

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

Product Status	Obsolete
Core Processor	PowerPC e300
Number of Cores/Bus Width	1 Core, 32-Bit
Speed	400MHz
Co-Processors/DSP	-
RAM Controllers	DDR, DDR2
Graphics Acceleration	No
Display & Interface Controllers	-
Ethernet	10/100/1000Mbps (2)
SATA	-
USB	USB 2.0 + PHY (2)
Voltage - I/O	1.8V, 2.5V, 3.3V
Operating Temperature	0°C ~ 105°C (TA)
Security Features	-
Package / Case	672-LBGA
Supplier Device Package	672-LBGA (35x35)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mpc8349zuagdb

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Overview

- On-chip arbitration supporting five masters on PCI1, three masters on PCI2
- Accesses to all PCI address spaces
- Parity supported
- Selectable hardware-enforced coherency
- Address translation units for address mapping between host and peripheral
- Dual address cycle for target
- Internal configuration registers accessible from PCI
- Security engine is optimized to handle all the algorithms associated with IPSec, SSL/TLS, SRTP, IEEE Std. 802.11i[®], iSCSI, and IKE processing. The security engine contains four crypto-channels, a controller, and a set of crypto execution units (EUs):
 - Public key execution unit (PKEU) :
 - RSA and Diffie-Hellman algorithms
 - Programmable field size up to 2048 bits
 - Elliptic curve cryptography
 - F2m and F(p) modes
 - Programmable field size up to 511 bits
 - Data encryption standard (DES) execution unit (DEU)
 - DES and 3DES algorithms
 - Two key (K1, K2) or three key (K1, K2, K3) for 3DES
 - ECB and CBC modes for both DES and 3DES
 - Advanced encryption standard unit (AESU)
 - Implements the Rijndael symmetric-key cipher
 - Key lengths of 128, 192, and 256 bits
 - ECB, CBC, CCM, and counter (CTR) modes
 - XOR parity generation accelerator for RAID applications
 - ARC four execution unit (AFEU)
 - Stream cipher compatible with the RC4 algorithm
 - 40- to 128-bit programmable key
 - Message digest execution unit (MDEU)
 - SHA with 160-, 224-, or 256-bit message digest
 - MD5 with 128-bit message digest
 - HMAC with either algorithm
 - Random number generator (RNG)
 - Four crypto-channels, each supporting multi-command descriptor chains
 - Static and/or dynamic assignment of crypto-execution units through an integrated controller
 - Buffer size of 256 bytes for each execution unit, with flow control for large data sizes
- Universal serial bus (USB) dual role controller
 - USB on-the-go mode with both device and host functionality

Electrical Characteristics

- Dual industry-standard I²C interfaces
 - Two-wire interface
 - Multiple master support
 - Master or slave I²C mode support
 - On-chip digital filtering rejects spikes on the bus
 - System initialization data optionally loaded from I²C-1 EPROM by boot sequencer embedded hardware
- DMA controller
 - Four independent virtual channels
 - Concurrent execution across multiple channels with programmable bandwidth control
 - Handshaking (external control) signals for all channels: DMA_DREQ[0:3],
 DMA_DACK[0:3], DMA_DDONE[0:3]
 - All channels accessible to local core and remote PCI masters
 - Misaligned transfer capability
 - Data chaining and direct mode
 - Interrupt on completed segment and chain
- DUART
 - Two 4-wire interfaces (RxD, TxD, RTS, CTS)
 - Programming model compatible with the original 16450 UART and the PC16550D
- Serial peripheral interface (SPI) for master or slave
- General-purpose parallel I/O (GPIO)
 - 64 parallel I/O pins multiplexed on various chip interfaces
- System timers
 - Periodic interrupt timer
 - Real-time clock
 - Software watchdog timer
 - Eight general-purpose timers
- Designed to comply with IEEE Std. 1149.1TM, JTAG boundary scan
- Integrated PCI bus and SDRAM clock generation

2 Electrical Characteristics

This section provides the AC and DC electrical specifications and thermal characteristics for the MPC8349EA. The device is currently targeted to these specifications. Some of these specifications are independent of the I/O cell, but are included for a more complete reference. These are not purely I/O buffer design specifications.

2.1 **Overall DC Electrical Characteristics**

This section covers the ratings, conditions, and other characteristics.

Electrical Characteristics

2.1.2 Power Supply Voltage Specification

Table 2 provides the recommended operating conditions for the MPC8349EA. Note that the values in Table 2 are the recommended and tested operating conditions. Proper device operation outside these conditions is not guaranteed.

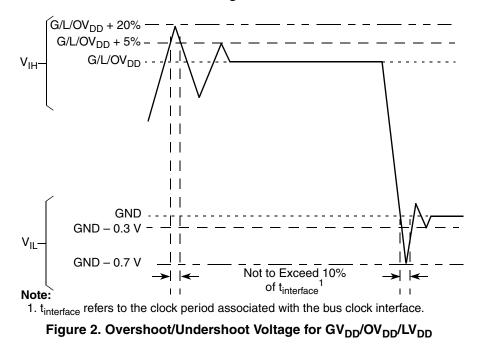

Parameter	Symbol	Recommended Value	Unit	Notes
Core supply voltage for 667-MHz core frequency	V _{DD}	1.3 V ± 60 mV	V	1
Core supply voltage	V _{DD}	1.2 V ± 60 mV	V	1
PLL supply voltage for 667-MHz core frequency	AV _{DD}	1.3 V ± 60 mV	V	1
PLL supply voltage	AV _{DD}	1.2 V ± 60 mV	V	1
DDR and DDR2 DRAM I/O voltage	GV _{DD}	2.5 V ± 125 mV 1.8 V ± 90 mV	V	_
Three-speed Ethernet I/O supply voltage	LV _{DD1}	3.3 V ± 330 mV 2.5 V ± 125 mV	V	_
Three-speed Ethernet I/O supply voltage	LV _{DD2}	3.3 V ± 330 mV 2.5 V ± 125 mV	V	_
PCI, local bus, DUART, system control and power management, I ² C, and JTAG I/O voltage	OV _{DD}	3.3 V ± 330 mV	V	_

Table 2. Recommended	Operating Conditions
----------------------	----------------------

Note:

¹ GV_{DD}, LV_{DD}, OV_{DD}, AV_{DD}, and V_{DD} must track each other and must vary in the same direction—either in the positive or negative direction.

