E·XFL

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

Product Status	Obsolete
Core Processor	Z80180
Number of Cores/Bus Width	1 Core, 8-Bit
Speed	20MHz
Co-Processors/DSP	-
RAM Controllers	DRAM
Graphics Acceleration	No
Display & Interface Controllers	-
Ethernet	-
SATA	-
USB	-
Voltage - I/O	5.0V
Operating Temperature	-40°C ~ 105°C (TA)
Security Features	-
Package / Case	100-LQFP
Supplier Device Package	100-VQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/zilog/z8018220aec

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

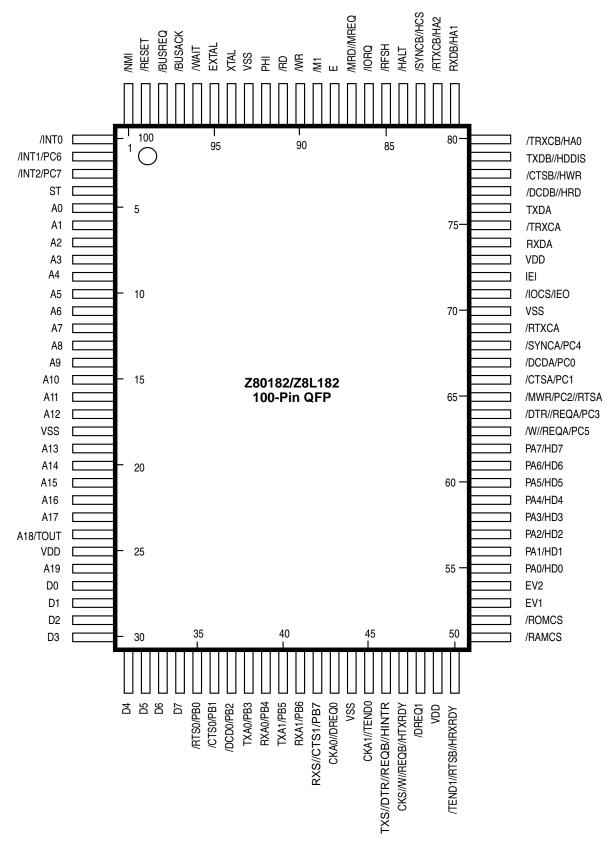


Figure 2. Z80182/Z8L182 100-Pin QFP Pin Configuration

PS009801-0301

Z180 CPU SIGNALS (Continued)

/NMI. Non-maskable interrupt (input, negative edge triggered). /NMI has a higher priority than /INT and is always recognized at the end of an instruction, regardless of the state of the interrupt enable flip-flops. This signal forces CPU execution to continue at location 0066H.

/INTO. Maskable Interrupt Request 0 (input/output active Low). This signal is generated by external I/O devices. The CPU will honor this request at the end of the current instruction cycle as long as the /NMI and /BUSREQ signals are inactive. The CPU acknowledges this interrupt request with an interrupt acknowledge cycle. During this cycle, both the /M1 and /IORQ signals become active. The internal Z180 MPU's /INT0 source is: /INT0 or ESCC or the MIMIC. This input is level triggered. /INT0 is an open-drain output, so you can connect other open-drain interrupts onto the circuit in addition to haveing a pull-up to VCC.

/INT1, /INT2. *Maskable Interrupt Requests 1 and 2 (inputs, active Low).* This signal is generated by external I/O devices. The CPU will honor these requests at the end of the current instruction cycle as long as the /NMI, /BUSREQ, and /INT0 signals are inactive. The CPU acknowledges these interrupt requests with an interrupt acknowledge cycle. Unlike the acknowledgment for /INT0, during this cycle neither the /M1 or /IORQ signals become active. These pins may be programmed to provide an active Low level on rising or falling edge interrupts. The level of the external /INT1 and /INT2 pins may be read through bits PC6 and PC7 of parallel Port C. Pin /INT1/PC6 multiplexes /INT1 and PC6. Pin /INT2/PC7 multiplexes /INT2 and PC7.

/RFSH. *Refresh (input/output, active Low, tri-state).* Together with /MREQ, /RFSH indicates that the current CPU machine cycle and the contents of the address bus should be used for refresh of dynamic memories. The low order 8 bits of the address bus (A7-A0) contain the refresh address. This signal is analogous to the /REF signal of the Z64180.

Z180 MPU UART AND SIO SIGNALS

CKA0, CKA1. Asynchronous Clocks 0 and 1 (bi-directional, active High). These pins are the transmit and receive clocks for the synchronous channels. CKA0 is multiplexed with /DREQ0 on the CKA0//DREQ0 pin. CKA1 is multiplexed with /TEND0 on the CKA1//TEND0 pin.

CKS. Serial Clock (bi-directional, active High). This line is clock for the CSIO channel and is multiplexed with the ESCC signal (/W//REQB) and the 16550 MIMIC interface signal /HTxRDY on the CKS//W//REQB//HTxRDY pin.

