Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of Embedded - Microprocessors

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details	
Product Status	Obsolete
Core Processor	Z80180
Number of Cores/Bus Width	1 Core, 8-Bit
Speed	33MHz
Co-Processors/DSP	-
RAM Controllers	DRAM
Graphics Acceleration	No
Display & Interface Controllers	-
Ethernet	-
SATA	-
USB	-
Voltage - I/O	5.0V
Operating Temperature	0°C ~ 70°C (TA)
Security Features	-
Package / Case	100-LQFP
Supplier Device Package	100-LQFP
Purchase URL	https://www.e-xfl.com/product-detail/zilog/z8018233asc1838tr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

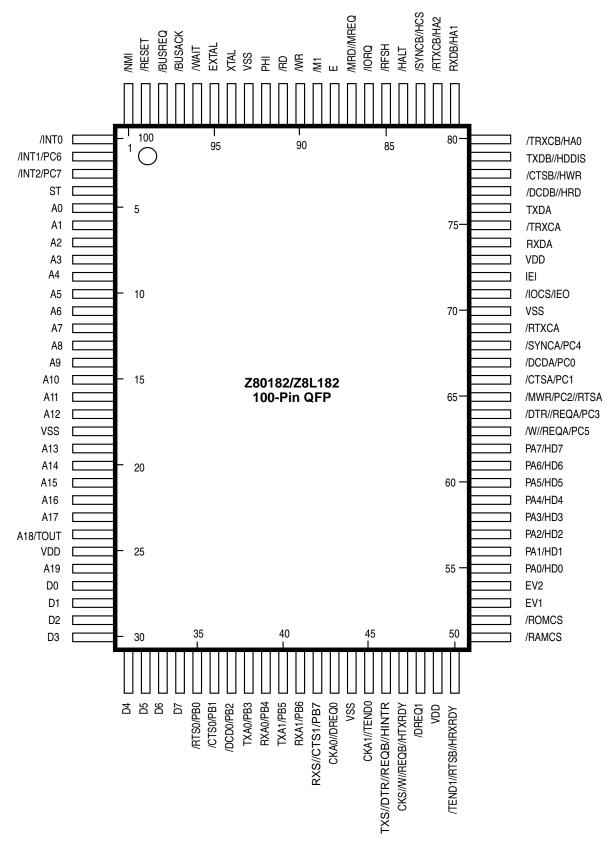
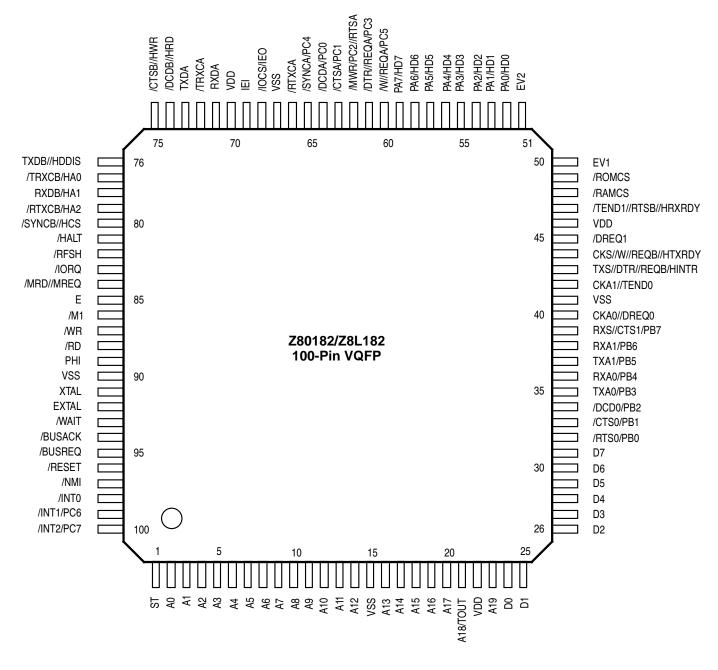
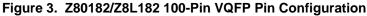




Figure 2. Z80182/Z8L182 100-Pin QFP Pin Configuration

PS009801-0301

GENERAL DESCRIPTION (Continued)

Z180 MPU DMA SIGNALS

/TEND0. *Transfer End 0 (output, active Low).* This output is asserted active during the last write cycle of a DMA operation. It is used to indicate the end of the block transfer. /TEND0 is multiplexed with CKA1 on the CKA1//TEND0 pin.