Figure 2 shows the undershoot and overshoot voltages at the interfaces of the MPC8349EA.

RESET Initialization

4.3 TSEC Gigabit Reference Clock Timing

Table 8 provides the TSEC gigabit reference clocks (EC_GTX_CLK125) AC timing specifications.

Table 8. EC_GTX_CLK125 AC Timing Specifications

At recommended operating conditions with LV $_{DD}$ = 2.5 \pm 0.125 mV/ 3.3 V \pm 165 mV

Parameter	Symbol	Min	Typical	Max	Unit	Notes
EC_GTX_CLK125 frequency	t _{G125}	—	125	_	MHz	_
EC_GTX_CLK125 cycle time	t _{G125}	—	8		ns	_
EC_GTX_CLK125 rise and fall time $\label{eq:LVDD} LV_{DD} = 2.5 \ V \\ LV_{DD} = 3.3 \ V$	^t G125R ^{/t} G125F	_		0.75 1.0	ns	1
EC_GTX_CLK125 duty cycle GMII, TBI 1000Base-T for RGMII, RTBI		45 47	_	55 53	%	2
EC_GTX_CLK125 jitter	—	_		±150	ps	2

Notes:

1. Rise and fall times for EC_GTX_CLK125 are measured from 0.5 and 2.0 V for LV_{DD} = 2.5 V and from 0.6 and 2.7 V for LV_{DD} = 3.3 V.

2. EC_GTX_CLK125 is used to generate the GTX clock for the eTSEC transmitter with 2% degradation. The EC_GTX_CLK125 duty cycle can be loosened from 47%/53% as long as the PHY device can tolerate the duty cycle generated by the eTSEC GTX_CLK. See Section 8.2.4, "RGMII and RTBI AC Timing Specifications for the duty cycle for 10Base-T and 100Base-T reference clock.

5 **RESET Initialization**

This section describes the DC and AC electrical specifications for the reset initialization timing and electrical requirements of the MPC8349EA.

5.1 **RESET DC Electrical Characteristics**

Table 9 provides the DC electrical characteristics for the RESET pins of the MPC8349EA.

Parameter	Symbol	Condition	Min	Мах	Unit
Input high voltage	V _{IH}	—	2.0	OV _{DD} + 0.3	V
Input low voltage	V _{IL}	—	-0.3	0.8	V
Input current	I _{IN}	—	_	±5	μA
Output high voltage ²	V _{OH}	I _{OH} = -8.0 mA	2.4	—	V
Output low voltage	V _{OL}	I _{OL} = 8.0 mA	_	0.5	V

Table 9. RESET Pins DC Electrical Characteristics¹

Figure 7 shows the DDR SDRAM output timing diagram.

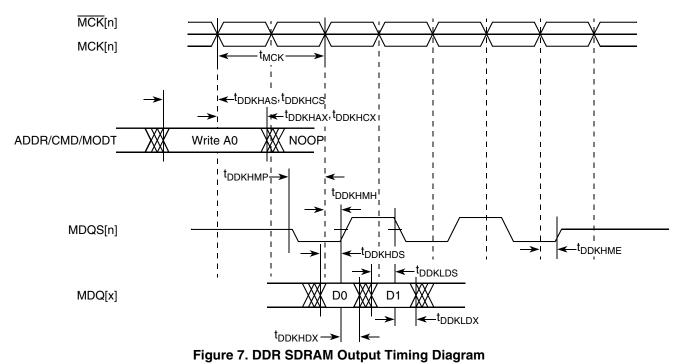


Figure 8 provides the AC test load for the DDR bus.

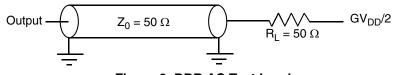


Figure 8. DDR AC Test Load

7 DUART

This section describes the DC and AC electrical specifications for the DUART interface of the MPC8349EA.

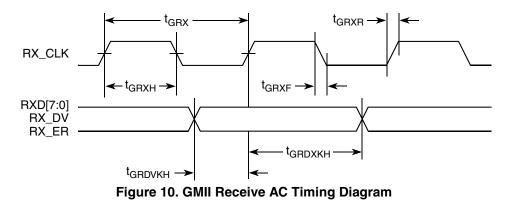
7.1 DUART DC Electrical Characteristics

Table 21 provides the DC electrical characteristics for the DUART interface of the MPC8349EA.

Table 21. DUART DC Electrical Characteristics

Parameter	Symbol	Min	Мах	Unit
High-level input voltage	V _{IH}	2	OV _{DD} + 0.3	V
Low-level input voltage	V _{IL}	-0.3	0.8	V
Input current (0.8 V \leq V _{IN} \leq 2 V)	I _{IN}	—	±5	μA

Table 26. GMII Receive AC Timing Specifications (continued)


At recommended operating conditions with LV_{DD}/OV_{DD} of 3.3 V \pm 10%.

