

Welcome to **E-XFL.COM**

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of Embedded - Microprocessors

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details	
Product Status	Active
Core Processor	Z80180
Number of Cores/Bus Width	1 Core, 8-Bit
Speed	16MHz
Co-Processors/DSP	-
RAM Controllers	DRAM
Graphics Acceleration	No
Display & Interface Controllers	-
Ethernet	-
SATA	-
USB	-
Voltage - I/O	5.0V
Operating Temperature	0°C ~ 70°C (TA)
Security Features	-
Package / Case	100-QFP
Supplier Device Package	100-QFP
Purchase URL	https://www.e-xfl.com/product-detail/zilog/z8018216fsg

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

MULTIPLEXED PIN DESCRIPTIONS

A18/T_{out.} During Reset, this pin is initialized as an A18 pin. If either TOC1 or TOC0 bit of the Timer Control Register (TCR) is set to 1, The T_{OUT} function is selected. If TOC1 and TOC0 bits are cleared to 0, the A18 function is selected.

In normal user mode (on-chip bus master), the A18 signal for the chip select logic is obtained from the CPU before the external pin is muxed as A18/ T_{OUT} . Therefore, the selection of T_{OUT} will not affect the operation of the 182 chip select logic. However, in adapter mode (off-chip bus master), the A18 signal MUST be provided by the external bus master.

CKA0//DREQ0. During Reset, this pin is initialized as CKA0 pin. If either DM1 or SM1 in the DMA Mode Register (DMODE) is set to 1, /DREQ0 function is always selected.

CKA1//TEND0. During Reset, this pin is initialized as CKA1 pin. If CKA1D bit in the ASCI control register Ch1(CNTLA1) is set to 1, /TEND0 function is selected. If CKA1D bit is set to 0, CKA1 function is selected.

RxS//CTS1. During Reset, this pin is initialized as the RxS pin. If CTS1E bit in the ASCI status register Ch1 (STAT1) is set to 1, /CTS1 function is selected. If CTS1E bit is set to 0, RxS function is selected. This pin is also multiplexed with PB7 based on bit 6 in the System Configuration Register.

The pins below are triple-multiplexed based upon the values of bit 1 and bit 2 of the System Configuration Register. The pins are configured as Table 2 specifies. On Reset, both bits 1 and 2 are 0, so /TEND1,TxS,CKS are selected.

Table 2. Triple Multiplexed Pins

Bit 1	it 1 Bit 2 Master Configuration Registe						
0	0	/TEND1,TxS,CKS					
0	1	/RTSB,/DTR//REQB,/W//REQB					
1	0	/TEND1,TxS,CKS					
1	1	/HRxRDY,//HTxRDY,HINTR					

The pins below are multiplexed based upon the value of bit 1 of the System Configuration register. If bit 1 is 0, then the Z80182/Z8L182 Mode 0 (non-16550 MIMIC mode) signals are selected; if bit 1 is 1, then Z80182/Z8L182 Mode 1 (16550 MIMIC mode) signals are selected. On Reset, Z80182/Z8L182 Mode 0 is always selected as shown in Table 3.

Table 3. Mode 0 and Mode 1 Multiplexed Pins

Z80182/Z8L182 Mode 0	Z80182/Z8L182 Mode 1	
TxDB	/HDDIS	
RxDB	HA1	
/TRxCB	HA0	
/RTxCB	HA2	
/SYNCB	/HCS	
/CTSB	/HWR	
/DCDB	/HRD	
PA7-PA0	HD7-HD0	

3-11

Z85230 ESCC™ FUNCTIONAL DESCRIPTION

The Zilog Enhanced Serial Communication Controller ESCC™ is a dual channel, multiprotocol data communication peripheral. The ESCC functions as a serial-to-parallel, parallel-to-serial converter/controller. The ESCC can be software-configured to satisfy a wide variety of serial communications applications. The device contains a variety of new, sophisticated internal functions including on-chip baud rate generators, digital phase-lock loops, and crystal oscillators, which dramatically reduce the need for external logic.

The ESCC handles asynchronous formats, synchronous byte-oriented protocols such as IBM® Bisync, and synchronous bit-oriented protocols such as HDLC and IBM SDLC. This versatile device supports virtually any serial data transfer application (telecommunication, LAN, etc.)

The device can generate and check CRC codes in any synchronous mode and can be programmed to check data integrity in various modes. The ESCC also has facilities for modem control in both channels in applications where these controls are not needed, the modem controls can be used for general-purpose I/O.

