E·XFL

NXP USA Inc. - MPC8349ECZUAJFB Datasheet

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

Product Status	Obsolete
Core Processor	PowerPC e300
Number of Cores/Bus Width	1 Core, 32-Bit
Speed	533MHz
Co-Processors/DSP	Security; SEC
RAM Controllers	DDR, DDR2
Graphics Acceleration	No
Display & Interface Controllers	·
Ethernet	10/100/1000Mbps (2)
SATA	·
USB	USB 2.0 + PHY (2)
Voltage - I/O	1.8V, 2.5V, 3.3V
Operating Temperature	-40°C ~ 105°C (TA)
Security Features	Cryptography, Random Number Generator
Package / Case	672-LBGA
Supplier Device Package	672-LBGA (35x35)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mpc8349eczuajfb

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Overview

- On-chip arbitration supporting five masters on PCI1, three masters on PCI2
- Accesses to all PCI address spaces
- Parity supported
- Selectable hardware-enforced coherency
- Address translation units for address mapping between host and peripheral
- Dual address cycle for target
- Internal configuration registers accessible from PCI
- Security engine is optimized to handle all the algorithms associated with IPSec, SSL/TLS, SRTP, IEEE Std. 802.11i[®], iSCSI, and IKE processing. The security engine contains four crypto-channels, a controller, and a set of crypto execution units (EUs):
 - Public key execution unit (PKEU) :
 - RSA and Diffie-Hellman algorithms
 - Programmable field size up to 2048 bits
 - Elliptic curve cryptography
 - F2m and F(p) modes
 - Programmable field size up to 511 bits
 - Data encryption standard (DES) execution unit (DEU)
 - DES and 3DES algorithms
 - Two key (K1, K2) or three key (K1, K2, K3) for 3DES
 - ECB and CBC modes for both DES and 3DES
 - Advanced encryption standard unit (AESU)
 - Implements the Rijndael symmetric-key cipher
 - Key lengths of 128, 192, and 256 bits
 - ECB, CBC, CCM, and counter (CTR) modes
 - XOR parity generation accelerator for RAID applications
 - ARC four execution unit (AFEU)
 - Stream cipher compatible with the RC4 algorithm
 - 40- to 128-bit programmable key
 - Message digest execution unit (MDEU)
 - SHA with 160-, 224-, or 256-bit message digest
 - MD5 with 128-bit message digest
 - HMAC with either algorithm
 - Random number generator (RNG)
 - Four crypto-channels, each supporting multi-command descriptor chains
 - Static and/or dynamic assignment of crypto-execution units through an integrated controller
 - Buffer size of 256 bytes for each execution unit, with flow control for large data sizes
- Universal serial bus (USB) dual role controller
 - USB on-the-go mode with both device and host functionality

2.1.1 Absolute Maximum Ratings

Table 1 provides the absolute maximum ratings.

Table 1. Absolute Maximum Ratings	s ¹
-----------------------------------	----------------

	Parameter	Symbol	Max Value	Unit	Notes
Core supply voltage		V _{DD}	–0.3 to 1.32 (1.36 max for 667-MHz core frequency)	V	_
PLL supply voltage		AV _{DD}	-0.3 to 1.32 (1.36 max for 667-MHz core frequency)	V	—
DDR and DDR2 DR	AM I/O voltage	GV _{DD} -0.3 to 2.75 -0.3 to 1.98		V	—
Three-speed Etherr	net I/O, MII management voltage	LV _{DD}	-0.3 to 3.63	V	—
PCI, local bus, DUART, system control and power management, I^2C , and JTAG I/O voltage			-0.3 to 3.63	V	—
Input voltage	DDR DRAM signals	MV _{IN}	–0.3 to (GV _{DD} + 0.3)	V	2, 5
	DDR DRAM reference	MV _{REF}	–0.3 to (GV _{DD} + 0.3)	V	2, 5
	Three-speed Ethernet signals	LV _{IN}	-0.3 to (LV _{DD} + 0.3)	V	4, 5
	Local bus, DUART, CLKIN, system control and power management, I ² C, and JTAG signals	OV _{IN}	-0.3 to (OV _{DD} + 0.3)	V	3, 5
	PCI	OV _{IN}	-0.3 to (OV _{DD} + 0.3)	V	6
Storage temperature	e range	T _{STG}	-55 to 150	°C	—

Notes:

¹ Functional and tested operating conditions are given in Table 2. Absolute maximum ratings are stress ratings only, and functional operation at the maximums is not guaranteed. Stresses beyond those listed may affect device reliability or cause permanent damage to the device.

- ² Caution: MV_{IN} must not exceed GV_{DD} by more than 0.3 V. This limit can be exceeded for a maximum of 20 ms during power-on reset and power-down sequences.
- ³ **Caution:** OV_{IN} must not exceed OV_{DD} by more than 0.3 V. This limit can be exceeded for a maximum of 20 ms during power-on reset and power-down sequences.
- ⁴ **Caution:** LV_{IN} must not exceed LV_{DD} by more than 0.3 V. This limit can be exceeded for a maximum of 20 ms during power-on reset and power-down sequences.
- ⁵ (M,L,O)V_{IN} and MV_{REF} may overshoot/undershoot to a voltage and for a maximum duration as shown in Figure 2.
- 6 OVIN on the PCI interface can overshoot/undershoot according to the PCI Electrical Specification for 3.3-V operation, as shown in Figure 3.