Parameter/Condition	Symbol ¹	Min	Тур	Мах	Unit
RX_CLK clock rise (20%–80%)	t _{GRXR}	_	_	1.0	ns
RX_CLK clock fall time (80%–20%)	t _{GRXF}	_	_	1.0	ns

Note:

1. The symbols for timing specifications follow the pattern of t_{(first two letters of functional block)(signal)(state)(reference)(state) for inputs and t_{(first two letters of functional block)(reference)(state)(signal)(state)} for outputs. For example, t_{GRDVKH} symbolizes GMII receive timing (GR) with respect to the time data input signals (D) reaching the valid state (V) relative to the t_{RX} clock reference (K) going to the high state (H) or setup time. Also, t_{GRDXKL} symbolizes GMII receive timing (GR) with respect to the time data input signals (D) went invalid (X) relative to the t_{GRX} clock reference (K) going to the low (L) state or hold time. In general, the clock reference symbol is based on three letters representing the clock of a particular function. For example, the subscript of t_{GRX} represents the GMII (G) receive (RX) clock. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall).}

Figure 10 shows the GMII receive AC timing diagram.

8.2.2 MII AC Timing Specifications

This section describes the MII transmit and receive AC timing specifications.

8.2.2.1 MII Transmit AC Timing Specifications

Table 27 provides the MII transmit AC timing specifications.

Table 27. Mll Transm	it AC Timing	Specifications
----------------------	--------------	----------------

```
At recommended operating conditions with LV_{DD}/OV_{DD} of 3.3 V ± 10%.
```

Parameter/Condition	Symbol ¹	Min	Тур	Мах	Unit
TX_CLK clock period 10 Mbps	t _{MTX}	—	400	—	ns
TX_CLK clock period 100 Mbps	t _{MTX}	—	40	_	ns
TX_CLK duty cycle	t _{MTXH} /t _{MTX}	35	—	65	%
TX_CLK to MII data TXD[3:0], TX_ER, TX_EN delay	t _{MTKHDX}	1	5	15	ns

Ethernet: Three-Speed Ethernet, MII Management

Table 27. MII Transmit AC Timing Specifications (continued)

At recommended operating conditions with LV_{DD}/OV_{DD} of 3.3 V \pm 10%.

Parameter/Condition	Symbol ¹	Min	Тур	Max	Unit
TX_CLK data clock rise (20%-80%)	t _{MTXR}	1.0	_	4.0	ns
TX_CLK data clock fall (80%-20%)	t _{MTXF}	1.0		4.0	ns

Note:

The symbols for timing specifications follow the pattern of t<sub>(first two letters of functional block)(signal)(state)(reference)(state) for inputs and t<sub>(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, t_{MTKHDX} symbolizes MII transmit timing (MT) for the time t_{MTX} clock reference (K) going high (H) until data outputs (D) are invalid (X). In general, the clock reference symbol is based on two to three letters representing the clock of a particular function. For example, the subscript of t_{MTX} represents the MII(M) transmit (TX) clock. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall).
</sub></sub>

Figure 11 shows the MII transmit AC timing diagram.

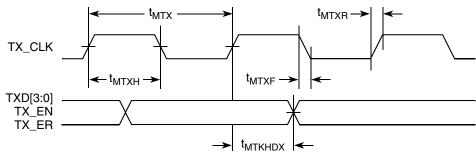


Figure 11. MII Transmit AC Timing Diagram

8.2.2.2 MII Receive AC Timing Specifications

Table 28 provides the MII receive AC timing specifications.

Table 28. MII Receive AC Timing Specifications

At recommended operating conditions with LV_{DD}/OV_{DD} of 3.3 V ± 10%.

Parameter/Condition	Symbol ¹	Min	Тур	Max	Unit
RX_CLK clock period 10 Mbps	t _{MRX}	_	400	—	ns
RX_CLK clock period 100 Mbps	t _{MRX}	_	40	_	ns
RX_CLK duty cycle	t _{MRXH} /t _{MRX}	35	_	65	%
RXD[3:0], RX_DV, RX_ER setup time to RX_CLK	t _{MRDVKH}	10.0	_	—	ns
RXD[3:0], RX_DV, RX_ER hold time to RX_CLK	t _{MRDXKH}	10.0		—	ns

Table 30. TBI Receive AC Timing Specifications (continued)

At recommended operating conditions with LV_{DD}/OV_{DD} of 3.3 V ± 10%.

Parameter/Condition	Symbol ¹	Min	Тур	Max	Unit
RXD[7:0], RX_DV, RX_ER (RCG[9:0]) setup time to rising PMA_RX_CLK	t _{TRDVKH} ²	2.5	—	—	ns
RXD[7:0], RX_DV, RX_ER (RCG[9:0]) hold time to rising PMA_RX_CLK	t _{TRDXKH} ²	1.5	—	—	ns
RX_CLK clock rise time (20%–80%)	t _{TRXR}	0.7	—	2.4	ns
RX_CLK clock fall time (80%–20%)	t _{TRXF}	0.7	—	2.4	ns

Notes:

The symbols for timing specifications follow the pattern of t<sub>(first two letters of functional block)(signal)(state)(reference)(state) for inputs and t_{(first two letters of functional block)(reference)(state)(signal)(state)} for outputs. For example, t_{TRDVKH} symbolizes TBI receive timing (TR) with respect to the time data input signals (D) reach the valid state (V) relative to the t_{TRX} clock reference (K) going to the high (H) state or setup time. Also, t_{TRDXKH} symbolizes TBI receive timing (TR) with respect to the time data input signals (D) went invalid (X) relative to the t_{TRX} clock reference (K) going to the high (H) state. In general, the clock reference symbol is based on three letters representing the clock of a particular function. For example, the subscript of t_{TRX} represents the TBI (T) receive (RX) clock. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall). For symbols representing skews, the subscript SK followed by the clock that is being skewed (TRX).
</sub>

2. Setup and hold time of even numbered RCG are measured from the riding edge of PMA_RX_CLK1. Setup and hold times of odd-numbered RCG are measured from the riding edge of PMA_RX_CLK0.