/DCD0. Data Carrier Detect 0 (input, active Low). This is a programmable modem control signal for ASCI channel 0. /DCD0 is multiplexed with the PB2 (parallel Port B, bit 2) on the /DCD0/PB2 pin.

/RTS0. Request to Send 0 (output, active Low). This is a programmable modem control signal for ASCI channel 0. This pin is multiplexed with PB0 (parallel Port B, bit 0) on the /RTS0/PB0 pin.

/CTS0. Clear to Send 0 (input, active Low). This line is a modem control signal for the ASCI channel 0. This pin is multiplexed with PB1 (parallel Port B, bit 1) on the /CTS0 /PB1 pin.

TxA0. *Transmit Data 0 (output, active High).* This signal is the transmitted data from the ASCI channel 0. This pin is multiplexed with PB3 (parallel Port B, bit 3) on the TxA0/PB3 pin.

TxS. Clocked Serial Transmit Data (output, active High). This line is the transmitted data from the CSIO channel. TxS is multiplexed with the ESCC signal (/DTR//REQB) and the 16550 MIMIC interface signal HINTR on the TxS//DTR //REQB//HINTR pin.

RxA0. *Receive Data 0 (input, active High).* This signal is the receive data to ASCI channel 0. This pin is multiplexed with PB4 (parallel Port B, bit 4) on the RxA0/PB4.

RxS. Clocked Serial Receive Data (input, active High). This line is the receive data for the CSIO channel. RxS is multiplexed with the /CTS1 signal for ASCI channel 1 and with PB7 (parallel Port B, bit 7) on the RxS//CTS1/PB7 pin.

RxA1. Received Data ASCI channel 1 (input, active High). This pin is multiplexed with PB6 (parallel Port B, bit 6) on the RxA1/PB6 pin.

TxA1. *Transmitted Data ASCI Channel 1 (output, active High).* This pin is multiplexed with PB5 (parallel Port B, bit 5) on the TxA1/PB5 pin.

The following features are common to both the ESCC and the CMOS SCC:

- Two independent full-duplex channels
- Synchronous/Isochronous data rates:
 - Up to 1/4 of the PCLK using external clock source
 - Up to 5 Mbits/sec at 20 MHz PCLK (ESCC).
- Asynchronous capabilities
 - 5, 6, 7 or 8 bits/character (capable of handling 4 bits/character or less)
 - 1, 1.5, or 2 stop bits
 - Odd or even parity
 - Times 1, 16, 32 or 64 clock modes
 - Break generation and detection
 - Parity, overrun and framing error detection
- Byte oriented synchronous capabilities:
 - Internal or external character synchronization
 - One or two sync characters (6 or 8 bits/sync character) in separate registers
 - Automatic Cyclic Redundancy Check (CRC) generation/detection
- SDLC/HDLC capabilities:
 - Abort sequence generation and checking
 - Automatic zero insertion and detection
 - Automatic flag insertion between messages
 - Address field recognition
 - I-field residue handling
 - CRC generation/detection
 - SDLC loop mode with EOP recognition/loop entry and exit

- NRZ, NRZI or FM encoding/decoding. Manchester Code Decoding (Encoding with External Logic).
- Baud Rate Generator in each Channel
- Digital Phase-Locked Loop (DPLL) for Clock Recovery
- Crystal Oscillator

The following features are implemented in the ESCC[™] for the Z80182/Z8L182 only:

- New 32-bit CRC-32 (Ethernet Polynomial)
- ESCC Programmable Clock
 - programmed to be equal to system clock divided by one or two
 - programmed by Z80182 Enhancement Register

Note: The ESCC[™] programmable clock must be programmed to divide-by-two mode when operating above the following conditions:

- PHI > 20 MHz at 5.0V

– PHI > 10 MHz at 3.0V

Z85230 ESCC[™] BLOCK DIAGRAM

For a detailed description of the Z85230 ESCC, refer to the ESCC Technical Manual. The following figure is the block diagram of the discrete ESCC, which was integrated into the Z182. The /INT line is internally connected to "INTO of the Z182.

