage is measured with all outputs disabled, 0 V \leq V_{OUT} \leq GV_{DD}.

Parameter	Symbol	Min	Мах	Unit
High-level output voltage, $I_{OH} = -100 \ \mu A$	V _{OH}	OV _{DD} - 0.2	-	V
Low-level output voltage, $I_{OL} = 100 \ \mu A$	V _{OL}	—	0.2	V

7.2 DUART AC Electrical Specifications

Table 22 provides the AC timing parameters for the DUART interface of the MPC8349EA.

Table 22. DUART AC Timing Specifications

Parameter	Value	Unit	Notes
Minimum baud rate	256	baud	_
Maximum baud rate	> 1,000,000	baud	1
Oversample rate	16		2

Notes:

1. Actual attainable baud rate will be limited by the latency of interrupt processing.

2. The middle of a start bit is detected as the 8th sampled 0 after the 1-to-0 transition of the start bit. Subsequent bit values are sampled each 16th sample.

8 Ethernet: Three-Speed Ethernet, MII Management

This section provides the AC and DC electrical characteristics for three-speeds (10/100/1000 Mbps) and MII management.

8.1 Three-Speed Ethernet Controller (TSEC)—GMII/MII/TBI/RGMII/RTBI Electrical Characteristics

The electrical characteristics specified here apply to gigabit media independent interface (GMII), the media independent interface (MII), ten-bit interface (TBI), reduced gigabit media independent interface (RGMII), and reduced ten-bit interface (RTBI) signals except management data input/output (MDIO) and management data clock (MDC). The MII, GMII, and TBI interfaces are defined for 3.3 V, and the RGMII and RTBI interfaces are defined for 2.5 V. The RGMII and RTBI interfaces follow the Hewlett-Packard *Reduced Pin-Count Interface for Gigabit Ethernet Physical Layer Device Specification*, Version 1.2a (9/22/2000). The electrical characteristics for MDIO and MDC are specified in Section 8.3, "Ethernet Management Interface Electrical Characteristics."

Table 26. GMII Receive AC Timing Specifications (continued)

At recommended operating conditions with LV_{DD}/OV_{DD} of 3.3 V \pm 10%.

Parameter/Condition	Symbol ¹	Min	Тур	Мах	Unit
RX_CLK clock rise (20%–80%)	t _{GRXR}		_	1.0	ns
RX_CLK clock fall time (80%-20%)	t _{GRXF}	_		1.0	ns

Note:

The symbols for timing specifications follow the pattern of t<sub>(first two letters of functional block)(signal)(state)(reference)(state) for inputs and t_{(first two letters of functional block)(reference)(state)(signal)(state)} for outputs. For example, t_{GRDVKH} symbolizes GMII receive timing (GR) with respect to the time data input signals (D) reaching the valid state (V) relative to the t_{RX} clock reference (K) going to the high state (H) or setup time. Also, t_{GRDXKL} symbolizes GMII receive timing (GR) with respect to the time data input signals (D) went invalid (X) relative to the t_{GRX} clock reference (K) going to the low (L) state or hold time. In general, the clock reference symbol is based on three letters representing the clock of a particular function. For example, the subscript of t_{GRX} represents the GMII (G) receive (RX) clock. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall).
</sub>

Figure 10 shows the GMII receive AC timing diagram.

8.2.2 MII AC Timing Specifications

This section describes the MII transmit and receive AC timing specifications.

8.2.2.1 MII Transmit AC Timing Specifications

Table 27 provides the MII transmit AC timing specifications.