- ² Typical power is based on a voltage of V_{DD} = 1.2 V, a junction temperature of T_J = 105°C, and a Dhrystone benchmark application.
- ³ Thermal solutions may need to design to a value higher than typical power based on the end application, T_A target, and I/O power.
- ⁴ Maximum power is based on a voltage of V_{DD} = 1.2 V, worst case process, a junction temperature of T_J = 105°C, and an artificial smoke test.
- ⁵ Typical power is based on a voltage of V_{DD} = 1.3 V, a junction temperature of T_J = 105°C, and a Dhrystone benchmark application.
- ⁶ Maximum power is based on a voltage of V_{DD} = 1.3 V, worst case process, a junction temperature of T_J = 105°C, and an artificial smoke test.

Table 5 shows the estimated typical I/O power dissipation for MPC8349EA.

Interface	Parameter	GV _{DD} (1.8 V)	GV _{DD} (2.5 V)	OV _{DD} (3.3 V)	LV _{DD} (3.3 V)	LV _{DD} (2.5 V)	Unit	Comments
DDR I/O 65% utilization 2.5 V	200 MHz, 32 bits	0.31	0.42	—	_		W	—
	200 MHz, 64 bits	0.42	0.55				W	—
Rs = 20 Ω Rt = 50 Ω	266 MHz, 32 bits	0.35	0.5	_	_	_	W	—
2 pair of clocks	266 MHz, 64 bits	0.47	0.66	—	_	—	W	—
	300 MHz, 32 bits	0.37	0.54	—	_	—	W	—
	300 MHz, 64 bits	0.50	0.7	—	_	—	W	—
	333 MHz, 32 bits	0.39	0.58	—	_	—	W	—
	333 MHz, 64 bits	0.53	0.76	—	_	—	W	—
	400 MHz, 32 bits	0.44	—	—	_	—	_	—
	400 MHz, 64 bits	0.59	—	—	_	—	_	—
PCI I/O load = 30 pF	33 MHz, 64 bits	—	—	0.08	_	—	W	—
	66 MHz, 64 bits	—	—	0.14	_	—	W	—
	33 MHz, 32 bits	—	—	0.04	_	—	W	Multiply by 2 if using
	66 MHz, 32 bits	—	—	0.07	_	—	W	2 ports.
Local bus I/O	133 MHz, 32 bits	—	—	0.27	_	—	W	—
load = 25 pF	83 MHz, 32 bits	—	—	0.17	_	—	W	—
	66 MHz, 32 bits	—	—	0.14	_	—	W	—
	50 MHz, 32 bits	—	—	0.11	_	—	W	—
TSEC I/O	MII	—	—	—	0.01	—	W	Multiply by number of
load = 25 pF	GMII or TBI	—	—	—	0.06	—	W	interfaces used.
	RGMII or RTBI	—	—	—	_	0.04	W	
USB	12 MHz	—	—	0.01		—	W	Multiply by 2 if using
	480 MHz	—	—	0.2		—	W	2 ports.
Other I/O	—	—	—	0.01	_	_	W	—

Table 5. MPC8349EA Typical I/O Power Dissipation

Table 11 lists the PLL and DLL lock times.

Table 11. PLL and DLL Lock Times

Parameter/Condition	Min	Мах	Unit	Notes
PLL lock times	—	100	μs	
DLL lock times	7680	122,880	csb_clk cycles	1, 2

Notes:

1. DLL lock times are a function of the ratio between the output clock and the coherency system bus clock (csb_clk). A 2:1 ratio results in the minimum and an 8:1 ratio results in the maximum.

2. The csb_clk is determined by the CLKIN and system PLL ratio. See Section 19, "Clocking."

6 DDR and DDR2 SDRAM

This section describes the DC and AC electrical specifications for the DDR SDRAM interface of the MPC8349EA. Note that DDR SDRAM is $GV_{DD}(typ) = 2.5$ V and DDR2 SDRAM is $GV_{DD}(typ) = 1.8$ V. The AC electrical specifications are the same for DDR and DRR2 SDRAM.

NOTE

The information in this document is accurate for revision 3.0 silicon and later. For information on revision 1.1 silicon and earlier versions see the *MPC8349E PowerQUICC II Pro Integrated Host Processor Hardware Specifications*. See Section 22.1, "Part Numbers Fully Addressed by This Document," for silicon revision level determination.

6.1 DDR and DDR2 SDRAM DC Electrical Characteristics

Table 12 provides the recommended operating conditions for the DDR2 SDRAM component(s) of the MPC8349EA when $GV_{DD}(typ) = 1.8 \text{ V}.$

Parameter/Condition	Symbol	Min	Мах	Unit	Notes
I/O supply voltage	GV _{DD}	1.71	1.89	V	1
I/O reference voltage	MV _{REF}	$0.49 imes GV_{DD}$	$0.51 imes GV_{DD}$	V	2
I/O termination voltage	V _{TT}	MV _{REF} – 0.04	MV _{REF} + 0.04	V	3
Input high voltage	V _{IH}	MV _{REF} + 0.125	GV _{DD} + 0.3	V	—
Input low voltage	V _{IL}	-0.3	MV _{REF} – 0.125	V	—
Output leakage current	I _{OZ}	-9.9	9.9	μA	4
Output high current (V _{OUT} = 1.420 V)	I _{ОН}	-13.4		mA	—

6.2.2 DDR and DDR2 SDRAM Output AC Timing Specifications

Table 20 shows the DDR and DDR2 output AC timing specifications.

Table 20. DDR and DDR2 SDRAM Output AC Timing Specifications

At recommended operating conditions with GV_{DD} of (1.8 or 2.5 V) ± 5%.