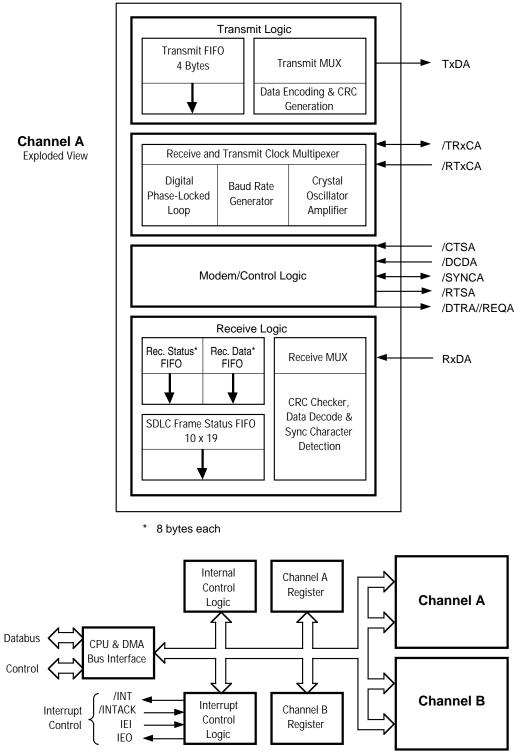
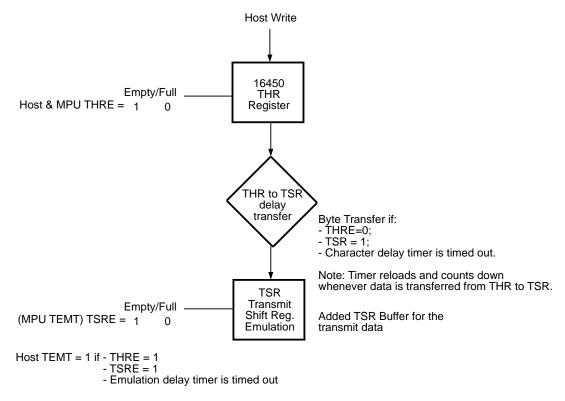


Figure 5. ESCC Block Diagram

Z80182 MIMIC DOUBLE BUFFERING FOR THE TRANSMITTER

The Z80182 Rev DA implements double buffering for the transmitter in 16450 mode and sets the TEMT bit in the LSR Register automatically.

When this feature is enabled and character delay emulation is being used (see Figure 9):


- 1. The PC THRE bit in the LSR Register is set when the THR Register is empty;
- 2. PC Host writes to the 16450 THR Register;
- 3. Whenever the Z80182 TSR buffer is empty and one character delay timer is in a timed-out state, the byte from the THR Register is transferred to the TSR buffer; the timer is in timed-out state after FIFO Reset or after Host TEMT is set. This allows a dual write to THR when Host TEMT is set.
- 4. Restart character delay timer (timer reloads and counts down) with byte transfer from THR Register to the TSR buffer;
- **5.** Whenever the TSR buffer is full, the TEMT bit in MPU LSR Register is reset with no delay;

- 6. MPU reads TSR buffer;
- **7.** TEMT bit in LSR Register for MPU is set with no delay whenever the TSR buffer is empty;
- 8. When the TSR buffer is read by MPU and THR Register is empty and one character delay timer reaches zero, the TEMT bit in the LSR Register for Host is set from 0 to 1.

The PC THRE bit in the LSR Register is reset whenever the THR Register is full and set whenever THR Register is empty.

MPU IREQ and DMA Request for the transmit data is trigger whenever TSR buffer is full and cleared whenever TSR buffer is empty.

If character delay emulation is not used the TEMT bit in the LSR Register is set whenever both the THR Register and the TSR buffer are both empty. The Host TEMT bit is clear if there is data in either the TSR buffer of THR Register.

Note: MPU sees TSR bit in the LSR Register as TEMT bit

PARALLEL PORTS FUNCTIONAL DESCRIPTION

The Z80182/Z8L182 has three 8-bit bi-directional Ports. Each bit is individually programmable for input or output (with the exception of PC6 and PC7 which are inputs only).

The Ports are controlled through two registers: the Port Direction Control Register and the Port Data Register. (Please see register description for Ports A, B and C).

PROGRAMMING

The following subsections explain and define the parameters for I/O Address assignments. The three tables in this section describe the mapping of the common registers shared by the MPU and the 16550 MIMIC. The MPU address refers to the I/O address as accessed from the MPU side (the Z180[™] MPU interface side of the 16550 MIMIC). Note that only the lowest eight address lines are decoded for Z182 peripheral access. The full sixteen

address lines are decoded for on-chip Z180 MPU access. The PC address (coined because the UART is common in PCs) is the address needed to access the MIMIC registers through the MIMIC interface signals. The MIMIC interface signals are multiplexed with the ESCC channel B and the Port A signals, and must be activated through the System Configuration Register and the Interrupt Edge/Pin MUX Register.

Table 7. Z80182/Z8L182 MPU Registers

Register Name	MPU Addr	PC Addr
Z80182/Z8L182 MPU Control Registers	0000H to 00x3FH (Relocatable to 0040H to 007FH or 0080H to 00BFH)	None

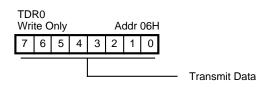
Note:

"x" indicates don't care condition

Register Name	MPU Add	MPU Addr/Access		PC Addr/Access	
MMC MIMIC Master Control Register	xxFFH	R/W	None		
IUS/IP Interrupt Pending	xxFEH	R/Wb7	None		
IE Interrupt Enable	xxFDH	R/W	None		
IVEC Interrupt Vector	xxFCH	R/W	None		
TTCR Transmit Time Constant	xxFAH	R/W	None		
RTCR Receive Time Constant	xxFBH	R/W	None		
FSCR FIFO Status and Control	XXECH	R/W7-4	None		
RTTC Receive Timeout Time Constant	xxEAH	R/W	None		
TTTC Transmit Timeout Time Constant	xxEBH	R/W	None		
RBR Receive Buffer Register	xxF0H	Wonly	00H	DLAB=0 R only	
THR Transmit Holding Register	xxF0H	Ronly	00H	DLAB=0 W only	
IER Interrupt Enable Register	xxF1H	Ronly	01H	DLAB=0 R/W	
IIR Interrupt Identification	None	2	02H	R only	
FCR FIFO Control Register	xxE9H	R only	02H	W only	
MM REGISTER	XXE9H	Wonly	None		
LCR Line Control Register	xxF3H	Ronly	03H	R/W	
MCR Modem Control Register	xxF4H	Ronly	04H	R/W	
LSR Line Status Register	xxF5H	R/Wb6432	05H	R only	
MSR Modem Status Register	xxF6H	R/Wb7-4	06H	Ronly	
SCR Scratch Register	xxF7H	R only	07H	R/W	
DLL Divisor Latch (LSByte)	xxF8H	Ronly	00H	DLAB=1 R/W	
DLM Divisor Latch (MSByte)	xxF9H	Ronly	01H	DLAB=1 R/W	

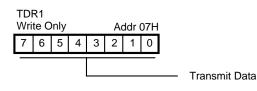
Table 8. Z80182/Z8L182 MIMIC Register MAP

TSR0


х

Read Only

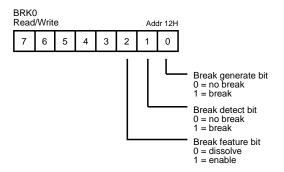
х х


х х х х х

ASCI CHANNELS CONTROL REGISTERS (Continued)

Figure 15. ASCI Transmit Data Register (Ch. 0)

Figure 16. ASCI Transmit Data Register (Ch. 1)


Figure 17. ASCI Receive Data Register (Ch. 0)

Received Data

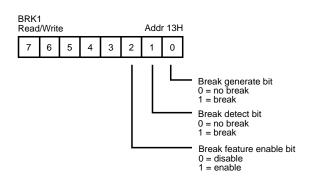

Addr 08H

Figure 18. ASCI Receive Data Register (Ch. 1)

Figure 19. ASCI Break Control Register (Ch. 0)

Figure 20. ASCI Break Control Register (Ch. 1)

TIMER CONTROL REGISTER

11

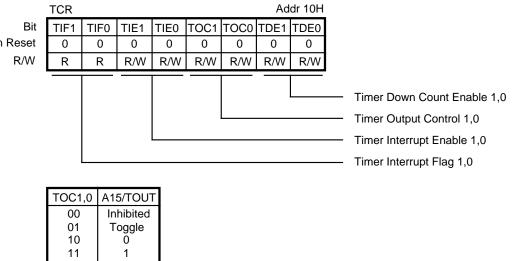
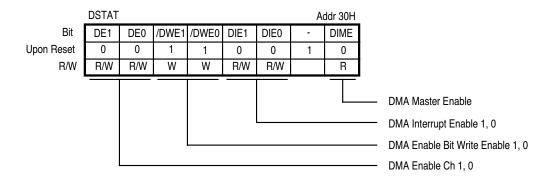
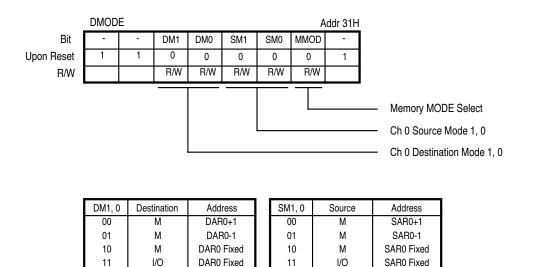
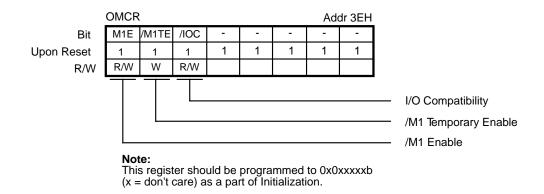




Figure 31. Timer Control Register

DMA REGISTERS (Continued)



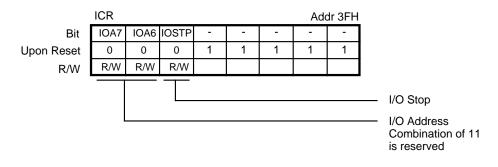

MMOD	Mode
0	Cycle Steal Mode
1	Burst Mode

Figure 41.	DMA	Mode	Registers
------------	-----	------	-----------

SYSTEM CONTROL REGISTERS (Continued)

STANDBY Mode Exit with BUS REQUEST

Optionally, if the BREXT bit (D5 of CPU Control Register) is set to 1, the Z8S180 exits STANDBY mode when the /BUSREQ input is asserted; the crystal oscillator is then restarted. An internal counter automatically provides time for the oscillator to stabilize, before the internal clocking and the system clock output of the Z8S180 are resumed.