Table 27. MII Transmit AC Tim	ing Specifications
-------------------------------	--------------------

```
At recommended operating conditions with LV_{DD}/OV_{DD} of 3.3 V ± 10%.
```

Parameter/Condition	Symbol ¹	Min	Тур	Max	Unit
TX_CLK clock period 10 Mbps	t _{MTX}	—	400	—	ns
TX_CLK clock period 100 Mbps	t _{MTX}	—	40	—	ns
TX_CLK duty cycle	t _{MTXH} /t _{MTX}	35	—	65	%
TX_CLK to MII data TXD[3:0], TX_ER, TX_EN delay	t _{MTKHDX}	1	5	15	ns

Ethernet: Three-Speed Ethernet, MII Management

Table 32. MII Management DC Electrical Characteristics Powered at 2.5 V	(continued)
---	-------------

Parameter	Symbol	Conditions	Min	Мах	Unit
Input high current	I _{IH}	$V_{IN}^{1} = LV_{DD}$	-	10	μA
Input low current	IIL	$V_{IN} = LV_{DD}$	-15	_	μA

Note:

1. The symbol V_{IN} , in this case, represents the LV_{IN} symbol referenced in Table 1 and Table 2.

Parameter	Symbol	Conditions		Min	Мах	Unit
Supply voltage (3.3 V)	LV _{DD}	_	_	2.97	3.63	V
Output high voltage	V _{OH}	I _{OH} = -1.0 mA	$LV_{DD} = Min$	2.10	LV _{DD} + 0.3	V
Output low voltage	V _{OL}	I _{OL} = 1.0 mA	$LV_{DD} = Min$	GND	0.50	V
Input high voltage	V _{IH}	-	_	2.00	—	V
Input low voltage	V _{IL}	_	_	-	0.80	V
Input high current	I _{IH}	LV _{DD} = Max	$V_{IN}^{1} = 2.1 V$	_	40	μA
Input low current	۱ _{IL}	LV _{DD} = Max	V _{IN} = 0.5 V	-600	—	μA

Note:

1. The symbol V_{IN} , in this case, represents the LV_{IN} symbol referenced in Table 1 and Table 2.

8.3.2 MII Management AC Electrical Specifications

Table 34 provides the MII management AC timing specifications.

Table 34. MII Management AC Timing Specifications

At recommended operating conditions with LV_{DD} is 3.3 V ± 10% or 2.5 V ± 5%.

Parameter/Condition	Symbol ¹	Min	Тур	Мах	Unit	Notes
MDC frequency	f _{MDC}	_	2.5		MHz	2
MDC period	t _{MDC}		400		ns	_
MDC clock pulse width high	t _{MDCH}	32	—	_	ns	—
MDC to MDIO delay	t _{MDKHDX}	10	—	70	ns	3
MDIO to MDC setup time	t _{MDDVKH}	5	—	_	ns	—
MDIO to MDC hold time	t _{MDDXKH}	0	—	_	ns	—
MDC rise time	t _{MDCR}	_		10	ns	

Table 41. JTAG AC Timing Specifications (Independent of CLKIN)¹ (continued)

At recommended operating conditions (see Table 2).

Parameter	Symbol ²	Min	Max	Unit	Notes
JTAG external clock to output high impedance: Boundary-scan data TDO	t _{JTKLDZ} t _{JTKLOZ}	2 2	19 9	ns	5, 6

Notes:

1. All outputs are measured from the midpoint voltage of the falling/rising edge of t_{TCLK} to the midpoint of the signal in question. The output timings are measured at the pins. All output timings assume a purely resistive 50 Ω load (see Figure 18). Time-of-flight delays must be added for trace lengths, vias, and connectors in the system.

2. The symbols for timing specifications follow the pattern of t_{(first two letters of functional block)(signal)(state)(reference)(state) for inputs and t_{(first two letters of functional block)(reference)(state)(signal)(state)} for outputs. For example, t_{JTDVKH} symbolizes JTAG device timing (JT) with respect to the time data input signals (D) reaching the valid state (V) relative to the t_{JTG} clock reference (K) going to the high (H) state or setup time. Also, t_{JTDXKH} symbolizes JTAG timing (JT) with respect to the time data input signals (D) went invalid (X) relative to the t_{JTG} clock reference (K) going to the high (H) state. In general, the clock reference symbol is based on three letters representing the clock of a particular function. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall).}

3. TRST is an asynchronous level sensitive signal. The setup time is for test purposes only.

4. Non-JTAG signal input timing with respect to t_{TCLK}.

5. Non-JTAG signal output timing with respect to t_{TCLK}.

6. Guaranteed by design and characterization.

Figure 27 provides the AC test load for TDO and the boundary-scan outputs of the MPC8349EA.