Figure 15 shows the TBI receive AC timing diagram.

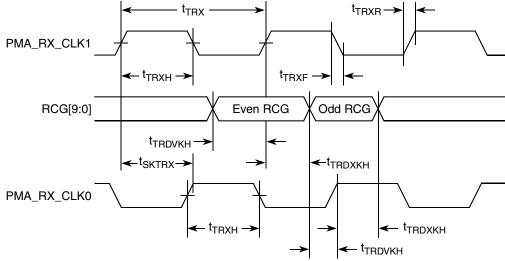


Figure 15. TBI Receive AC Timing Diagram

8.2.4 RGMII and RTBI AC Timing Specifications

Table 31 presents the RGMII and RTBI AC timing specifications.

Table 31. RGMII and RTBI AC Timing Specifications

At recommended operating conditions with LV_{DD} of 2.5 V \pm 5%.

Parameter/Condition	Symbol ¹	Min	Тур	Max	Unit
Data to clock output skew (at transmitter)	t _{SKRGT}	-0.5	—	0.5	ns
Data to clock input skew (at receiver) ²	t _{SKRGT}	1.0	—	2.8	ns
Clock cycle duration ³	t _{RGT}	7.2	8.0	8.8	ns
Duty cycle for 1000Base-T ^{4, 5}	t _{RGTH} /t _{RGT}	45	50	55	%
Duty cycle for 10BASE-T and 100BASE-TX ^{3, 5}	t _{RGTH} /t _{RGT}	40	50	60	%
Rise time (20%–80%)	t _{RGTR}	—	—	0.75	ns
Fall time (80%–20%)	t _{RGTF}	_	—	0.75	ns

Notes:

1. In general, the clock reference symbol for this section is based on the symbols RGT to represent RGMII and RTBI timing. For example, the subscript of t_{RGT} represents the TBI (T) receive (RX) clock. Also, the notation for rise (R) and fall (F) times follows the clock symbol. For symbols representing skews, the subscript is SK followed by the clock being skewed (RGT).

2. This implies that PC board design requires clocks to be routed so that an additional trace delay of greater than 1.5 ns is added to the associated clock signal.

3. For 10 and 100 Mbps, t_{RGT} scales to 400 ns \pm 40 ns and 40 ns \pm 4 ns, respectively.

4. Duty cycle may be stretched/shrunk during speed changes or while transitioning to a received packet clock domains as long as the minimum duty cycle is not violated and stretching occurs for no more than three t_{RGT} of the lowest speed transitioned.

5. Duty cycle reference is $LV_{DD}/2$.

Table 34. MII Management AC Timing Specifications (continued)

At recommended operating conditions with LV_{DD} is 3.3 V ± 10% or 2.5 V ± 5%.

Parameter/Condition	Symbol ¹	Min	Тур	Max	Unit	Notes
MDC fall time	t _{MDHF}	—	—	10	ns	—

Notes:

The symbols for timing specifications follow the pattern of t<sub>(first two letters of functional block)(signal)(state)(reference)(state) for inputs and t_{(first two letters of functional block)(reference)(state)(signal)(state)} for outputs. For example, t_{MDKHDX} symbolizes management data timing (MD) for the time t_{MDC} from clock reference (K) high (H) until data outputs (D) are invalid (X) or data hold time. Also, t_{MDDVKH} symbolizes management data timing (MD) with respect to the time data input signals (D) reach the valid state (V) relative to the t_{MDC} clock reference (K) going to the high (H) state or setup time. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall).
</sub>

- 2. This parameter is dependent on the csb_clk speed (that is, for a csb_clk of 267 MHz, the maximum frequency is 8.3 MHz and the minimum frequency is 1.2 MHz; for a csb_clk of 375 MHz, the maximum frequency is 11.7 MHz and the minimum frequency is 1.7 MHz).
- 3. This parameter is dependent on the csb_clk speed (that is, for a csb_clk of 267 MHz, the delay is 70 ns and for a csb_clk of 333 MHz, the delay is 58 ns).

Figure 17 shows the MII management AC timing diagram.

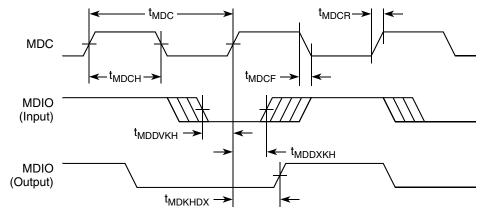


Figure 17. MII Management Interface Timing Diagram

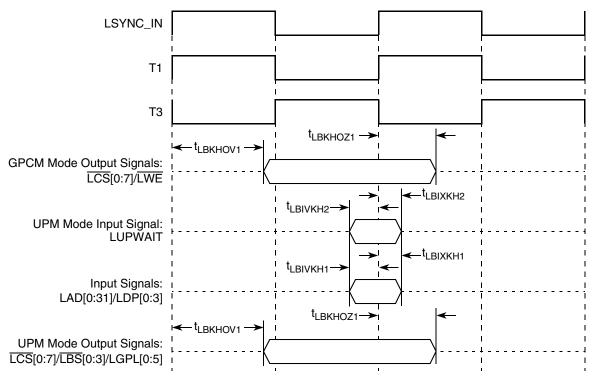


Figure 23. Local Bus Signals, GPCM/UPM Signals for LCCR[CLKDIV] = 2 (DLL Enabled)