With access to 14 Write registers and 7 Read registers per channel (number of the registers varies depending on the version), the user can configure the ESCC to handle all synchronous formats regardless of data size, number of stop bits, or parity requirements. The ESCC also accommodates all synchronous formats including character, byte, and bit-oriented protocols.

Within each operating mode, the ESCC also allows for protocol variations by checking odd or even parity bits, character insertion or deletion, CRC generation, checking break and abort generation and detection, and many other protocol-dependent features.

3-18

The ESCC (Enhanced SCC) is pin and software compatible to the CMOS SCC version. The following enhancements were made to the CMOS SCC:

- Deeper Transmit FIFO (4 bytes)
- Deeper Receive FIFO (8 bytes)
- Programmable FIFO interrupt and DMA request level
- Seven enhancements to improve SDLC link layer supports:
 - Automatic transmission of the opening flag
 - Automatic reset of Tx Underrun/EOM latch
 - Deactivation of /RTS pin after closing flag
 - Automatic CRC generator preset
 - Complete CRC reception
 - TxD pin automatically forced High with NRZI encoding when using mark idle
 - Status FIFO handles better frames with an ABORT
 - Receive FIFO automatically unlocked for special receive interrupts when using the SDLC status FIFO
- Delayed bus latching for easier microprocessor interface
- New programmable features added with Write Register
 7' (WR seven prime)
- Write registers, 3, 4, 5 and 10 are now readable
- Read register 0 latched during access
- DPLL counter output available as jitter-free transmitter clock source
- Enhanced /DTR, /RTS deactivation timing

TIMER DATA REGISTERS

TMDR0L Read/Write	Addr 0CH				TMDR0H Read/Write					Addr 0DH	
7 6 5 4 3	2 1 0	[15	14	13	12	11	10	9	8	

Figure 23. Timer 0 Data Register L

When Read, read Data Register	L
before reading Data Register H.	

	IDR ad/\	1L Vrite	Э		A	ddr	14⊦	1
7	6	5	4	3	2	1	0	

Figure 24. Timer 1 Data Register L

 IDR ad/\	 e		Α	ddr	15⊦
 14	 -	11			

When Read, read Data Register L before reading Data Register H.

Figure 26. Timer 1 Data Register H

Figure 25. Timer 0 Data Register H

TIMER RELOAD REGISTERS

	LDR ead/		Э		Ac	ddr (0EH		RLDR0H Read/Write					Addr 0FH		
7	6	5	4	3	2	1	0		15	14	13	12	11	10	9	8

Figure 27. Timer 0 Reload Register L

Figure 29. Timer 0 Reload Register H

RLDR1L Read/Write	Addr 16H	RLDR1H Read/Write	Addr 17H
7 6 5 4 3	2 1 0	15 14 13 12 1	1 10 9 8

Figure 28. Timer 1 Reload Register L

Figure 30. Timer 1 Reload Register H

DMA REGISTERS

	AR0L ead/\ A7	_	е		Α	.ddr	23ŀ DA	•
								l
Re	\R0I ead/\ \15	-	е		Α	.ddr	24ŀ DA	-
	\R0I ead/\		е	DA		.ddr	25H 0A1	
-	-	-	-					

Bits 0-2 (3) are used for DAR0B

A19, A18, A	17, A16	DMA Transfer Request
x x x x x x x x x x	0 0 0 1 1 0 1 1	/DREQ0 (external) TDR0 (ASCI0) TDR1 (ASCI1) Not Used

Figure 35. DMA 0 Destination Address Registers

_	ROL ad/W 7	/rite	Addr 26H BC0							
_	R0H ad/W 15			Α	ddr :	27H BC8				

Figure 36. DMA 0 Byte Counter Registers

	\R1L ad/W \7				Α	 28H MA0
	\R1F ad/W \15	-			Α	 29H MA8
	\R1E ad/W			MA		 2AH 1A16
-	-	-	-			

Figure 37. DMA 1 Memory Address Registers

IAR Rea IA7	1L ad/W	/rite		A	ddr :	2BH IA(
IAR Rea	ad/W	/rite		A	ddr :	2CH IA8	

Figure 38. DMA I/O Address Registers

BCR1L Read/Write BC7					Addr 2EH BC				
BCR ² Read BC15	/V\				Α	ddr	2FH BC8		

Figure 39. DMA 1 Byte Count Registers

3-39

DMA REGISTERS (Continued)