/TEND1. *Transfer End 1 (output, active Low).* This output is asserted active during the last write cycle of a DMA operation. It is used to indicate the end of the block transfer. /TEND1 is multiplexed with the ESCC signal /RTSB and the 16550 MIMIC interface signal /HRxRDY on the /TEND1//RTSB//HRxRDY pin.

/DREQ0. *DMA request 0 (input, active Low).* /DREQ0 is used to request a DMA transfer from DMA channel 0. The DMA channel monitors the input to determine when an external device is ready for a read or write operation. This input can be programmed to be either level or edge sensed. /DREQ0 is multiplexed with CKA0 on the CKA0//DREQ0 pin.

/DREQ1. *DMA request 1 (input, active Low).* /DREQ1 is used to request a DMA transfer from DMA channel 1. The DMA channel monitors the input to determine when an external device is ready for a read or write operation. This input can be programmed to be either level or edge sensed.

Z180[™] MPU TIMER SIGNALS

T_{out.} *Timer Out (output, active High).* T_{out} is the pulse output from PRT channel 1. This line is multiplexed with A18 of the address bus on the A18/T_{out} pin.

Z85230 ESCC[™] SIGNALS

TxDA. *Transmit Data (output, active High).* This output signal transmits channel A's serial data at standard TTL levels. This output can be tri-stated during power down modes.

TxDB. *Transmit Data (output, active High).* This output signal transmits channel B's serial data at standard TTL levels. In Z80182/Z8L182 mode 1, TxDB is multiplexed with the 16550 MIMIC interface /HDDIS signal on the TxDB//HDDIS pin.

RxDA. *Receive Data (inputs, active High).* These inputs receive channel A's serial data at standard TTL levels.

RxDB. Receive Data (input, active High). These inputs receive channel B's serial data at standard TTL levels. In Z80182/Z8L182 mode 1 RxDB is multiplexed with the 16550 MIMIC HA1 input on the RxDB/HA1 pin.

/TRxCA. *Transmit/Receive Clock (input or output, active Low).* The functions of this pin are under channel A program control. /TRxCA may supply the receive clock or the transmit clock in the Input mode or supply the output of the digital phase-locked loop, the crystal oscillator, the baud rate generator, or the transmit clock in the output mode.

/TRxCB. Transmit/Receive Clock (input or output, active Low). The functions of this pin are under channel B program

control. /TRxCB may supply the receive clock or the transmit clock in the input mode or supply the output of the Digital Phase-Locked Loop (DPLL), the crystal oscillator, the baud rate generator, or the transmit clock in output mode. In Z80182/Z8L182 mode 1 /TRxCB is multiplexed with the 16550 MIMIC interface HA0 input on the /TRxCB/HA0 pin.

/RTxCA. *Receive/Transmit Clock (input, active Low).* The functions of this pin are under channel A program control. In channel A, /RTxCA may supply the receive clock, the transmit clock, the clock for the baud rate generator, or the clock for the DPLL. This pin can also be programmed for use by the /SYNCA pin as a crystal oscillator. The receive clock may be 1, 16, 32, or 64 times the data rate in asynchronous mode.

/RTxCB. *Receive/Transmit Clock (input, active Low).* The functions of this pin are under channel B program control. In channel B, /RTxCB may supply the receive clock, the transmit clock, the clock for the baud rate generator, or the clock for the DPLL. This pin can also be programmed for use by the /SYNCB pin as a crystal oscillator. The receive clock may be 1, 16, 32, or 64 times the data rate in asynchronous mode. In Z80182/Z8L182 mode 1 the /RTxCB signal is multiplexed with 16550 MIMIC interface HA2 input on the /RTxCB/HA2 pin.