Parameter	Symbol ¹	Min	Мах	Unit	Notes
ADDR/CMD/MODT output setup with respect to MCK	t _{DDKHAS}			ns	3
400 MHz		1.95	—		
333 MHz		2.40	—		
266 MHz		3.15	_		
200 MHz		4.20	—		
ADDR/CMD/MODT output hold with respect to MCK	t _{DDKHAX}			ns	3
400 MHz		1.95	—		
333 MHz		2.40	—		
266 MHz		3.15	—		
200 MHz		4.20	—		
MCS(n) output setup with respect to MCK	t _{DDKHCS}			ns	3
400 MHz		1.95	—		
333 MHz		2.40	—		
266 MHz		3.15	—		
200 MHz		4.20	—		
MCS(n) output hold with respect to MCK	t _{DDKHCX}			ns	3
400 MHz		1.95	—		
333 MHz		2.40	—		
266 MHz		3.15	—		
200 MHz		4.20	—		
MCK to MDQS Skew	t _{DDKHMH}	-0.6	0.6	ns	4
MDQ/MECC/MDM output setup with respect to MDQS	t _{DDKHDS,} t _{DDKLDS}			ps	5
400 MHz		700	—		
333 MHz		775	—		
266 MHz		1100	—		
200 MHz		1200	—		
MDQ/MECC/MDM output hold with respect to MDQS	t _{DDKHDX,} t _{DDKLDX}			ps	5
400 MHz		700	—		
333 MHz		900	—		
266 MHz		1100	—		
200 MHz		1200	—		
MDQS preamble start	t _{DDKHMP}	$-0.5\times t_{MCK}-0.6$	$-0.5\times t_{MCK}+0.6$	ns	6

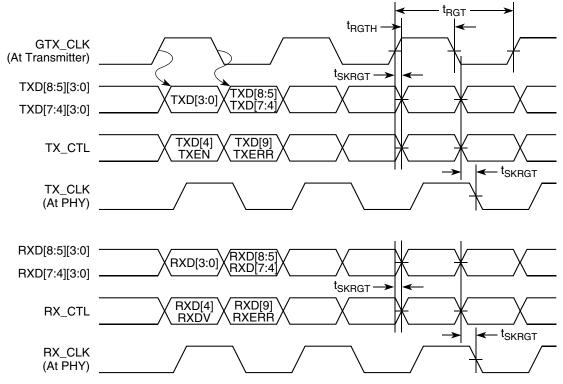


Figure 16 shows the RBMII and RTBI AC timing and multiplexing diagrams.

Figure 16. RGMII and RTBI AC Timing and Multiplexing Diagrams

8.3 Ethernet Management Interface Electrical Characteristics

The electrical characteristics specified here apply to the MII management interface signals management data input/output (MDIO) and management data clock (MDC). The electrical characteristics for GMII, RGMII, TBI and RTBI are specified in Section 8.1, "Three-Speed Ethernet Controller (TSEC)—GMII/MII/TBI/RGMII/RTBI Electrical Characteristics."

8.3.1 MII Management DC Electrical Characteristics

The MDC and MDIO are defined to operate at a supply voltage of 2.5 or 3.3 V. The DC electrical characteristics for MDIO and MDC are provided in Table 32 and Table 33.

Parameter	Symbol	Conditions		Min	Max	Unit
Supply voltage (2.5 V)	LV _{DD}	—		2.37	2.63	V
Output high voltage	V _{OH}	$I_{OH} = -1.0 \text{ mA}$	$LV_{DD} = Min$	2.00	LV _{DD} + 0.3	V
Output low voltage	V _{OL}	I _{OL} = 1.0 mA	$LV_{DD} = Min$	GND – 0.3	0.40	V
Input high voltage	V _{IH}	—	$LV_{DD} = Min$	1.7	—	V
Input low voltage	V _{IL}	—	$LV_{DD} = Min$	-0.3	0.70	V

Ethernet: Three-Speed Ethernet, MII Management

Parameter	Symbol	Conditions	Min	Мах	Unit
Input high current	I _{IH}	$V_{IN}^{1} = LV_{DD}$	—	10	μA
Input low current	IIL	$V_{IN} = LV_{DD}$	-15	_	μA

Note:

1. The symbol V_{IN} , in this case, represents the LV_{IN} symbol referenced in Table 1 and Table 2.

Table 33. MII Management DC Electrical Characteristics I	Powered at 3.3 V
--	------------------

Parameter	Symbol	Conditions		Min	Мах	Unit
Supply voltage (3.3 V)	LV _{DD}	—		2.97	3.63	V
Output high voltage	V _{OH}	I _{OH} = -1.0 mA	$LV_{DD} = Min$	2.10	LV _{DD} + 0.3	V
Output low voltage	V _{OL}	I _{OL} = 1.0 mA	LV _{DD} = Min	GND	0.50	V
Input high voltage	V _{IH}	-	—		—	V
Input low voltage	V _{IL}	-	_	—	0.80	V
Input high current	I _{IH}	LV _{DD} = Max	$V_{IN}^{1} = 2.1 V$	—	40	μA
Input low current	I _{IL}	LV _{DD} = Max	V _{IN} = 0.5 V	-600	—	μA

Note:

1. The symbol V_{IN} , in this case, represents the LV_{IN} symbol referenced in Table 1 and Table 2.

8.3.2 MII Management AC Electrical Specifications

Table 34 provides the MII management AC timing specifications.

Table 34. MII Management AC Timing Specifications

At recommended operating conditions with LV_{DD} is 3.3 V ± 10% or 2.5 V ± 5%.