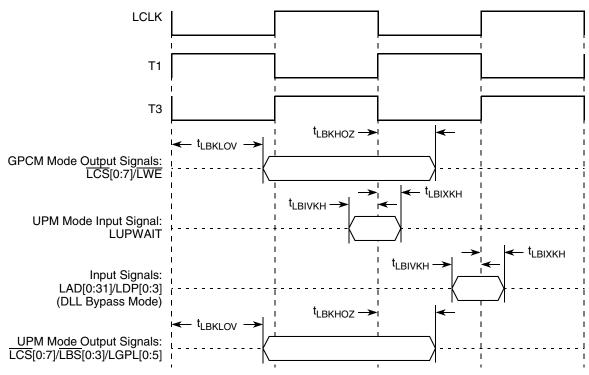


Figure 24. Local Bus Signals, GPCM/UPM Signals for LCCR[CLKDIV] = 2 (DLL Bypass Mode)

Table 45. PCI AC Timing Specifications at 66 MHz ¹ ((continued)
---	-------------

Parameter	Symbol ²	Min	Мах	Unit	Notes
PORESET to REQ64 hold time	t _{PCRHRX}	0	50	ns	6

Notes:

- 1. PCI timing depends on M66EN and the ratio between PCI1/PCI2. Refer to the PCI chapter of the reference manual for a description of M66EN.
- 2. The symbols for timing specifications follow the pattern of t_{(first two letters of functional block)(signal)(state)(reference)(state) for inputs and t_(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, t_{PCIVKH} symbolizes PCI timing (PC) with respect to the time the input signals (I) reach the valid state (V) relative to the PCI_SYNC_IN clock, t_{SYS}, reference (K) going to the high (H) state or setup time. Also, t_{PCRHFV} symbolizes PCI timing (PC) with respect to the time hard reset (R) went high (H) relative to the frame signal (F) going to the valid (V) state.}
- 3. See the timing measurement conditions in the PCI 2.3 Local Bus Specifications.
- 4. For active/float timing measurements, the Hi-Z or off-state is defined to be when the total current delivered through the component pin is less than or equal to the leakage current specification.
- 5. Input timings are measured at the pin.
- 6. The setup and hold time is with respect to the rising edge of PORESET.

Table 46 provides the PCI AC timing specifications at 33 MHz.

Table 46. PCI AC Timing Specifications at 33 MHz

Parameter	Symbol ¹	Min	Мах	Unit	Notes
Clock to output valid	^t PCKHOV	—	11	ns	2
Output hold from clock	t _{PCKHOX}	2	—	ns	2
Clock to output high impedance	t _{PCKHOZ}	—	14	ns	2, 3
Input setup to clock	t _{PCIVKH}	3.0	—	ns	2, 4
Input hold from clock	t _{PCIXKH}	0	—	ns	2, 4
REQ64 to PORESET setup time	t _{PCRVRH}	5	—	clocks	5
PORESET to REQ64 hold time	t _{PCRHRX}	0	50	ns	5

Notes:

2. See the timing measurement conditions in the PCI 2.3 Local Bus Specifications.

3. For active/float timing measurements, the Hi-Z or off-state is defined to be when the total current delivered through the component pin is less than or equal to the leakage current specification.

4. Input timings are measured at the pin.

5. The setup and hold time is with respect to the rising edge of PORESET.

The symbols for timing specifications follow the pattern of t<sub>(first two letters of functional block)(signal)(state)(reference)(state) for inputs and t_(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, t_{PCIVKH} symbolizes PCI timing (PC) with respect to the time the input signals (I) reach the valid state (V) relative to the PCI_SYNC_IN clock, t_{SYS}, reference (K) going to the high (H) state or setup time. Also, t_{PCRHFV} symbolizes PCI timing (PC) with respect to the time hard reset (R) went high (H) relative to the frame signal (F) going to the valid (V) state.
</sub>

Table 55. MPC8349EA (TBGA) Pinout Listing (continued)

Signal	Package Pin Number	Pin Type	Power Supply	Notes
MBA[2]	H4	0	GV _{DD}	
MDICO	AB1	I/O	—	9
MDIC1	AA1	I/O	—	9
	Local Bus Controller Interface			
LAD[0:31]	AM13, AP13, AL14, AM14, AN14, AP14, AK15, AJ15, AM15, AN15, AP15, AM16, AL16, AN16, AP16, AL17, AM17, AP17, AK17, AP18, AL18, AM18, AN18, AP19, AN19, AM19, AP20, AK19, AN20, AL20, AP21, AN21	I/O	OV _{DD}	_
LDP[0]/CKSTOP_OUT	AM21	I/O	OV _{DD}	—
LDP[1]/CKSTOP_IN	AP22	I/O	OV _{DD}	—
LDP[2]/LCS[4]	AN22	I/O	OV _{DD}	—
LDP[3]/LCS[5]	AM22	I/O	OV _{DD}	—
LA[27:31]	AK21, AP23, AN23, AP24, AK22	0	OV _{DD}	—
LCS[0:3]	AN24, AL23, AP25, AN25	0	OV _{DD}	
LWE[0:3]/LSDDQM[0:3]/LBS[0:3]	AK23, AP26, AL24, AM25	0	OV _{DD}	
LBCTL	AN26	0	OV _{DD}	
LALE	AK24	0	OV _{DD}	
LGPL0/LSDA10/cfg_reset_source0	AP27	I/O	OV _{DD}	—
LGPL1/LSDWE/cfg_reset_source1	AL25	I/O	OV _{DD}	—
LGPL2/LSDRAS/LOE	AJ24	0	OV _{DD}	—
LGPL3/LSDCAS/cfg_reset_source2	AN27	I/O	OV _{DD}	
LGPL4/LGTA/LUPWAIT/LPBSE	AP28	I/O	OV _{DD}	12
LGPL5/cfg_clkin_div	AL26	I/O	OV _{DD}	—
LCKE	AM27	0	OV _{DD}	—
LCLK[0:2]	AN28, AK26, AP29	0	OV _{DD}	_
LSYNC_OUT	AM12	0	OV _{DD}	
LSYNC_IN	AJ10	I	OV _{DD}	
	General Purpose I/O Timers			1
GPIO1[0]/DMA_DREQ0/GTM1_TIN1/ GTM2_TIN2	F24	I/O	OV _{DD}	-
GPIO1[1]/DMA_DACK0/ GTM1_TGATE1/GTM2_TGATE2	E24	I/O	OV _{DD}	—