The following features are common to both the ESCC and the CMOS SCC:

- Two independent full-duplex channels
- Synchronous/Isochronous data rates:
 - Up to 1/4 of the PCLK using external clock source
 - Up to 5 Mbits/sec at 20 MHz PCLK (ESCC).
- Asynchronous capabilities
 - 5, 6, 7 or 8 bits/character (capable of handling 4 bits/character or less)
 - 1, 1.5, or 2 stop bits
 - Odd or even parity
 - Times 1, 16, 32 or 64 clock modes
 - Break generation and detection
 - Parity, overrun and framing error detection
- Byte oriented synchronous capabilities:
 - Internal or external character synchronization
 - One or two sync characters (6 or 8 bits/sync character) in separate registers
 - Automatic Cyclic Redundancy Check (CRC) generation/detection
- SDLC/HDLC capabilities:
 - Abort sequence generation and checking
 - Automatic zero insertion and detection
 - Automatic flag insertion between messages
 - Address field recognition
 - I-field residue handling
 - CRC generation/detection
 - SDLC loop mode with EOP recognition/loop entry and exit

- NRZ, NRZI or FM encoding/decoding. Manchester Code Decoding (Encoding with External Logic).
- Baud Rate Generator in each Channel
- Digital Phase-Locked Loop (DPLL) for Clock Recovery
- Crystal Oscillator

The following features are implemented in the ESCC[™] for the Z80182/Z8L182 only:

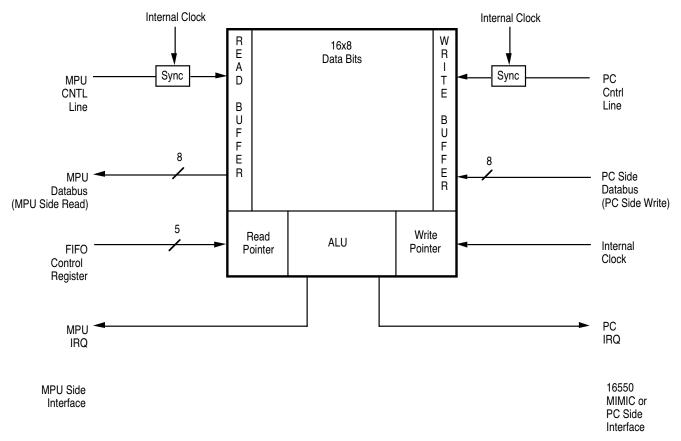
- New 32-bit CRC-32 (Ethernet Polynomial)
- ESCC Programmable Clock
 - programmed to be equal to system clock divided by one or two
 - programmed by Z80182 Enhancement Register

Note: The ESCC[™] programmable clock must be programmed to divide-by-two mode when operating above the following conditions:

- PHI > 20 MHz at 5.0V

– PHI > 10 MHz at 3.0V

16550 MIMIC FIFO DESCRIPTION (Continued)


The PC interface may be interrupted when 1, 4, 8 or 14 bytes are available in the receiver FIFO by setting bits 6 and 7 in the FCR (FIFO Control Register, PC address 02H) to the appropriate value. If the FIFO is not empty, but below the above trigger value, a timeout interrupt is available if the receiver FIFO is not written by the MPU or read by the PC from an interval determined by the Character Timeout Timer. This is an additional Timer with MPU access only that is used to emulate the 16550 4 character timeout delay.

The Receive FIFO timeout timers are designed to reload and begin countdown after every read or write of the Rx FIFO, regardless of the Rx trigger level or number of bytes in the FIFO. Therefore, it is possible to get Timeout interrupts more often than Receive data interrupts. In order to closely emulate a 16550, a receive timeout timer enhancement is provided. When enabling this feature, the timeout timer will not begin counting down until the character emulation timer for each byte of data in the Rx FIFO has expired. Note: Enabling this feature will facilitate increased 16550 compatibility but may impede throughput. If the Receive Timeout interrupt occurs, the PC HOST will only be allowed to read up to 4-5 consecutive characters before the Data Ready bit is forced to zero (even if there is still more data in FIFO). This is required to maintain character pacing.