Zilog

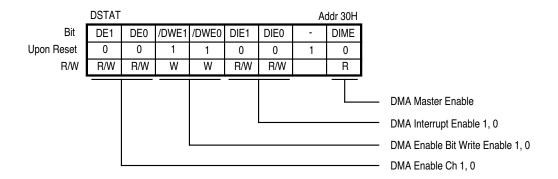
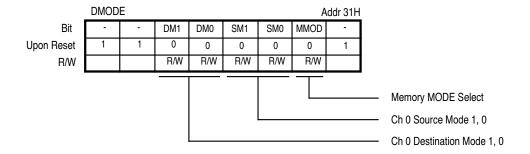



Figure 40. DMA Status Register

DM1, 0	Destination	Address
00	M	DAR0+1
01	M	DAR0-1
10	M	DAR0 Fixed
11	I/O	DAR0 Fixed

SM1, 0	Source	Address
00	M	SAR0+1
01	M	SAR0-1
10	M	SAR0 Fixed
11	I/O	SAR0 Fixed

MMOD	Mode
0	Cycle Steal Mode Burst Mode

Figure 41. DMA Mode Registers

SYSTEM CONTROL REGISTERS

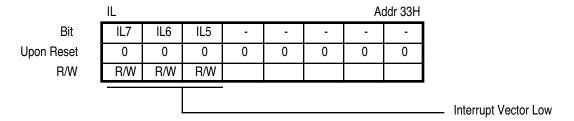
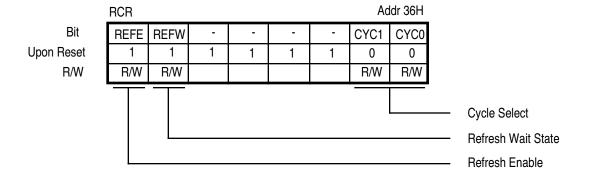
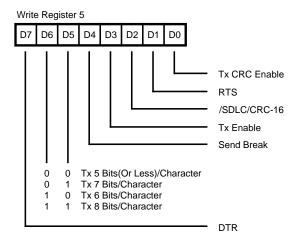



Figure 46. Interrupt Vector Low Register

Figure 47. INT/TRAP Control Register



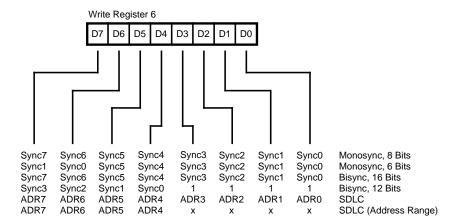

CYC1, 0	Interval of Refresh Cycle
00	10 states
01	20 states
10	40 states
11	80 states

Figure 48. Refresh Control Register

3-52

CONTROL REGISTERS (Continued)

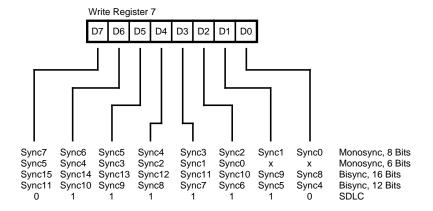


Figure 52. Write Register Bit Functions (Continued)

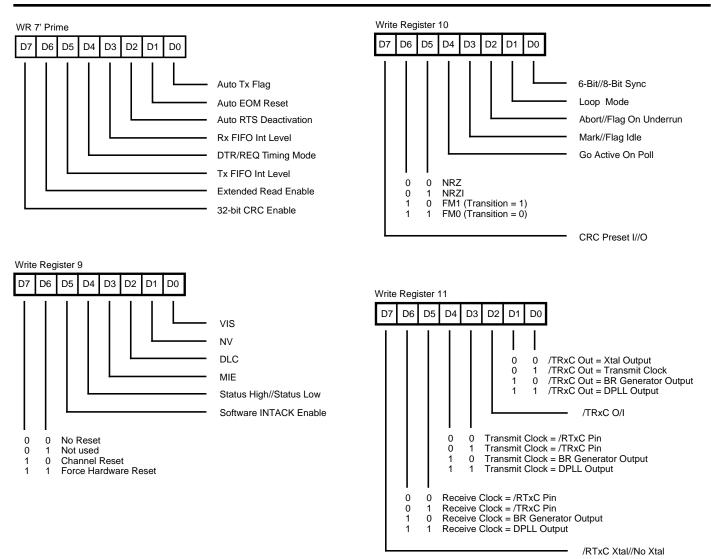


Figure 52. Write Register Bit Functions (Continued)

CONTROL REGISTERS (Continued)