Figure 27. AC Test Load for the JTAG Interface

Figure 28 provides the JTAG clock input timing diagram.

Figure 28. JTAG Clock Input Timing Diagram

Figure 29 provides the $\overline{\text{TRST}}$ timing diagram.

JTAG

Figure 30 provides the boundary-scan timing diagram.

12 I²C

This section describes the DC and AC electrical characteristics for the I²C interface of the MPC8349EA.

12.1 I²C DC Electrical Characteristics

Table 42 provides the DC electrical characteristics for the I²C interface of the MPC8349EA.

Table 42. I²C DC Electrical Characteristics

At recommended operating conditions with OV_{DD} of 3.3 V \pm 10%.

Parameter	Symbol	Min	Max	Unit	Notes
Input high voltage level	V _{IH}	$0.7 \times OV_{DD}$	OV _{DD} + 0.3	V	_
Input low voltage level	V _{IL}	-0.3	$0.3\times\text{OV}_{\text{DD}}$	V	_
Low level output voltage	V _{OL}	0	$0.2\times\text{OV}_{\text{DD}}$	V	1
Output fall time from $V_{IH}(\text{min})$ to $V_{IL}(\text{max})$ with a bus capacitance from 10 to 400 pF	t _{I2KLKV}	$20 + 0.1 \times C_B$	250	ns	2
Pulse width of spikes which must be suppressed by the input filter	t _{i2KHKL}	0	50	ns	3
Input current each I/O pin (input voltage is between $0.1 \times OV_{DD}$ and $0.9 \times OV_{DD}$ (max)	I	-10	10	μA	4
Capacitance for each I/O pin	Cl	—	10	pF	_

Notes:

1. Output voltage (open drain or open collector) condition = 3 mA sink current.

2. C_B = capacitance of one bus line in pF.

3. Refer to the MPC8349EA Integrated Host Processor Family Reference Manual, for information on the digital filter used.

4. I/O pins obstruct the SDA and SCL lines if $\ensuremath{\mathsf{OV}_{\mathsf{DD}}}$ is switched off.

12.2 I²C AC Electrical Specifications

Table 43 provides the AC timing parameters for the I²C interface of the MPC8349EA. Note that all values refer to $V_{IH}(min)$ and $V_{IL}(max)$ levels (see Table 42).

Table 43. I²C AC Electrical Specifications

Parameter	Symbol ¹	Min	Мах	Unit
SCL clock frequency	f _{I2C}	0	400	kHz
Low period of the SCL clock	t _{I2CL}	1.3	—	μS
High period of the SCL clock	t _{I2CH}	0.6	—	μS
Setup time for a repeated START condition	t _{I2SVKH}	0.6	—	μS
Hold time (repeated) START condition (after this period, the first clock pulse is generated)	t _{I2SXKL}	0.6	-	μs
Data setup time	t _{I2DVKH}	100	—	ns
Data hold time:CBUS compatible masters I ² C bus devices	t _{i2DXKL}	$\overline{0^2}$	0.9 ³	μS

Table 45. PCI AC Timing Specifications at 66 MHz ¹	(continued)
---	-------------

Parameter	Symbol ²	Min	Мах	Unit	Notes
PORESET to REQ64 hold time	t _{PCRHRX}	0	50	ns	6

Notes:

- 1. PCI timing depends on M66EN and the ratio between PCI1/PCI2. Refer to the PCI chapter of the reference manual for a description of M66EN.
- 2. The symbols for timing specifications follow the pattern of t_{(first two letters of functional block)(signal)(state)(reference)(state) for inputs and t_(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, t_{PCIVKH} symbolizes PCI timing (PC) with respect to the time the input signals (I) reach the valid state (V) relative to the PCI_SYNC_IN clock, t_{SYS}, reference (K) going to the high (H) state or setup time. Also, t_{PCRHFV} symbolizes PCI timing (PC) with respect to the time hard reset (R) went high (H) relative to the frame signal (F) going to the valid (V) state.}
- 3. See the timing measurement conditions in the PCI 2.3 Local Bus Specifications.
- 4. For active/float timing measurements, the Hi-Z or off-state is defined to be when the total current delivered through the component pin is less than or equal to the leakage current specification.
- 5. Input timings are measured at the pin.
- 6. The setup and hold time is with respect to the rising edge of PORESET.