Parameter/Condition	Symbol ¹	Min	Тур	Max	Unit	Notes
MDC frequency	f _{MDC}	_	2.5	_	MHz	2
MDC period	t _{MDC}	_	400	_	ns	—
MDC clock pulse width high	t _{MDCH}	32	_	_	ns	—
MDC to MDIO delay	t _{MDKHDX}	10	_	70	ns	3
MDIO to MDC setup time	t _{MDDVKH}	5	_	_	ns	—
MDIO to MDC hold time	t _{MDDXKH}	0	_	_	ns	_
MDC rise time	t _{MDCR}		—	10	ns	—

Local Bus

Figure 21 through Figure 26 show the local bus signals.

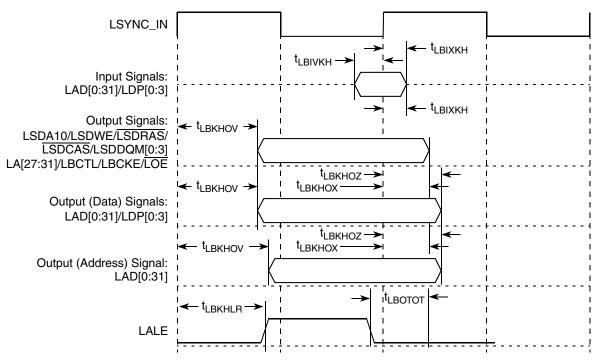


Figure 21. Local Bus Signals, Nonspecial Signals Only (DLL Enabled)

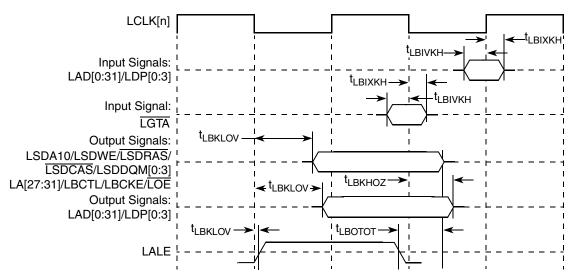


Figure 22. Local Bus Signals, Nonspecial Signals Only (DLL Bypass Mode)

JTAG

Parameter	Symbol	Condition	Min	Мах	Unit
Output low voltage	V _{OL}	I _{OL} = 8.0 mA	—	0.5	V
Output low voltage	V _{OL}	I _{OL} = 3.2 mA	—	0.4	V

Table 40. JTAG Interface DC Electrical Characteristics (continued)

11.2 JTAG AC Timing Specifications

This section describes the AC electrical specifications for the IEEE Std. 1149.1 (JTAG) interface of the MPC8349EA. Table 41 provides the JTAG AC timing specifications as defined in Figure 28 through Figure 31.

Table 41. JTAG AC Timing Specifications (Independent of CLKIN)¹

At recommended operating conditions (see Table 2).

Parameter		Symbol ²	Min	Мах	Unit	Notes
JTAG external clock frequency of operation		f _{JTG}	0	33.3	MHz	—
JTAG external clock cycle time		t _{JTG}	30	—	ns	—
JTAG external clock pulse width mea	asured at 1.4 V	t _{JTKHKL}	15	_	ns	—
JTAG external clock rise and fall time	es	t _{JTGR} , t _{JTGF}	0	2	ns	—
TRST assert time		t _{TRST}	25	_	ns	3
Input setup times:	Boundary-scan data TMS, TDI	t _{JTDVKH} t _{JTIVKH}	4 4	_ _	ns	4
Input hold times:	Boundary-scan data TMS, TDI	t _{JTDXKH} t _{JTIXKH}	10 10		ns	4
Valid times:	Boundary-scan data TDO	t _{jtkldv} t _{jtklov}	2 2	11 11	ns	5
Output hold times:	Boundary-scan data TDO	t _{jtkldx} t _{jtklox}	2 2		ns	5

15.2 GPIO AC Timing Specifications

Table 50 provides the GPIO input and output AC timing specifications.

Table 50	. GPIO Inpu	t AC Timing	Specifications ¹
----------	-------------	-------------	-----------------------------

Parameter	Symbol ²	Min	Unit
GPIO inputs—minimum pulse width	t _{PIWID}	20	ns

Notes:

1. Input specifications are measured from the 50 percent level of the signal to the 50 percent level of the rising edge of CLKIN. Timings are measured at the pin.

2. GPIO inputs and outputs are asynchronous to any visible clock. GPIO outputs should be synchronized before use by external synchronous logic. GPIO inputs must be valid for at least t_{PIWID} ns to ensure proper operation.

16 IPIC

This section describes the DC and AC electrical specifications for the external interrupt pins.

16.1 IPIC DC Electrical Characteristics

Table 51 provides the DC electrical characteristics for the external interrupt pins.

Table 51.	IPIC DC	Electrical	Characteristics ¹
-----------	---------	------------	------------------------------

Parameter	Symbol	Condition	Min	Мах	Unit	Notes
Input high voltage	V _{IH}	—	2.0	OV _{DD} + 0.3	V	—
Input low voltage	V _{IL}	_	-0.3	0.8	V	—
Input current	I _{IN}	_	—	±5	μA	—
Output low voltage	V _{OL}	I _{OL} = 8.0 mA	—	0.5	V	2
Output low voltage	V _{OL}	l _{OL} = 3.2 mA	—	0.4	V	2

Notes:

1. This table applies for pins \overline{IRQ} [0:7], \overline{IRQ} _OUT, and \overline{MCP} _OUT.

2. IRQ_OUT and MCP_OUT are open-drain pins; thus VOH is not relevant for those pins.

16.2 IPIC AC Timing Specifications

Table 52 provides the IPIC input and output AC timing specifications.