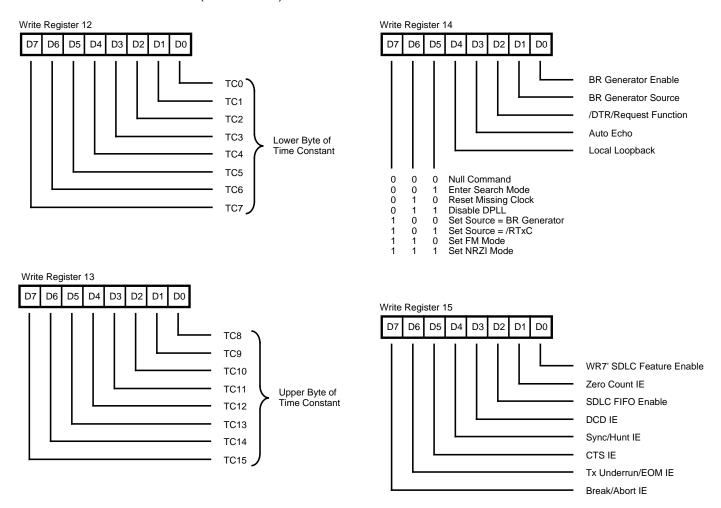
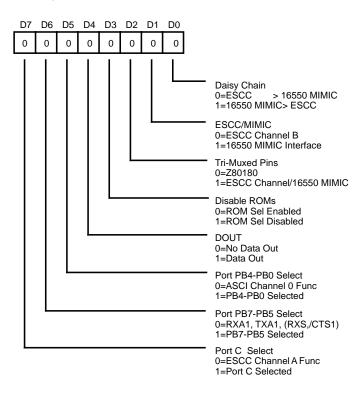



Figure 52. Write Register Bit Functions (Continued)

Z182 MISCELLANEOUS CONTROL AND INTERFACE REGISTERS

Figures 54 through 65 describe miscellaneous registers that control the Z182 configuration, RAM/ROM chip select, interrupt and various status and timers.

Figure 54. System Configuration Register (Z180 MPU Read/Write, Address xxEFH)

System Configuration Register

Bit 7 Port C Select

When this bit is set to 1, bit 8 parallel Port C is selected on the multiplexed pins. When this bit is reset to 0 then these multiplexed pins take ESCC™ Channel A functions.

Bit 6 PB7-PB5 Select

When this bit is set to 1, parallel Port B bits 7 through 5 are selected on the multiplexed pins. When this bit is reset to 0, these multiplexed pins become RxA1, TxA1 and RxS/CTS1.

Bit 5 PB4-PB0 Select

When this bit is set to 1, parallel Port B bits 4 through 0 are selected on the multiplexed pins. When this bit is reset to 0, these multiplexed pins take ASCI channel 0 functions.

Bit 4 DD_{OUT} ROM Emulator Mode Enable

When this bit is set to 1, the Z182 is in "ROM emulator mode". In this mode, bus direction for certain transaction periods are set to the opposite direction to export internal bus transactions outside the Z80182/Z8L182. This allows the use of ROM emulators/logic analyzers for application development (see Tables 12a and 12b).

Note: The word "Out" means that the Z182 data bus direction is in output mode, "In" means input mode, and "Z" means high impedance. DD_{OUT} stands for Data Direction Out and is the status of the D4 bit in the System Configuration Register (SCR).

3-57

Table 12a. Data Bus Direction (Z182 Bus Master)

I/O And Memory Transactions

	I/O Write to On-Chip Peripherals	I/O Read From On-Chip Peripherals	I/O Write to Off-Chip Peripherals	I/O Read From Off-Chip Peripherals	Write To Memory	Read From Mode	Refresh	Z80182 /Z8L182 Idle Mode
Z80182 /Z8L182 Data Bus (DD _{OUT} =0)	Out	Z	Out	ln	Out	ln	Z	Z
Z80182 /Z8L182 Data Bus (DD _{OUT} =1)	Out	Out	Out	ln	Out	In	Z	Z

16550 MIMIC REGISTERS (Continued)

FIFO Control Register

Bit 6 and Bit 7 RCVR trigger LSB and MSB bits

This 2-bit field determines the number of available bytes in the receiver FIFO before an interrupt to the PC occurs (see Table 18).

Bit 4 and Bit 5

Reserved for future use (PC side). Note: From the MPU side, bit 4 and bit 5 flags two sources of interrupts. Bit 5 is a FIFO interrupt indicating that the FCR had changed; bit 4 is a Tx overrun interrupt, indicating transmit overrun. A read of the FCR from the MCU side will clear a previously set bit 4 or bit 5.