The Z8S180 relinquishes the system bus after the clocking is resumed by:

- Tri-State the address outputs A19 through A0.
- Tri-State the bus control outputs /MREQ, /IORQ, /RD and /WR.
- Asserting /BUSACK

The Z8S180 regains the system bus when /BUSREQ is deactivated. The address outputs and the bus control outputs are then driven High; the STANDBY mode is exited.

If the BREXT bit of the CPU Control Register (CCR) is cleared, asserting the /BUSREQ would not cause the Z8S180 to exit STANDBY mode.

If STANDBY mode is exited due to a reset or an external interrupt, the Z8S180 remains relinquished from the system bus as long as /BUSREQ is active.

STANDBY Mode Exit with External Interrupts

STANDBY mode can be exited by asserting input /NMI. The STANDBY mode may also exit by asserting /INT0, /INT1 or /INT2, depending on the conditions specified in the following paragraphs.

/INTO wake-up requires assertion throughout duration of clock stabilization time (2¹⁷ clocks).

If exit conditions are met, the internal counter provides time for the crystal oscillator to stabilize, before the internal clocking and the system clock output within the Z8S180 are resumed.

1. Exit with Non-Maskable Interrupts

If /NMI is asserted, the CPU begins a normal NMI interrupt acknowledge sequence after clocking resumes.

2. Exit with External Maskable Interrupts

If an External Maskable Interrupt input is asserted, the CPU responds according to the status of the Global Interrupt Enable Flag IEF1 (determined by the ITE1 bit) and the settings of the corresponding interrupt enable bit in the Interrupt/Trap Control Register (ITC: I/O Address = 34H):

- **a.** If an interrupt source is disabled in the ITC, asserting the corresponding interrupt input would not cause the Z8S180 to exit STANDBY mode. This is true regardless of the state of the Global Interrupt Enable Flag IEF1.
- **b.** If the Global Interrupt Flag IEF1 is set to 1, and if an interrupt source is enabled in the ITC, asserting the corresponding interrupt input causes the Z8S180 to exit STANDBY mode. The CPU performs an interrupt acknowledge sequence appropriate to the input being asserted when clocking is resumed if:
 - The interrupt input follows the normal interrupt daisy chain protocol.
 - The interrupt source is active until the acknowledge cycle is completed.
- c. If the Global Interrupt Flag IEF1 is disabled, i.e., reset to 0, and if an interrupt source is enabled in the ITC, asserting the corresponding interrupt input will still cause the Z8S180 to exit STANDBY mode. The CPU will proceed to fetch and execute instructions that follow the SLEEP instruction when clocking is resumed.

If the External Maskable Interrupt input is not active until clocking resumes, the Z8S180 will not exit STANDBY mode. If the Non-Maskable Interrupt (/NMI) is not active until clocking resumes, the Z8S180 still exits the STANDBY mode even if the interrupt sources go away before the timer times out, because /NMI is edge-triggered. The condition is latched internally once /NMI is asserted Low.

IDLE Mode

IDLE mode is another power-down mode offered by the Z8S180. To enter IDLE mode:

- 1. Set D6 and D3 to 0 and 1, respectively.
- 2. Set the I/O STOP bit (D5 of ICR, I/O Address = 3FH) to 1.
- **3.** Execute the SLEEP instruction.

CONTROL REGISTERS

Write Register 2 Write Register 0 (non-multiplexed bus mode) D7 D6 D5 D4 D3 D2 D1 D0 D7 D6 D5 D4 D3 D2 D1 D0 V0 0 0 0 Register 0 V1 0 0 Register 1 1 Register 2 0 0 1 V2 Register 3 0 1 1 V3 1 0 0 Register 4 Interrupt 1 0 Register 5 1 Vector V4 1 1 0 Register 6 Register 7 1 1 1 V5 0 0 0 Register 8 V6 0 0 Register 9 1 Register 10 0 0 1 V7 0 Register 11 1 1 1 0 0 Register 12 1 0 1 Register 13 1 1 0 Register 14 Register 15 1 1 1 Write Register 3 D7 D6 D5 D4 D3 D2 D1 D0 0 0 0 Null Code 0 0 1 Point High Reset Ext/Status Interrupts 0 1 0 0 1 1 Send Abort (SDLC) Rx Enable 0 Enable Int on Next Rx Character 1 0 Sync Character Load Inhibit Reset Tx Int Pending 0 1 1 Error Reset 0 1 1 Address Search Mode (SDLC) Reset Highest IUS 1 1 1 Rx CRC Enable Enter Hunt Mode Null Code 0 0 Reset Rx CRC Checker 0 1 Auto Enables 1 0 Reset Tx CRC Generator Reset Tx Underrun/EOM Latch 1 1 Rx 5 Bits/Character 0 0 0 Rx 7 Bits/Character 1 * With Point High Command 1 0 Rx 6 Bits/Character 1 1 Rx 8 Bits/Character Write Register 1 Write Register 4 D7 D6 D5 D4 D3 D2 D1 D0 D6 D1 D7 D5 D4 D3 D2 D0 Ext Int Enable Parity Enable Tx Int Enable Parity EVEN//ODD Parity is Special Condition 0 0 Sync Modes Enable 0 0 Rx Int Disable 1 Stop Bit/Character 0 0 Rx Int On First Character or Special Condition 1 1 1 1/2 Stop Bits/Character 0 Int On All Rx Characters or Special Condition 1 0 1 Rx Int On Special Condition Only 1 1 2 Stop Bits/Character 1 1 WAIT/DMA Request On 0 0 8-Bit Sync Character Receive//Transmit 16-Bit Sync Character 0 1 0 SDLC Mode (01111110 Flag) /WAIT/DMA Request Function 1 External Sync Mode 1 1 WAIT/DMA Request Enable 0 X1 Clock Mode 0