Package and Pin Listings

Signal	Package Pin Number	Pin Type	Power Supply	Notes
	Gigabit Reference Clock	I		
EC_GTX_CLK125	C8	I	LV _{DD1}	_
Three-	Speed Ethernet Controller (Gigabit Et	hernet 1)		
TSEC1_COL/GPIO2[20]	A17	I/O	OV _{DD}	_
TSEC1_CRS/GPIO2[21]	F12	I/O	LV _{DD1}	—
TSEC1_GTX_CLK	D10	0	LV _{DD1}	3
TSEC1_RX_CLK	A11	I	LV _{DD1}	—
TSEC1_RX_DV	B11	I	LV _{DD1}	_
TSEC1_RX_ER/GPIO2[26]	B17	I/O	OV _{DD}	_
TSEC1_RXD[7:4]/GPIO2[22:25]	B16, D16, E16, F16	I/O	OV _{DD}	_
TSEC1_RXD[3:0]	E10, A8, F10, B8	I	LV _{DD1}	—
TSEC1_TX_CLK	D17	I	OV _{DD}	—
TSEC1_TXD[7:4]/GPIO2[27:30]	A15, B15, A14, B14	I/O	OV _{DD}	_
TSEC1_TXD[3:0]	A10, E11, B10, A9	0	LV _{DD1}	10
TSEC1_TX_EN	В9	0	LV _{DD1}	_
TSEC1_TX_ER/GPIO2[31]	A16	I/O	OV _{DD}	—
Three-	Speed Ethernet Controller (Gigabit Et	hernet 2)	•	
TSEC2_COL/GPIO1[21]	C14	I/O	OV _{DD}	_
TSEC2_CRS/GPIO1[22]	D6	I/O	LV _{DD2}	—
TSEC2_GTX_CLK	A4	0	LV _{DD2}	—
TSEC2_RX_CLK	B4	I	LV _{DD2}	—
TSEC2_RX_DV/GPIO1[23]	E6	I/O	LV _{DD2}	—
TSEC2_RXD[7:4]/GPIO1[26:29]	A13, B13, C13, A12	I/O	OV _{DD}	—
TSEC2_RXD[3:0]/GPIO1[13:16]	D7, A6, E8, B7	I/O	LV _{DD2}	—
TSEC2_RX_ER/GPIO1[25]	D14	I/O	OV _{DD}	—
TSEC2_TXD[7]/GPIO1[31]	B12	I/O	OV _{DD}	_
TSEC2_TXD[6]/ DR_XCVR_TERM_SEL	C12	0	OV _{DD}	_
TSEC2_TXD[5]/ DR_UTMI_OPMODE1	D12	0	OV _{DD}	—
TSEC2_TXD[4]/ DR_UTMI_OPMODE0	E12	0	OV _{DD}	—
TSEC2_TXD[3:0]/GPIO1[17:20]	B5, A5, F8, B6	I/O	LV _{DD2}	—

Package and Pin Listings

Signal	Package Pin Number	Pin Type	Power Supply	Notes
GND	 A1, A34, C1, C7, C10, C11, C15, C23, C25, C28, D1, D8, D20, D30, E7, E13, E15, E17, E18, E21, E23, E25, E32, F6, F19, F27, F30, F34, G31, H5, J4, J34, K30, L5, M2, M5, M30, M33, N3, N5, P30, R5, R32, T5, T30, U6, U29, U33, V2, V5, V30, W6, W30, Y30, AA2, AA30, AB2, AB6, AB30, AC3, AC6, AD31, AE5, AF2, AF5, AF31, AG30, AG31, AH4, AJ3, AJ19, AJ22, AK7, AK13, AK14, AK16, AK18, AK20, AK25, AK28, AL3, AL5, AL10, AL12, AL22, AL27, AM1, AM6, AM7, AN12, AN17, AN34, AP1, AP8, AP34 	_	_	
GV _{DD}	A2, E2, G5, G6, J5, K4, K5, L4, N4, P5, R6, T6, U5, V1, W5, Y5, AA4, AB3, AC4, AD5, AF3, AG5, AH2, AH5, AH6, AJ6, AK6, AK8, AK9, AL6	Power for DDR DRAM I/O voltage (2.5 V)	GV _{DD}	—
LV _{DD1}	C9, D11	Power for three speed Ethernet #1 and for Ethernet management interface I/O (2.5 V, 3.3 V)	LV _{DD1}	_
LV _{DD2}	C6, D9	Power for three speed Ethernet #2 I/O (2.5 V, 3.3 V)	LV _{DD2}	_
V _{DD}	E19, E29, F7, F9, F11,F13, F15, F17, F18, F21, F23, F25, F29, H29, J6, K29, M29, N6, P29, T29, U30, V6, V29, W29, AB29, AC5, AD29, AF6, AF29, AH29, AJ8, AJ12, AJ14, AJ16, AJ18, AJ20, AJ21, AJ23, AJ25, AJ26, AJ27, AJ28, AJ29, AK10	Power for core (1.2 V nominal, 1.3 V for 667 MHz)	V _{DD}	
OV _{DD}	B22, B28, C16, C17, C24, C26, D13, D15, D19, D29, E31, F28, G33, H30, L29, L32, N32, P31, R31, U32, W31, Y29, AA29, AC30, AE31, AF30, AG29, AJ17, AJ30, AK11, AL15, AL19, AL21, AL29, AL30, AM20, AM23, AM24, AM26, AM28, AN11, AN13	PCI, 10/100 Ethernet, and other standard (3.3 V)	OV _{DD}	_
MVREF1	M3	I	DDR reference voltage	