Table 46 provides the PCI AC timing specifications at 33 MHz.

Table 46. PCI AC Timing Specifications at 33 MHz

Parameter	Symbol ¹	Min	Max	Unit	Notes
Clock to output valid	^t PCKHOV	—	11	ns	2
Output hold from clock	t _{PCKHOX}	2		ns	2
Clock to output high impedance	t _{PCKHOZ}	—	14	ns	2, 3
Input setup to clock	t _{PCIVKH}	3.0	-	ns	2, 4
Input hold from clock	t _{PCIXKH}	0	-	ns	2, 4
REQ64 to PORESET setup time	t _{PCRVRH}	5	_	clocks	5
PORESET to REQ64 hold time	t _{PCRHRX}	0	50	ns	5

Notes:

2. See the timing measurement conditions in the PCI 2.3 Local Bus Specifications.

3. For active/float timing measurements, the Hi-Z or off-state is defined to be when the total current delivered through the component pin is less than or equal to the leakage current specification.

4. Input timings are measured at the pin.

5. The setup and hold time is with respect to the rising edge of PORESET.

The symbols for timing specifications follow the pattern of t<sub>(first two letters of functional block)(signal)(state)(reference)(state) for inputs and t_{(first two letters of functional block)(reference)(state)(signal)(state)} for outputs. For example, t_{PCIVKH} symbolizes PCI timing (PC) with respect to the time the input signals (I) reach the valid state (V) relative to the PCI_SYNC_IN clock, t_{SYS}, reference (K) going to the high (H) state or setup time. Also, t_{PCRHFV} symbolizes PCI timing (PC) with respect to the time hard reset (R) went high (H) relative to the frame signal (F) going to the valid (V) state.
</sub>

Figure 34 provides the AC test load for PCI.

Figure 34. PCI AC Test Load

Figure 35 shows the PCI input AC timing diagram.

Figure 35. PCI Input AC Timing Diagram

Figure 36 shows the PCI output AC timing diagram.

14 Timers

This section describes the DC and AC electrical specifications for the timers.

14.1 Timer DC Electrical Characteristics

Table 47 provides the DC electrical characteristics for the MPC8349EA timer pins, including TIN, TOUT, TGATE, and RTC_CLK.

Table 47. Timer DC Electrical Characteristics

Parameter	Symbol	Condition	Min	Мах	Unit
Input high voltage	V _{IH}	_	2.0	OV _{DD} + 0.3	V
Input low voltage	V _{IL}	_	-0.3	0.8	V
Input current	I _{IN}	_	_	±5	μA
Output high voltage	V _{OH}	I _{OH} = -8.0 mA	2.4	—	V

Table 47. Timer DC Electrical C	Characteristics (continued)
---------------------------------	-----------------------------

Parameter	Symbol	Condition	Min	Мах	Unit
Output low voltage	V _{OL}	I _{OL} = 8.0 mA	_	0.5	V
Output low voltage	V _{OL}	I _{OL} = 3.2 mA	_	0.4	V

14.2 Timer AC Timing Specifications

Table 48 provides the timer input and output AC timing specifications.

Table 48. Timers Input AC Timing Specifications¹

Parameter	Symbol ²	Min	Unit
Timers inputs—minimum pulse width	t _{TIWID}	20	ns

Notes:

1. Input specifications are measured from the 50 percent level of the signal to the 50 percent level of the rising edge of CLKIN. Timings are measured at the pin.