Table 52. IPIC Input AC Timing Specifications¹

Parameter	Symbol ²	Min	Unit
IPIC inputs—minimum pulse width	t _{PICWID}	20	ns

Notes:

1. Input specifications are measured at the 50 percent level of the IPIC input signals. Timings are measured at the pin.

 IPIC inputs and outputs are asynchronous to any visible clock. IPIC outputs should be synchronized before use by external synchronous logic. IPIC inputs must be valid for at least t_{PICWID} ns to ensure proper operation in edge triggered mode.

18.1 Package Parameters for the MPC8349EA TBGA

The package parameters are provided in the following list. The package type is $35 \text{ mm} \times 35 \text{ mm}$, 672 tape ball grid array (TBGA).

Package outline	35 mm × 35 mm
Interconnects	672
Pitch	1.00 mm
Module height (typical)	1.46 mm
Solder balls	62 Sn/36 Pb/2 Ag (ZU package) 96.5 Sn/3.5Ag (VV package)
Ball diameter (typical)	0.64 mm

18.3 Pinout Listings

Table 55 provides the pin-out listing for the MPC8349EA, 672 TBGA package.

Table 55. MPC8349EA (TBGA) Pinout Listing

Signal	Package Pin Number	Pin Type	Power Supply	Notes
	PCI1 and PCI2 (One 64-Bit or Two 32-Bit)			
PCI1_INTA/IRQ_OUT	B34	0	OV _{DD}	2
PCI1_RESET_OUT	C33	0	OV _{DD}	—
PCI1_AD[31:0]	G30, G32, G34, H31, H32, H33, H34, J29, J32, J33, L30, K31, K33, K34, L33, L34, P34, R29, R30, R33, R34, T31, T32, T33, U31, U34, V31, V32, V33, V34, W33, W34	I/O	OV _{DD}	_
PCI1_C/BE[3:0]	J30, M31, P33, T34	I/O	OV _{DD}	—
PCI1_PAR	P32	I/O	OV _{DD}	—
PCI1_FRAME	M32	I/O	OV _{DD}	5
PCI1_TRDY	N29	I/O	OV _{DD}	5
PCI1_IRDY	M34	I/O	OV _{DD}	5
PCI1_STOP	N31	I/O	OV _{DD}	5
PCI1_DEVSEL	N30	I/O	OV _{DD}	5
PCI1_IDSEL	J31	I	OV _{DD}	—
PCI1_SERR	N34	I/O	OV _{DD}	5
PCI1_PERR	N33	I/O	OV _{DD}	5
PCI1_REQ[0]	D32	I/O	OV _{DD}	—
PCI1_REQ[1]/CPCI1_HS_ES	D34	I	OV _{DD}	—
PCI1_REQ[2:4]	E34, F32, G29	I	OV _{DD}	—
PCI1_GNT0	C34	I/O	OV _{DD}	—
PCI1_GNT1/CPCI1_HS_LED	D33	0	OV _{DD}	—
PCI1_GNT2/CPCI1_HS_ENUM	E33	0	OV _{DD}	—
PCI1_GNT[3:4]	F31, F33	0	OV _{DD}	—
PCI2_RESET_OUT/GPIO2[0]	W32	I/O	OV _{DD}	—
PCI2_AD[31:0]/PCI1[63:32]	AA33, AA34, AB31, AB32, AB33, AB34, AC29, AC31, AC33, AC34, AD30, AD32, AD33, AD34, AE29, AE30, AH32, AH33, AH34, AM33, AJ31, AJ32, AJ33, AJ34, AK32, AK33, AK34, AM34, AL33, AL34, AK31, AH30	I/O	OV _{DD}	_
PCI2_C/BE[3:0]/PCI1_C/BE[7:4]	AC32, AE32, AH31, AL32	I/O	OV _{DD}	_
PCI2_PAR/PCI1_PAR64	AG34	I/O	OV _{DD}	—

Package and Pin Listings

Signal	Package Pin Number	Pin Type	Power Supply	Notes	
PCI2_FRAME/GPIO2[1]	AE33	I/O	OV _{DD}	5	
PCI2_TRDY/GPIO2[2]	AF32	I/O	OV _{DD}	5	
PCI2_IRDY/GPIO2[3]	AE34	I/O	OV _{DD}	5	
PCI2_STOP/GPIO2[4]	AF34	I/O	OV _{DD}	5	
PCI2_DEVSEL/GPIO2[5]	AF33	I/O	OV _{DD}	5	
PCI2_SERR/PCI1_ACK64	AG33	I/O	OV _{DD}	5	
PCI2_PERR/PCI1_REQ64	AG32	I/O	OV _{DD}	5	
PCI2_REQ[0:2]/GPIO2[6:8]	Y32, Y34, AA32	I/O	OV _{DD}		
PCI2_GNT[0:2]/GPIO2[9:11]	Y31, Y33, AA31	I/O	OV _{DD}		
M66EN	A19	I	OV _{DD}		
	DDR SDRAM Memory Interface			1	
MDQ[0:63]	D5, A3, C3, D3, C4, B3, C2, D4, D2, E5, G2, H6, E4, F3, G4, G3, H1, J2, L6, M6, H2, K6, L2, M4, N2, P4, R2, T4, P6, P3, R1, T2, AB5, AA3, AD6, AE4, AB4, AC2, AD3, AE6, AE3, AG4, AK5, AK4, AE2, AG6, AK3, AK2, AL2, AL1, AM5, AP5, AM2, AN1, AP4, AN5, AJ7, AN7, AM8, AJ9, AP6, AL7, AL9, AN8	I/O	GV _{DD}		
MECC[0:4]/MSRCID[0:4]	W4, W3, Y3, AA6, T1	I/O	GV _{DD}		
MECC[5]/MDVAL	U1	I/O	GV _{DD}		
MECC[6:7]	Y1, Y6	I/O	GV _{DD}		
MDM[0:8]	B1, F1, K1, R4, AD4, AJ1, AP3, AP7, Y4	0	GV _{DD}	—	
MDQS[0:8]	B2, F5, J1, P2, AC1, AJ2, AN4, AL8, W2	I/O	GV _{DD}	—	
MBA[0:1]	AD1, AA5	0	GV _{DD}	—	
MA[0:14]	W1, U4, T3, R3, P1, M1, N1, L3, L1, K2, Y2, K3, J3, AP2, AN6	0	GV _{DD}	—	
MWE	AF1	0	GV _{DD}		
MRAS	AF4	0	GV _{DD}		
MCAS	AG3	0	GV _{DD}		
MCS[0:3]	AG2, AG1, AK1, AL4	0	GV _{DD}	—	
MCKE[0:1]	H3, G1	0	GV _{DD}	3	
MCK[0:5]	U2, F4, AM3, V3, F2, AN3	0	GV _{DD}	—	
MCK[0:5]	U3, E3, AN2, V4, E1, AM4	0	GV _{DD}	—	
MODT[0:3]	AH3, AJ5, AH1, AJ4	0	GV _{DD}	—	