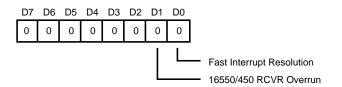
Bit 3 DMA mode select

Setting this bit to 1 will cause the MIMIC DMA mode to change from mode 0 to mode 1 (if bit 0 is 1, FIFO mode is enabled). This affects the DMA mode of the FIFO. A 1 in this bit enables multi-byte DMA).

Bit 2 XMIT FIFO Reset

Setting this bit to 1 will cause the transmitter FIFO pointer logic to be reset; any data in the FIFO will be lost. This bit is self clearing; however a shadow bit exists that is cleared only when read by the Z180 MPU, allowing the MPU to monitor a FIFO reset by the PC.

Bit 1 RCVR FIFO Reset


Setting this bit to 1 will cause the receiver FIFO pointer logic to be reset; any data in the FIFO will be lost. This bit is self clearing, however a shadow bit exists that is cleared only when read by the Z180 MPU, allowing the MPU to monitor a FIFO reset by the PC.

Bit 0 FIFO Enable

The PC writes this bit to logic 1 to put the 16550 MIMIC into FIFO mode. This bit must be 1 when writing to the other bits in this register or they will not be programmed. When this bit changes state, any data in the FIFO's or transmitter holding and Receive Buffer Registers is lost and any pending interrupts are cleared. This feature can be forced in a disabled state by the MPU.

Table 18. Receive Trigger Level

b7	b6	Trigger Level, Number of Bytes
0	0	1
0	1	4
1	0	8
1	1	14

Figure 72. MIMIC Modification Register (Z180 MPU Write only, Address xxE9h)

Bit 7-2 Reserved. Program to zero.

Bit 1 RCVR Overrun Modification

The actual 16450/16550 device allows the last position in FIFO to be overwritten by DCE during receiver overrun condition. When this bit is enabled (programmed to 1) the last position in FIFO can be overwritten by Z180 during receiver overrun. This feature is disabled by default. When this modification is not enabled, the MIMIC will ignore any write to RBR during an overrun condition.

Bit 0 Fast MIMIC-ESCC Interrupt Resolution

When enabling this modification, the internal MIMIC IEO signal into the ESCC IEI input is forced Low when the MIMIC Interrupt line becomes active. This is required to prevent the ESCC from putting it's vector on the databus during an INTACK cycle (given that the MIMIC is programmed to have higher interrupt priority).

When disabled, the internal MIMIC IEO becomes deasserted only after an interrupt acknowledge cycle. In this case, it is possible for the ESCC to force it's interrupt vector onto the data bus even when the MIMIC has a pending interrupt and is higher in priority.

16550 MIMIC REGISTERS (Continued)

Modem Status Register

Bit 7 Data Carrier Detect

This bit must be written by the Z180 MPU.

Bit 6 Ring Indicator

This bit must be written by the Z180 MPU.

Bit 5 Data Set Ready

This bit must be written by the Z180 MPU.

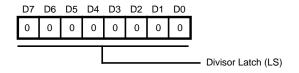
Bit 4 Clear to Send

This bit must be written by the Z180™ MPU.

Bit 3 Delta Data Carrier Detect

This bit is set to 1 whenever the Data Carrier Detect bit changes state. This bit is reset when the PC/XT/AT reads the Modem Status Register.

Bit 2 Trailing Edge Ring Indicator

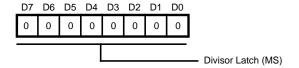

This bit is set to 1 on the falling edge of the Ring Indicator bit. This bit is reset when the PC/XT/AT reads the Modem Status Register.

Bit 1 Delta Data Set Ready

This bit is set to 1 whenever the Data Set Ready bit changes state. This bit is reset when the PC/XT/AT reads the Modem Status Register.

Bit 0 Delta Clear To Send

This bit is set to 1 whenever the Clear To Send bit changes state. This bit is reset when the PC/XT/AT reads the Modem Status Register.

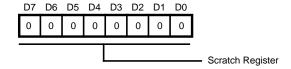

Figure 79. Scratch Register

(PC Read/Write, Address 07H) (Z180 MPU Read Only, Address xxF7H)

Scratch Register

Bits 7-0 Scratch Register

This register is used by the PC/XT/AT programmer for temporary data storage. The Z180 MPU is able to read this register. If the PC/XT/AT writes to this register, no interrupt to the Z180 MPU is generated.