The timer receives the ESCC /TRxCB as its input clock. Software must determine the correct values to program into the Receiver Timeout register and the ESCC TRxCB to achieve the correct delay interval for timeout. These interrupts are cleared by the FIFO reaching the trigger point or by resetting the Timeout Interval Timer by FIFO MPU write or PC read access.

With FIFO mode enabled, the MPU is interrupted when the receiver FIFO is empty, corresponding to bit 5 being set in the IUS/IP register (MPU access only). This bit corresponds to a PC read of the receive buffer in non-FIFO (16450) mode. The interrupt source is cleared when the FIFO becomes non-empty or the MPU reads the IUS/IP register.

The transmitter FIFO is 16-byte FIFO with PC write and MPU read access (Figure 8). In FIFO mode, the PC receives an interrupt when the transmitter becomes empty corresponding to bit 5 being set in the LSR. This bit and the interrupt source are cleared when the transmit FIFO becomes non-empty or the Interrupt Identification Register (IIR) register is read by the PC.

On the MPU interface, the transmitted data available can be programmed to interrupt the MPU on 1, 4, 8 or 14 bytes of available data by seeing the appropriate value in the MPU FSCR control register (MPU write only xxECH) bits 6 and 7. A timeout feature exists, Transmit Timeout Timer, which is an additional 8-bit timer with SCC TxRCB as the input source. If the transmitter FIFO is non-empty and no PC write or MPU read of the FIFO has taken place within the timer interval, a timeout occurs causing a corresponding interrupt to the MPU.

Z80182/Z8L182 MIMIC SYNCHRONIZATION CONSIDERATIONS

Because of the asynchronous nature of the FIFO's on the MIMIC, some synchronization plan must be provided to prevent conflict from the dual port accesses of the MPU and the PC.

To solve this problem, I/O to the FIFO is buffered and the buffers allow both PC and MPU to access the FIFO asynchronously. Read and Write requests are then synchronized by means of the MPU clock. Incoming signals are buffered in such a way that metastable input levels are stabilized to valid 1 or O levels. Actual transfers to and from the buffers, from and to the FIFO memory, are timed by the MPU clock. ALU evaluation is performed on a different phase than the transfer to ensure stable pointer values. Another potential problem is that of simultaneous access of the MPU and PC to any of the various 'mailbox' type registers. This is solved by dual buffering of the various read/write registers. During a read access by either the MPU or PC to a mailbox register, the data in the output or slave portion of the buffered register is not permitted to change. Any write that might take place during this time will be stored in the input of master part of the register. The corresponding status/interrupt is reset appropriately based on the write having followed the read to the register. For example, the IUS/IP bit for the LCR write will not be cleared by the MPU read of the LCR if a simultaneous write to the LCR by the PC takes place. Instead the LSR data will change after the read access and IUS/IP bit 3 remains at logic 1.

ASCI CHANNELS CONTROL REGISTERS (Continued)

	CNTLE	51					A	ddr 03H	
Bit	MPBT	MP	/CTS/ PS	PE0	DR	SS2	SS1	SS0	
Upon Reset	Invalid	0	0	0	0	1	1	1	
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
									 Clock Source and Speed Select Divide Ratio Parity Even or Odd Read - Status of /CTS pin Write - Select PS Multiprocessor Multiprocessor Bit Transmit