2. Timer inputs and outputs are asynchronous to any visible clock. Timer outputs should be synchronized before use by external synchronous logic. Timer inputs are required to be valid for at least t_{TIWID} ns to ensure proper operation.

15 GPIO

This section describes the DC and AC electrical specifications for the GPIO.

15.1 GPIO DC Electrical Characteristics

Table 49 provides the DC electrical characteristics for the MPC8349EA GPIO.

Table 49. GPIO DC Electrical Characteristics

PArameter	Symbol	Condition	Min	Мах	Unit
Input high voltage	V _{IH}	_	2.0	OV _{DD} + 0.3	V
Input low voltage	V _{IL}	—	-0.3	0.8	V
Input current	I _{IN}	—	_	±5	μA
Output high voltage	V _{OH}	I _{OH} = -8.0 mA	2.4	—	V
Output low voltage	V _{OL}	I _{OL} = 8.0 mA	_	0.5	V
Output low voltage	V _{OL}	I _{OL} = 3.2 mA	—	0.4	V

18.1 Package Parameters for the MPC8349EA TBGA

The package parameters are provided in the following list. The package type is $35 \text{ mm} \times 35 \text{ mm}$, 672 tape ball grid array (TBGA).

Package outline	35 mm × 35 mm
Interconnects	672
Pitch	1.00 mm
Module height (typical)	1.46 mm
Solder balls	62 Sn/36 Pb/2 Ag (ZU package) 96.5 Sn/3.5Ag (VV package)
Ball diameter (typical)	0.64 mm

Package and Pin Listings

Signal	Package Pin Number	Pin Type	Power Supply	Notes			
GPIO1[2]/DMA_DDONE0/ GTM1_TOUT1	B25	I/O	OV _{DD}	_			
GPIO1[3]/DMA_DREQ1/GTM1_TIN2/ GTM2_TIN1	D24	I/O	OV _{DD}	—			
GPIO1[4]/DMA_DACK1/ GTM1_TGATE2/GTM2_TGATE1	A25	I/O	OV _{DD}	—			
GPIO1[5]/DMA_DDONE1/ GTM1_TOUT2/GTM2_TOUT1	B24	I/O	OV _{DD}	—			
GPIO1[6]/DMA_DREQ2/GTM1_TIN3/ GTM2_TIN4	A24	I/O	OV _{DD}	—			
GPIO1[7]/DMA_DACK2/ GTM1_TGATE3/GTM2_TGATE4	D23	I/O	OV _{DD}	—			
GPIO1[8]/DMA_DDONE2/ GTM1_TOUT3	B23	I/O	OV _{DD}	_			
GPIO1[9]/DMA_DREQ3/GTM1_TIN4/ GTM2_TIN3	A23	I/O	OV _{DD}	—			
GPIO1[10]/DMA_DACK3/ GTM1_TGATE4/GTM2_TGATE3	F22	I/O	OV _{DD}	—			
GPIO1[11]/DMA_DDONE3/ GTM1_TOUT4/GTM2_TOUT3	E22	I/O	OV _{DD}	—			
USB Port 1							
MPH1_D0_ENABLEN/ DR_D0_ENABLEN	A26	I/O	OV _{DD}	—			
MPH1_D1_SER_TXD/ DR_D1_SER_TXD	B26	I/O	OV _{DD}	—			
MPH1_D2_VMO_SE0/ DR_D2_VMO_SE0	D25	I/O	OV _{DD}	—			
MPH1_D3_SPEED/DR_D3_SPEED	A27	I/O	OV _{DD}	—			
MPH1_D4_DP/DR_D4_DP	B27	I/O	OV _{DD}	—			
MPH1_D5_DM/DR_D5_DM	C27	I/O	OV _{DD}	—			
MPH1_D6_SER_RCV/ DR_D6_SER_RCV	D26	I/O	OV _{DD}	—			
MPH1_D7_DRVVBUS/ DR_D7_DRVVBUS	E26	I/O	OV _{DD}	—			
MPH1_NXT/DR_SESS_VLD_NXT	D27	I	OV _{DD}	—			
MPH1_DIR_DPPULLUP/ DR_XCVR_SEL_DPPULLUP	A28	I/O	OV _{DD}	—			
MPH1_STP_SUSPEND/ DR_STP_SUSPEND	F26	0	OV _{DD}	—			