Figure 52. Write Register Bit Functions

0 1

1 0

1 1

X16 Clock Mode

X32 Clock Mode

X64 Clock Mode

PS009801-0301

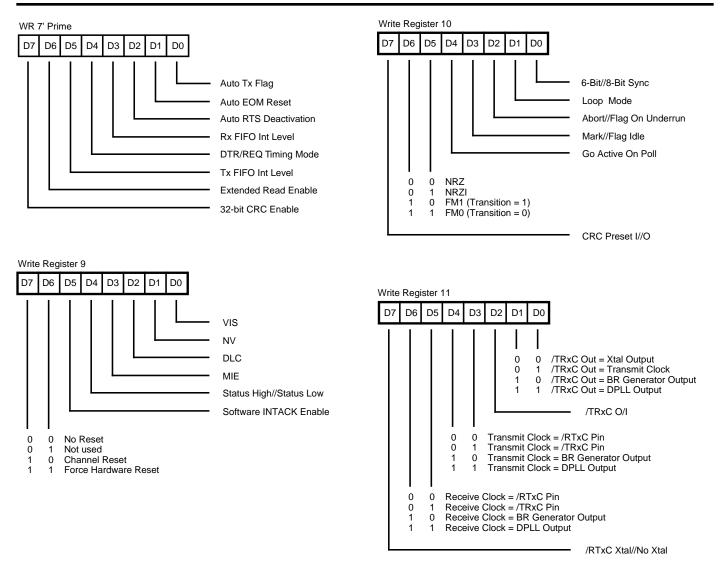


Figure 52. Write Register Bit Functions (Continued)

CONTROL REGISTERS (Continued)

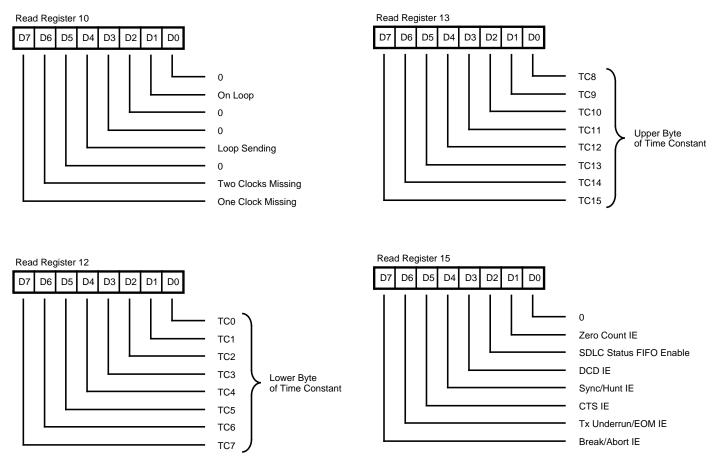


Figure 53. Read Register Bit Functions

Z80182 ENHANCEMENTS REGISTER

Bit <7-6> Reserved

Bit 5 Force Z180 Halt Mode

If this bit is set to 1, it disables the 16 cycle halt recovery and halt control over the busses and pins. This bit is used to allow DMA and Refresh Access to take place during halt (like Z180). This bit is set to 0 on reset.

Bit 4 TxDA Tri-state

The TxDA pin can be tri-stated on assertion of the /HALT pin. This prevents the TxDA from driving and external device when /HALT output is used to force other devices into power-down modes. This feature is disabled on powerup or reset. It is also controlled by bit 5 in the enhancement register, this feature is disabled if bit 5 is set.

Bit 3 ESCC Clock Divider

The ESCC clock can be provided with the Z180 core's PHI clock or by a PHI clock divide by 2 circuit. When this bit is set, the ESCC's clock will be Z180's PHI clock divided by

two. Upon power-up or reset, the ESCC clock frequency is equal to the Z180 core's PHI clock output.

Note: If operating above 20 MHz/5V or 10 MHz/3V, this bit should be set for ESCC divide-by-two mode.