General Divide Ratio SS, 2, 1, 0	PS = 0 (Divide Ratio = 10) DR = 0 (x16)	DR = 1 (x64)	PS = 1 (Divide Ratio = 30) DR = 0 (x16)	DR = 1 (x64)
000	Ø÷160	Ø ÷ 640	Ø÷480	Ø÷ 1920
001	Ø ÷ 320	Ø÷1280	Ø÷960	Ø÷ 3840
010	Ø÷640	Ø ÷ 2580	Ø÷ 1920	Ø÷7680
011	Ø÷1280	Ø÷5120	Ø÷3840	Ø÷ 15360
100	Ø÷2560	Ø÷ 10240	Ø÷7680	Ø÷ 30720
101	Ø÷5120	Ø÷20480	Ø÷ 15360	Ø÷ 61440
110	Ø÷ 10240	Ø÷40960	Ø÷ 30720	Ø÷ 122880
*111	External Clock (Frequen	cy < Ø ÷ 40)		

Note:

* Baud rate is external clock rate \pm 16; therefore, $\emptyset \pm$ (40 x 16)

is maximum baud rate using external clocking.

Figure 12.	ASCI Control Register E	(Ch. 1)	
------------	-------------------------	---------	--

FREE RUNNING COUNTER

FR	•							
Read Only							18H	
7	6	5	4	3	2	1	0	

Figure 32. Free Running Counter

CPU CONTROL REGISTER

 CPU Control Register (CCR)
 Addr 1FH

 D7
 D6
 D5
 D4
 D3
 D2
 D1
 D0

 0
 0
 0
 0
 0
 0
 0
 0
 0

Figure 33. CPU Note: See Figure 49 for full description.

DMA REGISTERS

SAR0L Read/Write SA7					A	 20H SA0
	R0H ad/\ 15	-	e		A	 21H SA8

	R0E ad/\	-	е		A	ddr	22F	4
				SA	19	5	SA1	6
-	-	-	-					

Bits 0-2 (3) are used for SAR0B

A19, A18,	A17, A16	DMA Transfer Request
x x	0 0	/DREQ0 (external)
x x	0 1	RDR0 (ASCI0)
x x	1 0	RDR1 (ASCI1)
x x	1 1	Not Used

Figure 34. DMA 0 Source Address Registers

CONTROL REGISTERS (Continued)

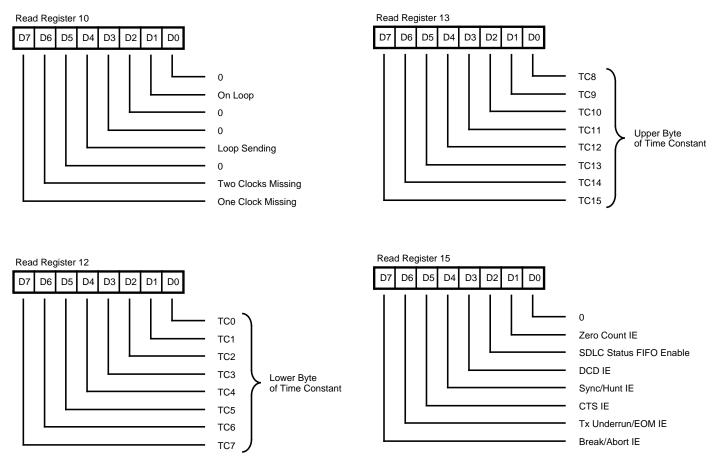
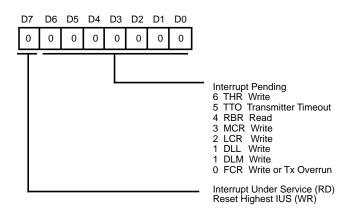



Figure 53. Read Register Bit Functions

IUS/IP Register

The IUS/IP Register is used by the Z180[™] MPU to determine the source of the interrupt. This register will have the appropriate bit set when an interrupt occurs.

Figure 61. IUS/IP Register

(Z180 MPU, Address xxFEH)

Bit 7 Interrupt Under Service (Read/Write)

This bit represents a logical OR of each individual IUS bit for the internal MIMIC interrupt daisy chain. An IUS bit is set when an interrupt is registered (IP set) and enabled (IE set), the incoming IEI daisy chain is active (chain enabled) and an interrupt acknowledge cycle is entered. By writing a 1 to this bit the highest priority IUS bit that is set will be reset. Writing a 0 to this bit has no effect.