Figure 80. Divisor Latch (LS)

(PC Read/Write, Address 00H and DLAB=1) (Z180 MPU Read Only, Address xxF8H)

Divisor Latch (LS)

Bit 7-0 Divisor Latch Most Significant Byte (MS)

This register contains the Low order byte of the Baud rate divisor. Writing to this register with the PC/XT/AT will generate an interrupt to the Z180 MPU. It can then read the Baud rate divisor and set up the application.

Figure 81. Divisor Latch (MS)

(PC Read/Write, Address 01H and DLAB=1) (Z180 MPU Read Only, Address xxF9H)

Divisor Latch (MS)

Bit 7-0 Divisor Latch Most Significant Byte (MS)

This register contains the High order byte of the Baud rate divisor. Writing to this register with the PC/XT/AT will generate an interrupt to the Z180 MPU. It can then read the Baud rate divisor and set up the application.

TIMING DIAGRAMS

Z180 MPU Timing

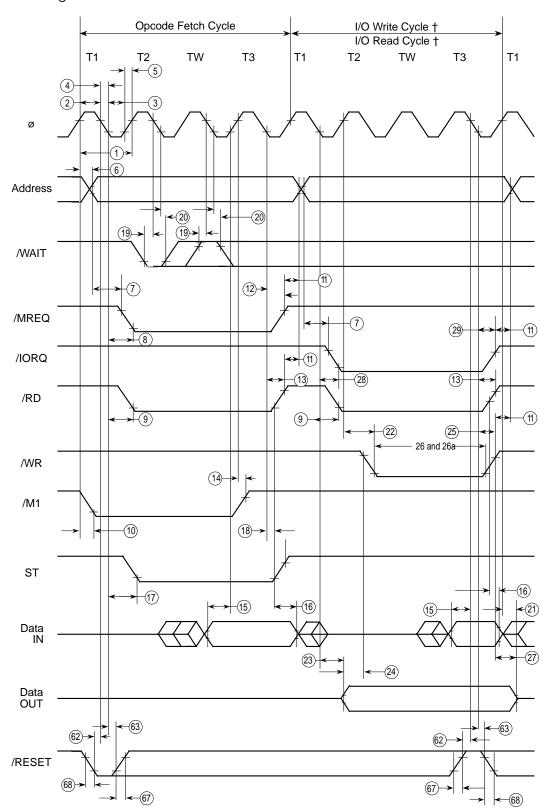


Figure 90. CPU Timing
(Opcode Fetch Cycle, Memory Read/Write Cycle
I/O Read/Write Cycle)

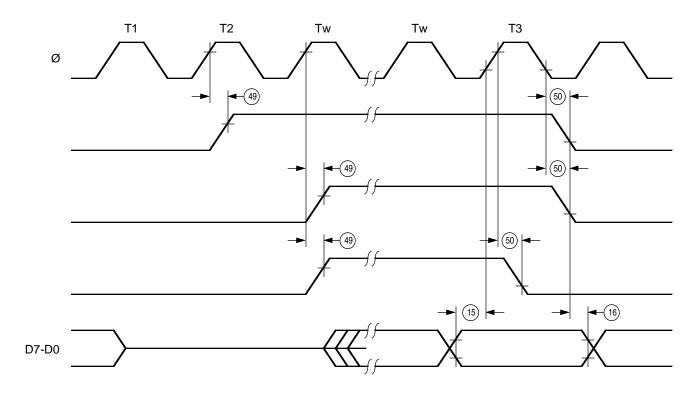


Figure 94. E Clock Timing (Memory Read/Write Cycle I/O Read/Write Cycle)