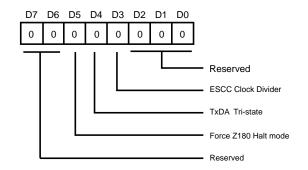


Figure 82. Z80182 Enhancements Register

⁽Z180 MPU Read/Write, Address xxD9H)

EMULATION MODES (Continued)

Table 21. Emulation Mode 1

Signal	Normal Mode 0	Emulation Adaptor Mode 1
PHI	Output	Input
/M1	Output	Input
/MREQ,/MRD	Output	Input
/IORQ	Output	Input
/RD	Output	Input
/WR	Output	Input
/RFSH	Output	Input
/HALT	Output	Input
ST	Output	Input
E	Output	Tri-state
/BUSACK	Output	Input
/WAIT	Input	Output
A19,A18/T _{out}	Output	Input
A17-A0	Output	Input
D7-D0	Input/Output	Input/Output
TxA0	Output	Tri-state
/RTS0	Output	Tri-state
TxA1	Output	Tri-state
/INTO	Input	Output, Open-Drain

Mode 2 Emulation Probe Mode

In the Emulator Probe Mode all of the Z182 output signals are tri-state. This scheme allows a Z182 emulator probe to grab on to the Z182 package leads on the target system.

Mode 3 RESERVED (for test purposes only)

This mode is reserved for test purpose only, do not use.

Notes:

Z182 has two branches of reset. /RESET controls the Z182 overall configuration, RAM and ROM boundaries, plus the ESCC, Port and the 16550 MIMIC interface. In Normal Mode, a "one shot" circuit samples the input of the /RESET pin to assert the internal reset to its proper duration. In Adapter Mode, this "one shot" circuit is bypassed. Note also that the Z180's crystal oscillator is disabled in Mode 1 and Mode 2.

In Mode 1 the emulator must provide /MREQ on the (/MREQ,/MRD) Z80182/Z8L182 pin (not /MRD); and A18 (not T_{out}) on the A18/T_{out} pin.

SLEEP, HALT EFFECT ON MIMIC AND 182 SIGNALS

The following Z80182/Z8L182 signals are driven High when Z180[™] MPU enters a SLEEP or HALT state:

- /MRD when selected in the Interrupt Edge/Pin MUX Register.
- /MWR when selected in the Interrupt Edge/Pin MUX Register.
- /ROMCS,/RAMCS always High in SLEEP or HALT.

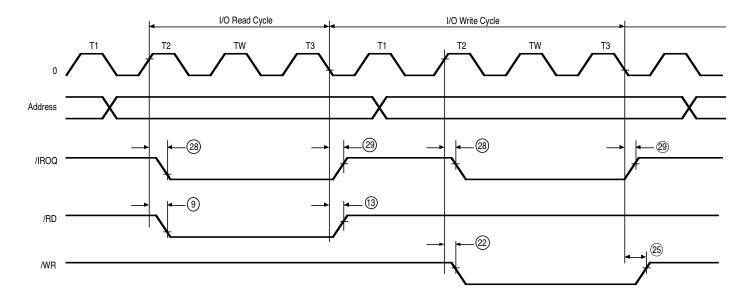
The following signals are High-Z during SLEEP and HALT:

- /IOCS when so selected in the Interrupt Edge/Pin MUX Register.
- /RD and /WR.

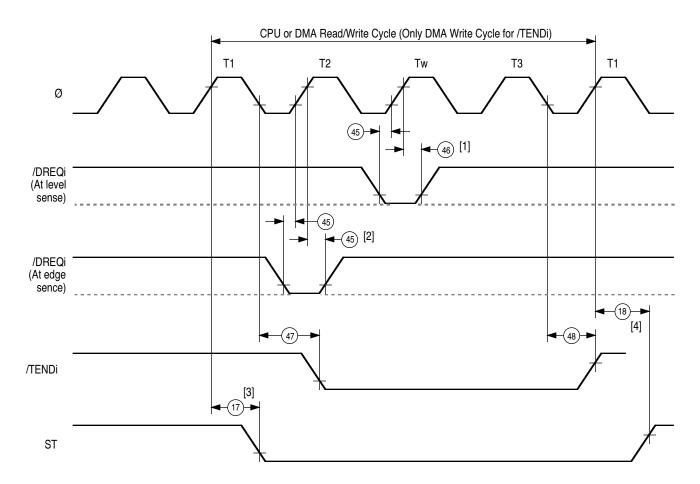
A0-A19 (A18 if selected) always High-Z in power down.

D0-D7 always High-Z in power down modes.

The MIMIC logic of the 182 is disabled during power down modes of the Z180.