Package and Pin Listings

Table 55. MPC8349EA (TBGA) Pinout Listing (continued)

Signal	Package Pin Number	Pin Type	Power Supply	Notes
MPH1_PWRFAULT/ DR_RX_ERROR_PWRFAULT	E27	1	OV _{DD}	—
MPH1_PCTL0/DR_TX_VALID_PCTL0	A29	0	OV _{DD}	—
MPH1_PCTL1/DR_TX_VALIDH_PCTL1	D28	0	OV _{DD}	—
MPH1_CLK/DR_CLK	B29	I	OV _{DD}	—
	USB Port 0			
MPH0_D0_ENABLEN/ DR_D8_CHGVBUS	C29	I/O	OV _{DD}	_
MPH0_D1_SER_TXD/ DR_D9_DCHGVBUS	A30	I/O	OV _{DD}	—
MPH0_D2_VMO_SE0/DR_D10_DPPD	E28	I/O	OV _{DD}	—
MPH0_D3_SPEED/DR_D11_DMMD	B30	I/O	OV _{DD}	—
MPH0_D4_DP/DR_D12_VBUS_VLD	C30	I/O	OV _{DD}	—
MPH0_D5_DM/DR_D13_SESS_END	A31	I/O	OV _{DD}	—
MPH0_D6_SER_RCV/DR_D14	B31	I/O	OV _{DD}	—
MPH0_D7_DRVVBUS/ DR_D15_IDPULLUP	C31	I/O	OV _{DD}	—
MPH0_NXT/DR_RX_ACTIVE_ID	B32	I	OV _{DD}	—
MPH0_DIR_DPPULLUP/DR_RESET	A32	I/O	OV _{DD}	—
MPH0_STP_SUSPEND/ DR_TX_READY	A33	I/O	OV _{DD}	—
MPH0_PWRFAULT/DR_RX_VALIDH	C32	I	OV _{DD}	—
MPH0_PCTL0/DR_LINE_STATE0	D31	I/O	OV _{DD}	—
MPH0_PCTL1/DR_LINE_STATE1	E30	I/O	OV _{DD}	—
MPH0_CLK/DR_RX_VALID	B33	I	OV _{DD}	—
	Programmable Interrupt Controller			
MCP_OUT	AN33	0	OV _{DD}	2
IRQ0/MCP_IN/GPIO2[12]	C19	I/O	OV _{DD}	—
IRQ[1:5]/GPIO2[13:17]	C22, A22, D21, C21, B21	I/O	OV _{DD}	—
IRQ[6]/GPIO2[18]/CKSTOP_OUT	A21	I/O	OV _{DD}	—
IRQ[7]/GPIO2[19]/CKSTOP_IN	C20	I/O	OV _{DD}	_
	Ethernet Management Interface		1	
EC_MDC	Α7	0	LV _{DD1}	_
EC_MDIO	E9	I/O	LV _{DD1}	11

Package and Pin Listings

Signal	Package Pin Number	Pin Type	Power Supply	Notes	
GND	 A1, A34, C1, C7, C10, C11, C15, C23, C25, C28, D1, D8, D20, D30, E7, E13, E15, E17, E18, E21, E23, E25, E32, F6, F19, F27, F30, F34, G31, H5, J4, J34, K30, L5, M2, M5, M30, M33, N3, N5, P30, R5, R32, T5, T30, U6, U29, U33, V2, V5, V30, W6, W30, Y30, AA2, AA30, AB2, AB6, AB30, AC3, AC6, AD31, AE5, AF2, AF5, AF31, AG30, AG31, AH4, AJ3, AJ19, AJ22, AK7, AK13, AK14, AK16, AK18, AK20, AK25, AK28, AL3, AL5, AL10, AL12, AL22, AL27, AM1, AM6, AM7, AN12, AN17, AN34, AP1, AP8, AP34 	_	_	_	
GV _{DD}	A2, E2, G5, G6, J5, K4, K5, L4, N4, P5, R6, T6, U5, V1, W5, Y5, AA4, AB3, AC4, AD5, AF3, AG5, AH2, AH5, AH6, AJ6, AK6, AK8, AK9, AL6	Power for DDR DRAM I/O voltage (2.5 V)	GV _{DD}	—	
LV _{DD1}	C9, D11	Power for three speed Ethernet #1 and for Ethernet management interface I/O (2.5 V, 3.3 V)	LV _{DD1}	_	
LV _{DD2}	C6, D9	Power for three speed Ethernet #2 I/O (2.5 V, 3.3 V)	LV _{DD2}	_	
V _{DD}	E19, E29, F7, F9, F11, F13, F15, F17, F18, F21, F23, F25, F29, H29, J6, K29, M29, N6, P29, T29, U30, V6, V29, W29, AB29, AC5, AD29, AF6, AF29, AH29, AJ8, AJ12, AJ14, AJ16, AJ18, AJ20, AJ21, AJ23, AJ25, AJ26, AJ27, AJ28, AJ29, AK10	Power for core (1.2 V nominal, 1.3 V for 667 MHz)	V _{DD}		
OV _{DD}	B22, B28, C16, C17, C24, C26, D13, D15, D19, D29, E31, F28, G33, H30, L29, L32, N32, P31, R31, U32, W31, Y29, AA29, AC30, AE31, AF30, AG29, AJ17, AJ30, AK11, AL15, AL19, AL21, AL29, AL30, AM20, AM23, AM24, AM26, AM28, AN11, AN13	PCI, 10/100 Ethernet, and other standard (3.3 V)	OV _{DD}	_	
MVREF1	M3	I	DDR reference voltage		