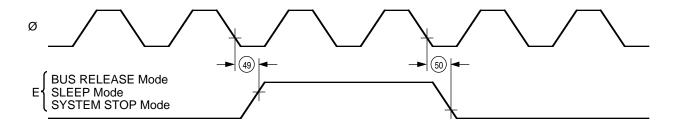


Figure 95. E Clock Timing

ESCC Timing

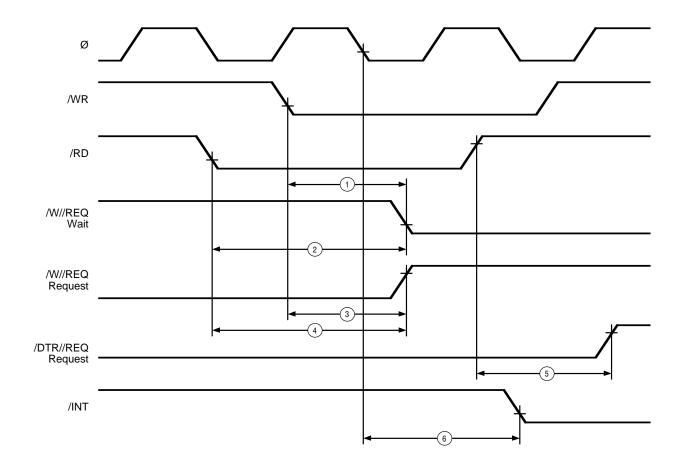


Figure 104. ESCC AC Parameter

Table B. ESCC Timing Parameters

			20	MHz	
No.	Symbol	Parameter	Min	Max	Unit
1 2 3	TdWR(W) TdRD(W) TdWRf(REQ)	/WR Fall to Wait Valid Delay /RD Fall to Wait Valid Delay /WR Fall to /W//REQ Not Valid Delay		50 50 65	ns
4	TdRDf(REQ)	/RD Fall to /W//REQ			
5	TdRdr(REQ)	Not Valid Delay /RD Rise to /DTR//REQ Not Valid Delay		65 TBD	
6	TdPC(INT)	Clock to /INT Valid Delay		160	

AC CHARACTERISTICS (Continued) Z85230 General Timing Diagram

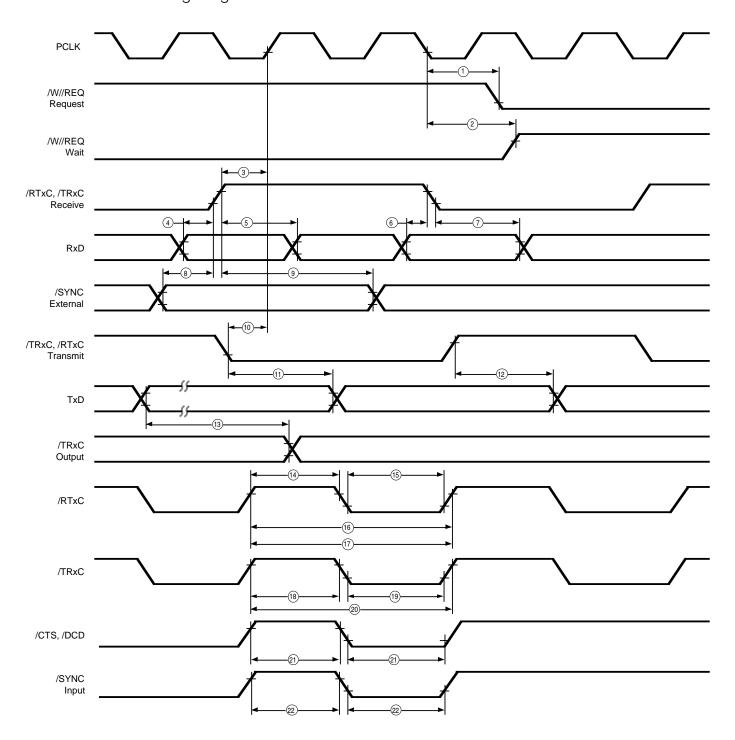


Figure 105. General Timing Diagram

16550 MIMIC TIMING (Continued)

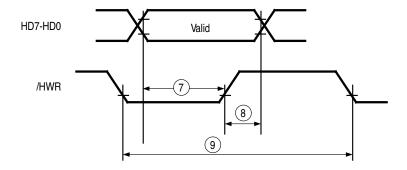


Figure 111. Data Setup and Hold, Output Delay, Write Cycle

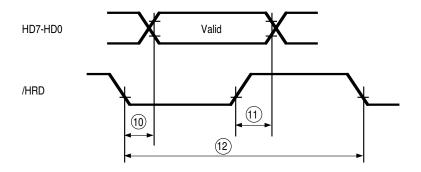


Figure 112. Data Setup and Hold, Output Delay, Read Cycle

Table I. Data Setup and Hold, Output Delay, Read Cycle

			Z8L18 20 MF		Z8018 33 MF		
No.	Sym	Parameter	Min	Max	Min	Max	Units
7	tDs	Data Setup Time	30		30		ns
8	tDh	Data Hold Time	30		30		ns
9	tWc	Write Cycle Delay	2.5 MPU		2.5 MPU		ns
			Clock Cycle	es	Clock Cyc	les	
10	tRvD	Delay from /HRD to Data	•	125	•	125	ns
11	tHz	/HRD to Floating Delay		100		100	ns
12	tRc	Read Cycle Delay	125		125		ns

Note:

These AC parameter values are preliminary and are subject to change without notice.