Package and Pin Listings

Signal	Package Pin Number	Pin Type	Power Supply	Notes
TDO	B20	0	OV _{DD}	3
TMS	A20	I	OV _{DD}	4
TRST	B19	I	OV _{DD}	4
	Test	·		
TEST	D22	I	OV _{DD}	6
TEST_SEL	AL13	I	OV _{DD}	6
	РМС			
QUIESCE	A18	0	OV _{DD}	—
	System Control	·		
PORESET	C18	I	OV _{DD}	—
HRESET	B18	I/O	OV _{DD}	1
SRESET	D18	I/O	OV _{DD}	2
	Thermal Management	·		
THERM0	K32	I	—	8
	Power and Ground Signals	·		
AV _{DD} 1	L31	Power for e300 PLL (1.2 V nominal, 1.3 V for 667 MHz)	AV _{DD} 1	_
AV _{DD} 2	AP12	Power for system PLL (1.2 V nominal, 1.3 V for 667 MHz)	AV _{DD} 2	
AV _{DD} 3	AE1	Power for DDR DLL (1.2 V nominal, 1.3 V for 667 MHz)	_	_
AV _{DD} 4	AJ13	Power for LBIU DLL (1.2 V nominal, 1.3 V for 667 MHz)	AV _{DD} 4	—

Table 55. MPC8349EA (TBGA) Pinout Listing (continued)

RCWL[COREPLL]			VCO Divider ¹		
0–1	2–5	6	- core_cik : csb_cik Ratio	VCO Divider	
nn	0000	n	PLL bypassed (PLL off, <i>csb_clk</i> clocks core directly)	PLL bypassed (PLL off, <i>csb_clk</i> clocks core directly)	
00	0001	0	1:1	2	
01	0001	0	1:1	4	
10	0001	0	1:1	8	
11	0001	0	1:1	8	
00	0001	1	1.5:1	2	
01	0001	1	1.5:1	4	
10	0001	1	1.5:1	8	
11	0001	1	1.5:1	8	
00	0010	0	2:1	2	
01	0010	0	2:1	4	
10	0010	0	2:1	8	
11	0010	0	2:1	8	
00	0010	1	2.5:1	2	
01	0010	1	2.5:1	4	
10	0010	1	2.5:1	8	
11	0010	1	2.5:1	8	
00	0011	0	3:1	2	
01	0011	0	3:1	4	
10	0011	0	3:1	8	
11	0011	0	3:1	8	

Table 61. e300 Core PLL Configuration

¹ Core VCO frequency = core frequency × VCO divider. The VCO divider must be set properly so that the core VCO frequency is in the range of 800–1800 MHz.

Table 63. Package Thermal Characteristics for TBGA (continued)

Characteristic	Symbol	Value	Unit	Notes
Junction-to-package natural convection on top	Ψ_{JT}	1	°C/W	6

Notes:

- 1. Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal resistance.
- 2. Per SEMI G38-87 and JEDEC JESD51-2 with the single-layer board horizontal.
- 3. Per JEDEC JESD51-6 with the board horizontal, 1 m/s is approximately equal to 200 linear feet per minute (LFM).
- 4. Thermal resistance between the die and the printed-circuit board per JEDEC JESD51-8. Board temperature is measured on the top surface of the board near the package.
- 5. Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883 Method 1012.1).
- 6. Thermal characterization parameter indicating the temperature difference between package top and the junction temperature per JEDEC JESD51-2. When Greek letters are not available, the thermal characterization parameter is written as Psi-JT.

20.2 Thermal Management Information

For the following sections, $P_D = (V_{DD} \times I_{DD}) + P_{I/O}$ where $P_{I/O}$ is the power dissipation of the I/O drivers. See Table 5 for I/O power dissipation values.