Table 55. MPC8349EA (TBGA) Pinout Listing (continued)

Clocking

19 Clocking

Figure 41 shows the internal distribution of the clocks.

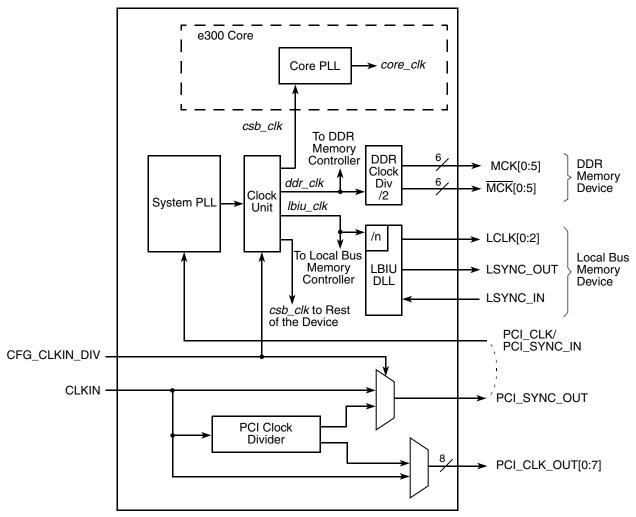


Figure 41. MPC8349EA Clock Subsystem

The primary clock source can be one of two inputs, CLKIN or PCI_CLK, depending on whether the device is configured in PCI host or PCI agent mode. When the MPC8349EA is configured as a PCI host device, CLKIN is its primary input clock. CLKIN feeds the PCI clock divider (÷2) and the multiplexors for PCI_SYNC_OUT and PCI_CLK_OUT. The CFG_CLKIN_DIV configuration input selects whether CLKIN or CLKIN/2 is driven out on the PCI_SYNC_OUT signal. The OCCR[PCICD*n*] parameters select whether CLKIN or CLKIN/2 is driven out on the PCI_CLK_OUT signal.

PCI_SYNC_OUT is connected externally to PCI_SYNC_IN to allow the internal clock subsystem to synchronize to the system PCI clocks. PCI_SYNC_OUT must be connected properly to PCI_SYNC_IN, with equal delay to all PCI agent devices in the system, to allow the MPC8349EA to function. When the device is configured as a PCI agent device, PCI_CLK is the primary input clock and the CLKIN signal should be tied to GND.

RCWL[SPMF]	System PLL Multiplication Factor
0111	× 7
1000	× 8
1001	× 9
1010	× 10
1011	× 11
1100	× 12
1101	× 13
1110	× 14
1111	× 15

Table 58. System	PLL Multiplication	Factors (continued)
------------------	---------------------------	---------------------

As described in Section 19, "Clocking," the LBIUCM, DDRCM, and SPMF parameters in the reset configuration word low and the CFG_CLKIN_DIV configuration input signal select the ratio between the primary clock input (CLKIN or PCI_CLK) and the internal coherent system bus clock (*csb_clk*). Table 59 and Table 60 show the expected frequency values for the CSB frequency for select *csb_clk* to CLKIN/PCI_SYNC_IN ratios.

CFG_CLKIN_DIV at Reset ¹ SPMF			In	Input Clock Frequency (MHz) ²				
	<i>csb_clk</i> : Input Clock Ratio ²	16.67	25	33.33	66.67			
				csb_clk Frequency (MHz)				
Low	0010	2 : 1				133		
Low	0011	3 : 1			100	200		
Low	0100	4 : 1		100	133	266		
Low	0101	5 : 1		125	166	333		

Table 59. CSB Frequency Options for Host Mode

CFG_CLKIN_DIV at Reset ¹	SPMF	<i>csb_clk</i> : Input Clock Ratio ²	Input Clock Frequency (MHz) ²			
			16.67	25	33.33	66.67
			csb_clk Frequency (MHz)			
Low	0110	6 : 1	100	150	200	
Low	0111	7 : 1	116	175	233	
Low	1000	8 : 1	133	200	266	
Low	1001	9 : 1	150	225	300	
Low	1010	10 : 1	166	250	333	
Low	1011	11 : 1	183	275		
Low	1100	12 : 1	200	300		
Low	1101	13 : 1	216	325		
Low	1110	14 : 1	233			
Low	1111	15 : 1	250			
Low	0000	16 : 1	266			
High	0010	4 : 1		100	133	266
High	0011	6 : 1	100	150	200	
High	0100	8 : 1	133	200	266	
High	0101	10 : 1	166	250	333	
High	0110	12 : 1	200	300		
High	0111	14 : 1	233			
High	1000	16 : 1	266			

Table 60. CSB Frequency Options for Agent Mode (continued)

¹ CFG_CLKIN_DIV doubles csb_clk if set high.