Table 55. MPC8349EA (TBGA) Pinout Listing (continued)

Clocking

19 Clocking

Figure 41 shows the internal distribution of the clocks.

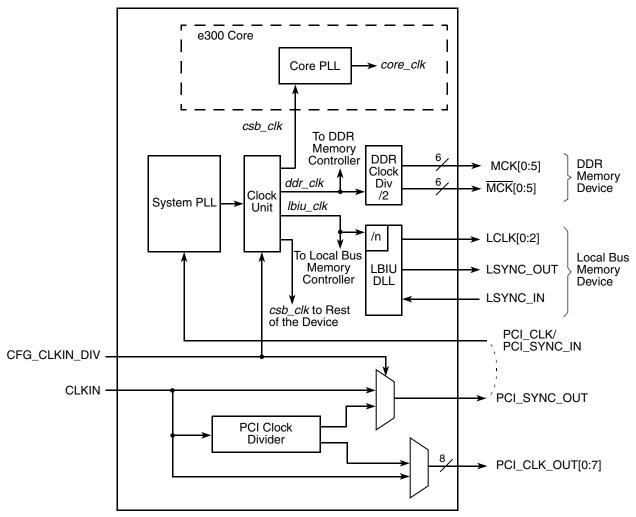


Figure 41. MPC8349EA Clock Subsystem

The primary clock source can be one of two inputs, CLKIN or PCI_CLK, depending on whether the device is configured in PCI host or PCI agent mode. When the MPC8349EA is configured as a PCI host device, CLKIN is its primary input clock. CLKIN feeds the PCI clock divider (÷2) and the multiplexors for PCI_SYNC_OUT and PCI_CLK_OUT. The CFG_CLKIN_DIV configuration input selects whether CLKIN or CLKIN/2 is driven out on the PCI_SYNC_OUT signal. The OCCR[PCICD*n*] parameters select whether CLKIN or CLKIN/2 is driven out on the PCI_CLK_OUT signal.

PCI_SYNC_OUT is connected externally to PCI_SYNC_IN to allow the internal clock subsystem to synchronize to the system PCI clocks. PCI_SYNC_OUT must be connected properly to PCI_SYNC_IN, with equal delay to all PCI agent devices in the system, to allow the MPC8349EA to function. When the device is configured as a PCI agent device, PCI_CLK is the primary input clock and the CLKIN signal should be tied to GND.

Clocking

Table 57 provides the operating frequencies for the MPC8349EA TBGA under recommended operating conditions (see Table 2).

Characteristic ¹	400 MHz	533 MHz	667 MHz	Unit
e300 core frequency (<i>core_clk</i>)	266–400	266–533	266–667	MHz
Coherent system bus frequency (<i>csb_clk</i>)	100–266	100–333	100–333	MHz
DDR1 memory bus frequency (MCK) ²	100–133	100–133	100–166.67	MHz
DDR2 memory bus frequency (MCK) ³	100–133	100–133	100–200	MHz
Local bus frequency (LCLKn) ⁴	16.67–133	16.67–133	16.67–133	MHz
PCI input frequency (CLKIN or PCI_CLK)	25–66	25–66	25–66	MHz
Security core maximum internal operating frequency	133	133	166	MHz
USB_DR, USB_MPH maximum internal operating frequency	133	133	166	MHz

Table 57. Operating Frequencies for TBGA

¹ The CLKIN frequency, RCWL[SPMF], and RCWL[COREPLL] settings must be chosen so that the resulting *csb_clk*, MCK, LCLK[0:2], and *core_clk* frequencies do not exceed their respective maximum or minimum operating frequencies. The value of SCCR[ENCCM], SCCR[USBDRCM] and SCCR[USBMPHCM] must be programmed so that the maximum internal operating frequency of the security core and USB modules does not exceed the respective values listed in this table.

² The DDR data rate is 2x the DDR memory bus frequency.

³ The DDR data rate is 2x the DDR memory bus frequency.

⁴ The local bus frequency is 1/2, 1/4, or 1/8 of the *lbiu_clk* frequency (depending on LCCR[CLKDIV]) which is in turn 1x or 2x the *csb_clk* frequency (depending on RCWL[LBIUCM]).

All frequency combinations shown in the table below may not be available. Maximum operating frequencies depend on the part ordered, see Section 22.1, "Part Numbers Fully Addressed by This Document," for part ordering details and contact your Freescale Sales Representative or authorized distributor for more information.