20.2.1 Estimation of Junction Temperature with Junction-to-Ambient Thermal Resistance

An estimation of the chip junction temperature, T_J, can be obtained from the equation:

$$T_J = T_A + (R_{\theta JA} \times P_D)$$

where:

 T_J = junction temperature (°C)

 T_A = ambient temperature for the package (°C)

 $R_{\theta JA}$ = junction-to-ambient thermal resistance (°C/W)

 P_D = power dissipation in the package (W)

The junction-to-ambient thermal resistance is an industry-standard value that provides a quick and easy estimation of thermal performance. Generally, the value obtained on a single-layer board is appropriate for a tightly packed printed-circuit board. The value obtained on the board with the internal planes is usually appropriate if the board has low power dissipation and the components are well separated. Test cases have demonstrated that errors of a factor of two (in the quantity $T_J - T_A$) are possible.

20.2.2 Estimation of Junction Temperature with Junction-to-Board Thermal Resistance

The thermal performance of a device cannot be adequately predicted from the junction-to-ambient thermal resistance. The thermal performance of any component is strongly dependent on the power dissipation of surrounding components. In addition, the ambient temperature varies widely within the application. For many natural convection and especially closed box applications, the board temperature at the perimeter

Thermal

Heat sink vendors include the following list:	
Aavid Thermalloy 80 Commercial St. Concord, NH 03301 Internet: www.aavidthermalloy.com	603-224-9988
Alpha Novatech 473 Sapena Ct. #12 Santa Clara, CA 95054 Internet: www.alphanovatech.com	408-567-8082
International Electronic Research Corporation (IERC) 413 North Moss St. Burbank, CA 91502 Internet: www.ctscorp.com	818-842-7277
Millennium Electronics (MEI) Loroco Sites 671 East Brokaw Road San Jose, CA 95112 Internet: www.mei-thermal.com	408-436-8770
Tyco Electronics Chip Coolers [™] P.O. Box 3668 Harrisburg, PA 17105-3668 Internet: www.chipcoolers.com	800-522-2800
Wakefield Engineering 33 Bridge St. Pelham, NH 03076 Internet: www.wakefield.com	603-635-5102
Interface material vendors include the following:	
Chomerics, Inc. 77 Dragon Ct. Woburn, MA 01801 Internet: www.chomerics.com	781-935-4850
Dow-Corning Corporation Dow-Corning Electronic Materials P.O. Box 994 Midland, MI 48686-0997	800-248-2481
Internet: www.dowcorning.com Shin-Etsu MicroSi, Inc. 10028 S. 51st St. Phoenix, AZ 85044 Internet: www.microsi.com	888-642-7674

22.1 Part Numbers Fully Addressed by This Document

Table 66 shows an analysis of the Freescale part numbering nomenclature for the MPC8349EA. The individual part numbers correspond to a maximum processor core frequency. Each part number also contains a revision code that refers to the die mask revision number. For available frequency configuration parts including extended temperatures, refer to the device product summary page on our website listed on the back cover of this document or, contact your local Freescale sales office.

MPC	nnnn	е	t	рр	aa	а	r
Product Code	Part Identifier	Encryption Acceleration	Temperature ¹ Range	Package ²	Processor Frequency ³	Platform Frequency	Revision Level
MPC	8349	Blank = Not included E = included	Blank = 0 to 105°C C = -40 to 105°C	ZU =TBGA VV = PB free TBGA	e300 core speed AG = 400 AJ = 533 AL = 667	D = 266 F = 333 ⁴	B = 3.1

Table 66. Part Numbering Nomenclature

Notes:

1. For temperature range = C, processor frequency is limited to with a platform frequency of 266 and up to 533 with a platform frequency of 333

2. See Section 18, "Package and Pin Listings," for more information on available package types.

- Processor core frequencies supported by parts addressed by this specification only. Not all parts described in this specification support all core frequencies. Additionally, parts addressed by Part Number Specifications may support other maximum core frequencies.
- 4. ALF marked parts support DDR1 data rate up to 333 MHz (at 333 MHz CSB as the 'F' marking implies) and DDR2 data rate up to 400 MHz (at 200 MHz CSB). AJF marked parts support DDR1 and DDR2 data rate up to 333 MHz (at a CSB of 333 MHz).