² CLKIN is the input clock in host mode; PCI_CLK is the input clock in agent mode.

19.2 Core PLL Configuration

RCWL[COREPLL] selects the ratio between the internal coherent system bus clock (*csb_clk*) and the e300 core clock (*core_clk*). Table 61 shows the encodings for RCWL[COREPLL]. COREPLL values that are not listed in Table 61 should be considered as reserved.

NOTE

Core VCO frequency = core frequency \times VCO divider

VCO divider must be set properly so that the core VCO frequency is in the range of 800–1800 MHz.

Thermal

(edge) of the package is approximately the same as the local air temperature near the device. Specifying the local ambient conditions explicitly as the board temperature provides a more precise description of the local ambient conditions that determine the temperature of the device.

At a known board temperature, the junction temperature is estimated using the following equation:

 $T_J = T_A + (R_{\theta JA} \times P_D)$

where:

 T_J = junction temperature (°C)

 T_A = ambient temperature for the package (°C)

 $R_{\theta JA}$ = junction-to-ambient thermal resistance (°C/W)

 P_D = power dissipation in the package (W)

When the heat loss from the package case to the air can be ignored, acceptable predictions of junction temperature can be made. The application board should be similar to the thermal test condition: the component is soldered to a board with internal planes.

20.2.3 Experimental Determination of Junction Temperature

To determine the junction temperature of the device in the application after prototypes are available, use the thermal characterization parameter (Ψ_{JT}) to determine the junction temperature and a measure of the temperature at the top center of the package case using the following equation:

$$T_J = T_T + (\Psi_{JT} \times P_D)$$

where:

 T_J = junction temperature (°C)

 T_T = thermocouple temperature on top of package (°C)

 Ψ_{JT} = junction-to-ambient thermal resistance (°C/W)

 P_D = power dissipation in the package (W)

The thermal characterization parameter is measured per the JESD51-2 specification using a 40 gauge type T thermocouple epoxied to the top center of the package case. The thermocouple should be positioned so that the thermocouple junction rests on the package. A small amount of epoxy is placed over the thermocouple junction and over about 1 mm of wire extending from the junction. The thermocouple wire is placed flat against the package case to avoid measurement errors caused by cooling effects of the thermocouple wire.

20.2.4 Heat Sinks and Junction-to-Case Thermal Resistance

Some application environments require a heat sink to provide the necessary thermal management of the device. When a heat sink is used, the thermal resistance is expressed as the sum of a junction-to-case thermal resistance and a case-to-ambient thermal resistance:

$$R_{\theta JA} = R_{\theta JC} + R_{\theta CA}$$

where:

 $R_{\theta JA}$ = junction-to-ambient thermal resistance (°C/W)

 $R_{\theta JC}$ = junction-to-case thermal resistance (°C/W)

 $R_{\theta CA}$ = case-to-ambient thermal resistance (°C/W)

 $R_{\theta JC}$ is device-related and cannot be influenced by the user. The user controls the thermal environment to change the case-to-ambient thermal resistance, $R_{\theta CA}$. For instance, the user can change the size of the heat sink, the air flow around the device, the interface material, the mounting arrangement on printed-circuit board, or change the thermal dissipation on the printed-circuit board surrounding the device.

The thermal performance of devices with heat sinks has been simulated with a few commercially available heat sinks. The heat sink choice is determined by the application environment (temperature, air flow, adjacent component power dissipation) and the physical space available. Because there is not a standard application environment, a standard heat sink is not required.

Table 64 shows heat sink thermal resistance for TBGA of the MPC8349EA.

Heat Sink Assuming Thermal Crasss	Air Flow	35 × 35 mm TBGA Thermal Resistance	
Heat Sink Assuming Thermal Grease			
AAVID $30 \times 30 \times 9.4$ mm pin fin	Natural convection	10	
AAVID $30 \times 30 \times 9.4$ mm pin fin	1 m/s	6.5	
AAVID $30 \times 30 \times 9.4$ mm pin fin	2 m/s	5.6	
AAVID 31 \times 35 \times 23 mm pin fin	Natural convection	8.4	
AAVID 31 \times 35 \times 23 mm pin fin	1 m/s	4.7	
AAVID 31 \times 35 \times 23 mm pin fin	2 m/s	4	
Wakefield, $53 \times 53 \times 25$ mm pin fin	Natural convection	5.7	
Wakefield, $53 \times 53 \times 25$ mm pin fin	1 m/s	3.5	
Wakefield, $53 \times 53 \times 25$ mm pin fin	2 m/s	2.7	
MEI, $75 \times 85 \times 12$ no adjacent board, extrusion	Natural convection	6.7	
MEI, 75 \times 85 \times 12 no adjacent board, extrusion	1 m/s	4.1	
MEI, $75 \times 85 \times 12$ no adjacent board, extrusion	2 m/s	2.8	
MEI, $75 \times 85 \times 12$ mm, adjacent board, 40 mm side bypass	1 m/s	3.1	

Table 64. Heat Sink and Thermal Resistance of MPC8349EA (TBGA)

Accurate thermal design requires thermal modeling of the application environment using computational fluid dynamics software which can model both the conduction cooling and the convection cooling of the air moving through the application. Simplified thermal models of the packages can be assembled using the junction-to-case and junction-to-board thermal resistances listed in the thermal resistance table. More detailed thermal models can be made available on request.