16550 MIMIC TIMING (Continued)

Table K. Interrupt Timing RCVR FIFO

				.182 MHz	Z80182 33 MHz		
No.	Sym	Parameter	Min	Max	Min	Max	
14	tSINT	Delay from Stop to Set Interrupt		2 MPU Clock Cycles		2 MPU Clock Cycles	
15	tRINT	Delay from /HRD (RD RBR or RD LSR) to Reset Interrupt		2 MPU Clock Cycles		2 MPU Clock Cycles	

Note:

These AC parameter values are preliminary and are subject to change without notice.

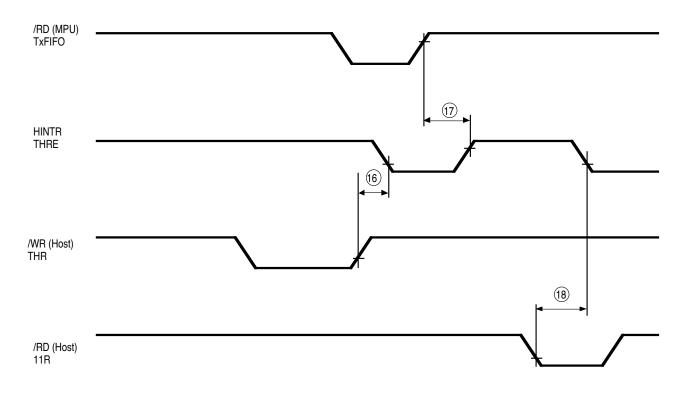
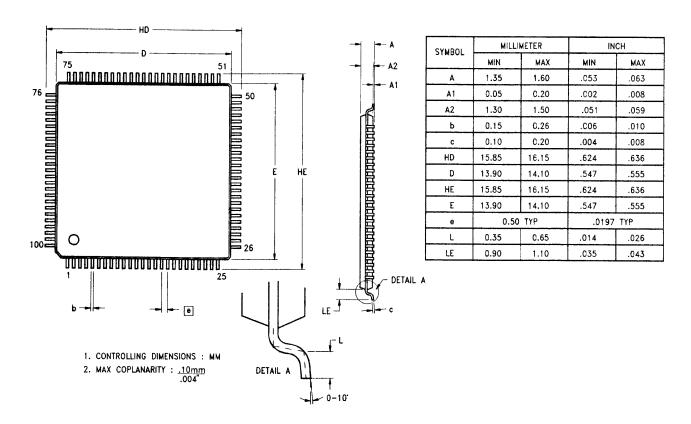



Figure 115. Interrupt Timing Transmitter FIFO

PACKAGE INFORMATION

100-Pin VQFP Package Diagram

ORDERING INFORMATION

Z8L182 Z80182

20 MHz33 MHzZ8L18220ASCZ8018233ASCZ8L18220FSCZ8018233FSC

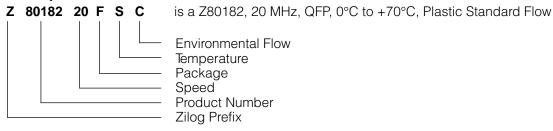
For fast results, contact your local Zilog sales office for assistance in ordering the part(s) desired.

Preferred Package

A = VQFP (Very Small QFP) F = Plastic Quad Flatpack

Preferred Temperature

 $S = 0^{\circ}C$ to $+70^{\circ}C$


Speeds

20 = 20 MHz33 = 33 MHZ

Environmental

C = Plastic Standard D = Plastic Stressed E = Hermetric Standard

Example:

© 1997 by Zilog, Inc. All rights reserved. No part of this document may be copied or reproduced in any form or by any means without the prior written consent of Zilog, Inc. The information in this document is subject to change without notice. Devices sold by Zilog, Inc. are covered by warranty and patent indemnification provisions appearing in Zilog, Inc. Terms and Conditions of Sale only. Zilog, Inc. makes no warranty, express, statutory, implied or by description, regarding the information set forth herein or regarding the freedom of the described devices from intellectual property infringement. Zilog, Inc. makes no warranty of merchantability or fitness for any purpose. Zilog, Inc. shall not be responsible for any errors that may appear in this document. Zilog, Inc. makes no commitment to update or keep current the information contained in this document.

Zilog's products are not authorized for use as critical components in life support devices or systems unless a specific written agreement pertaining to such intended use is executed between the customer and Zilog prior to use. Life support devices or systems are those which are intended for surgical implantation into the body, or which sustains life whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.

Zilog, Inc. 210 East Hacienda Ave. Campbell, CA 95008-6600 Telephone (408) 370-8000 Telex 910-338-7621 FAX 408 370-8056

Internet: http://www.zilog.com