Table 67 shows the SVR settings by device and package type.

Table 67. SVR Settings

Device	Package	SVR (Rev. 3.0)
MPC8349EA	TBGA	8050_0030
MPC8349A	TBGA	8051_0030

Rev. Number	Date	Substantive Change(s)
9	2/2009	 Added footnote 6 to Table 7. In Section 9.2, "USB AC Electrical Specifications," clarified that AC table is for ULPI only. In Table 39, corrected t_{LBKHOV} parameter to t_{LBKLOV} (output data is driven on falling edge of clock in DLL bypass mode). Similarly, made the same correction to Figure 22, Figure 24, and Figure 25 for output signals. Added footnote 11 to Table 55. Added footnote 4 to Table 66. In Section 21.1, "System Clocking," removed "(AVDD1)" and "(AVDD2") from bulleted list. In Section 21.2, "PLL Power Supply Filtering," in the second paragraph, changed "provide five independent filter circuits," and "the five AVDD pins" to provide four independent filter circuits," and "the four AVDD pins." In Table 57, corrected the max csb_clk to 266 MHz. In Table 62, added PLL configurations 903, 923, A03, A23, and 503 for 533 MHz In Table 66, updated note 1 to say the following: "For temperature range = C, processor frequency is limited to 533 with a platform frequency of 266."
8	4/2007	 In Table 3, "Output Drive Capability," changed the values in the Output Impedance column and added USB to the seventh row. In Section 21.7, "Pull-Up Resistor Requirements,"deleted last two paragraphs and after first paragraph, added a new paragraph. Deleted Section 21.8, "JTAG Configuration Signals," and Figure 43, "JTAG Interface Connection."
7	3/2007	 In Table 57, "Operating Frequencies for TBGA," in the 'Coherent system bus frequency (<i>csb_clk</i>)' row, changed the value in the 533 MHz column to 100-333. In Table 63, "Suggested PLL Configurations," under the subhead, '33 MHz CLKIN/PCI_CLK Options,' added row A03 between Ref. No. 724 and 804. Under the subhead '66 MHz CLKIN/PCI_CLK Options,' added row 503 between Ref. No. 305 and 404. For Ref. No. 306, changed the CORE PLL value to 0000110. In Section 23, "Ordering Information," replaced first paragraph and added a note. In Section 23.1, "Part Numbers Fully Addressed by this Document," replaced first paragraph.
6	2/2007	 Page 1, updated first paragraph to reflect PowerQUICC II Pro information. In Table 18, "DDR and DDR2 SDRAM Input AC Timing Specifications," added note 2 to t_{CISKEW} and deleted original note 3; renumbered the remaining notes. In Figure 41, "JTAG Interface Connection," updated with new figure. In Section 23.1, "Part Numbers Fully Addressed by This Document," replaced third sentence of first paragraph directing customer to product summary page for available frequency configuration parts.
5	1/2007	 In Table 1, "Absolute Maximum Ratings," added (1.36 max for 667-MHz core frequency) to max V_{DD} and Av_{DD} values. In Table 2, "Recommended Operating Conditions," added a row showing nominal core supply voltage and PLL supply voltage of 1.3 V for 667-MHz parts. In Table 4, "MPC8349EA Power Dissipation," added two footnotes to 667-MHz row showing nominal core supply voltage and PLL supply voltage of 1.3 V for 667-MHz parts. In Table 54, "MPC83479EA (TBGA) Pinout Listing," updated V_{DD} nd AV_{DD} rows to show nominal core supply voltage and PLL supply voltage of 1.3 V for 667-MHz parts.
4	12/2006	Table 19, "DDR and DDR2 SDRAM Output AC Timing Specifications," modified T _{ddkhds} for 333 MHz from 900 ps to 775 ps.