DC CHARACTERISTICS

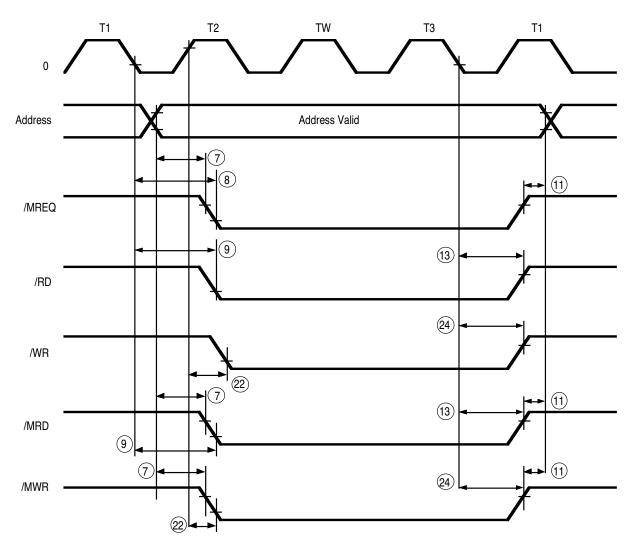
Z80182/Z8L182 $(V_{cc} = 5V \pm 10\%, V_{ss} = 0V)$, over specified temperature range unless otherwise notes.)


Symbol	Parameter	Min	Тур	Мах	Unit	Condition
$V_{\rm IH1}$	Input H Voltage /RESET, EXTAL, NMI	V _{CC} -0.6		V _{cc} +0.3	V	
$V_{\rm IH2}$	Input H Voltage Except /RESET, EXTAL, NMI	2.0		V _{cc} +0.3	V	
V_{IL1}	Input L Voltage /RESET, EXTAL, NMI	-0.3		0.6	V	
$V_{\rm IL2}$	Input L Voltage Except /RESET, EXTAL, NMI	-0.3		0.8	V	
V _{OH1}	Output H Voltage All outputs	2.4 V _{cc} –1.2			V	I _{OH} = -200 μA I _{OH} = -200 μA
$V_{\rm OH2}$	Output H PHI	$V_{\rm CC}$ –0.6			V	I _{OH} = -200 μA
V_{OL1}	Output L Voltage All outputs			0.40	V	I _{OL} = 2.2 mA
$V_{\rm OL2}$	Output L PHI			0.40	V	I _{oL} = 2.2 mA
I _{IL}	Input Leakage Current All Inputs Except XTAL, EXTAL			1.0	μΑ	$V_{IN} = 0.5 - V_{CC} - 0.5$
I _{TL}	Tri-state Leakage Current			1.0	μΑ	$V_{_{\rm IN}}=0.5\text{ - }V_{_{\rm CC}}-0.5$
l _{cc} *	Power Dissipation*		60	120	mA	f = 20 MHz
	(Normal Operation)		100	200	mA	f = 33 MHz
	Power Dissipation*		TBD	TBD	mA	f= 20 MHz
	(SLEEP)		TBD	TBD	mA	f= 33 MHz
	Power Dissipation*		TBD	TBD	mA	f= 20 MHz
	(I/O STOP)		TBD	TBD	mA	f= 33 MHz
	Power Dissipation*		5	10	mA	f = 20 MHz
	(SYSTEM STOP mode)		9	17	mA	f = 33 MHz
	IDLE Mode		TBD	TBD	mΑ	f = 20 MHz
	STANDBY Mode		TBD 50	TBD	mΑ μΑ	f = 33 MHz f = 0 MHz †
Ср	Pin Capacitance			12	pF	$V_{IN} = 0V, f = 1 MHz$ $T_A = 25^{\circ}C$

Notes:

These I_{CC} values are preliminary and subject to change without notice. * V_{IH} Min = V_{CC} -1.0V, V_{IL} Max = 0.8V (all output terminals are at no load) V_{CC} = 5.0V; (I_{OH} Low EMI) = -50 μ A, I_{OL} (Low EMI) = 500 μ A † Device may take up to two seconds before stabilizing to steady state standby current.

DMA Control Signals [1] tDRQS and tDRQH are specified for the rising edge of clock followed by T3.


[2] tDRQS and tDRQH are specified for the rising edge of clock.[3] DMA cycle starts.

[4] CPU cycle starts.

Figure 93. DMA Control Signals

PS009801-0301

TIMING DIAGRAMS (Continued)

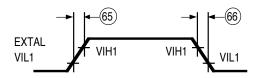


Figure 103. Input Rise and Fall Time (Except EXTAL, /RESET)

Read Write External Bus Master Timing

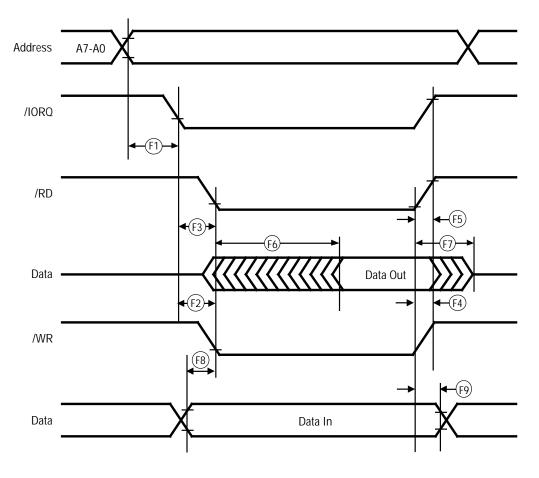


Figure 108. Read/Write External Bus Master Timing