19.1 System PLL Configuration

The system PLL is controlled by the RCWL[SPMF] parameter. Table 58 shows the multiplication factor encodings for the system PLL.

RCWL[SPMF]	System PLL Multiplication Factor
0000	× 16
0001	Reserved
0010	× 2
0011	× 3
0100	× 4
0101	× 5
0110	× 6

Table 58. System PLL Multiplication Factors

			Ir	put Clock Fre	equency (MHz	:) ²
CFG_CLKIN_DIV at Reset ¹	SPMF	<i>csb_clk</i> : Input Clock Ratio ²	16.67	25	33.33	66.67
				<i>csb_clk</i> Freq	uency (MHz)	
Low	0110	6 : 1	100	150	200	
Low	0111	7:1	116	175	233	
Low	1000	8:1	133	200	266	
Low	1001	9:1	150	225	300	
Low	1010	10 : 1	166	250	333	
Low	1011	11 : 1	183	275		1
Low	1100	12 : 1	200	300		
Low	1101	13 : 1	216	325		
Low	1110	14 : 1	233		1	
Low	1111	15 : 1	250			
Low	0000	16 : 1	266			
High	0010	2:1				133
High	0011	3:1			100	200
High	0100	4 : 1			133	266
High	0101	5:1			166	333
High	0110	6:1			200	
High	0111	7:1			233	
High	1000	8:1				

Table 59. CSB Frequency Options for Host Mode (continued)

¹ CFG_CLKIN_DIV selects the ratio between CLKIN and PCI_SYNC_OUT.

² CLKIN is the input clock in host mode; PCI_CLK is the input clock in agent mode.

Table 60. CSB Frequency Options for Agent Mode

		<i>csb_clk</i> : Input Clock Ratio ²	Input Clock Frequency (MHz) ²			
CFG_CLKIN_DIV at Reset ¹ SPMF	SPMF		16.67	25	33.33	66.67
			<i>csb_clk</i> Freq	<i>sb_clk</i> Frequency (MHz)		
Low	0010	2 : 1				133
Low	0011	3 : 1			100	200
Low	0100	4 : 1		100	133	266
Low	0101	5 : 1		125	166	333

Table 63. Package Thermal Characteristics for TBGA (continued)

Characteristic	Symbol	Value	Unit	Notes
Junction-to-package natural convection on top		1	°C/W	6

Notes:

- 1. Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal resistance.
- 2. Per SEMI G38-87 and JEDEC JESD51-2 with the single-layer board horizontal.
- 3. Per JEDEC JESD51-6 with the board horizontal, 1 m/s is approximately equal to 200 linear feet per minute (LFM).
- 4. Thermal resistance between the die and the printed-circuit board per JEDEC JESD51-8. Board temperature is measured on the top surface of the board near the package.
- 5. Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883 Method 1012.1).
- 6. Thermal characterization parameter indicating the temperature difference between package top and the junction temperature per JEDEC JESD51-2. When Greek letters are not available, the thermal characterization parameter is written as Psi-JT.

20.2 Thermal Management Information

For the following sections, $P_D = (V_{DD} \times I_{DD}) + P_{I/O}$ where $P_{I/O}$ is the power dissipation of the I/O drivers. See Table 5 for I/O power dissipation values.

20.2.1 Estimation of Junction Temperature with Junction-to-Ambient Thermal Resistance

An estimation of the chip junction temperature, T_J, can be obtained from the equation:

$$T_J = T_A + (R_{\theta JA} \times P_D)$$

where:

 T_J = junction temperature (°C)

 T_A = ambient temperature for the package (°C)

 $R_{\theta JA}$ = junction-to-ambient thermal resistance (°C/W)

 P_D = power dissipation in the package (W)

The junction-to-ambient thermal resistance is an industry-standard value that provides a quick and easy estimation of thermal performance. Generally, the value obtained on a single-layer board is appropriate for a tightly packed printed-circuit board. The value obtained on the board with the internal planes is usually appropriate if the board has low power dissipation and the components are well separated. Test cases have demonstrated that errors of a factor of two (in the quantity $T_J - T_A$) are possible.

20.2.2 Estimation of Junction Temperature with Junction-to-Board Thermal Resistance

The thermal performance of a device cannot be adequately predicted from the junction-to-ambient thermal resistance. The thermal performance of any component is strongly dependent on the power dissipation of surrounding components. In addition, the ambient temperature varies widely within the application. For many natural convection and especially closed box applications, the board temperature at the perimeter

How to Reach Us:

Home Page: www.freescale.com

Web Support: http://www.freescale.com/support

USA/Europe or Locations Not Listed:

Freescale Semiconductor, Inc. Technical Information Center, EL516 2100 East Elliot Road Tempe, Arizona 85284 1-800-521-6274 or +1-480-768-2130 www.freescale.com/support

Europe, Middle East, and Africa:

Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) www.freescale.com/support

Japan:

Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku Tokyo 153-0064 Japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor China Ltd. Exchange Building 23F No. 118 Jianguo Road Chaoyang District Beijing 100022 China +86 10 5879 8000 support.asia@freescale.com

For Literature Requests Only:

Freescale Semiconductor Literature Distribution Center 1-800 441-2447 or +1-303-675-2140 Fax: +1-303-675-2150 LDCForFreescaleSemiconductor @hibbertgroup.com Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.

Freescale, the Freescale logo and PowerQUICC are trademarks of Freescale Semiconductor, Inc. Reg. U.S. Pat. & Tm. Off. The Power Architecture and Power.org word marks and the Power and Power.org logos and related marks are trademarks and service marks licensed by Power.org.

© 2006–2011 Freescale Semiconductor, Inc.

Document Number: MPC8349EAEC Rev. 13 09/2011