This should be done at the end of every MIMIC Interrupt Service routine.

Bit 6 Transmit Holding Register Written (Read Only)

This bit is set when the PC/XT/AT writes to the Transmit Holding Register. It is reset when the Z180 MPU reads the Transmit Holding Register. In FIFO mode, this bit is set when the trigger level is reached (4,8,14 bytes available). **Note:** The THR bit is set (interrupts) when the transmitter FIFO reaches the data available trigger level set in the MPU FCR control register. The bit and interrupt source is cleared when the number of data bytes falls below the set trigger level.

Bit 5 Transmitter Timeout with Data in FIFO (Read Only)

This bit is set when the transmitter FIFO has been idle (no read or write and timer decrements to zero) with data bytes below the trigger level. It is cleared when the FIFO is read or written.

Bit 4 Receive Buffer Read (Read Only)

This bit is set when the PC/XT/AT reads the Receive Buffer Register. It is reset when the Z180 MPU writes to the Receive Buffer Register. In FIFO mode, this bit is set upon the PC reading all the data in the receive FIFO. **Note:** RBR is set and interrupts when the receive FIFO has been emptied by the PC. This bit and interrupt are cleared when one or more bytes are written into the receive FIFO by the MPU.

Bit 3 Modem Control Register Write (Read Only)

This bit is set when the PC/XT/AT writes to the Modem Control Register. It is reset when the Z180[™] MPU reads the Modem Control Register.

Bit 2 Line Control Register Write (Read Only)

This bit is set when the PC/XT/AT writes to the Line Control Register. It is reset when the Z180 MPU reads the Line Control Register.

Bit 1 Divisor Latch LS/MS Write (Read Only)

This bit is set when the PC/XT/AT writes to the Divisor Latch Least Significant or Most Significant bytes. It is reset when the PC reads the LS/MS register(s). To determine which byte(s) have been written, the Z180 must read either LS or MS locations and then repoll this bit. If only one location is interrupting, the interrupt is cleared when that location is read by the Z180.

Bit 0 FIFO Control Register Write (Read Only)

This bit is set when the PC/XT/AT writes to the FCR. This bit is also set when Transmit occurs. It is reset when the Z180 MPU reads this register.

Z80182 ENHANCEMENTS REGISTER

Bit <7-6> Reserved

Bit 5 Force Z180 Halt Mode

If this bit is set to 1, it disables the 16 cycle halt recovery and halt control over the busses and pins. This bit is used to allow DMA and Refresh Access to take place during halt (like Z180). This bit is set to 0 on reset.

Bit 4 TxDA Tri-state

The TxDA pin can be tri-stated on assertion of the /HALT pin. This prevents the TxDA from driving and external device when /HALT output is used to force other devices into power-down modes. This feature is disabled on powerup or reset. It is also controlled by bit 5 in the enhancement register, this feature is disabled if bit 5 is set.

Bit 3 ESCC Clock Divider

The ESCC clock can be provided with the Z180 core's PHI clock or by a PHI clock divide by 2 circuit. When this bit is set, the ESCC's clock will be Z180's PHI clock divided by

two. Upon power-up or reset, the ESCC clock frequency is equal to the Z180 core's PHI clock output.

Note: If operating above 20 MHz/5V or 10 MHz/3V, this bit should be set for ESCC divide-by-two mode.

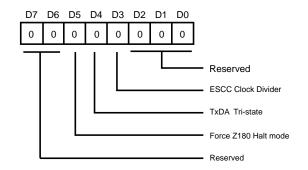


Figure 82. Z80182 Enhancements Register

⁽Z180 MPU Read/Write, Address xxD9H)

Z80182/Z8L182 MIMIC DMA CONSIDERATIONS

For the PC Interface, the 16550 device has two modes of operation that need to be supported by the MIMIC. In single transfer mode, the DMA request line for the receiver goes active whenever there is at least one character in the RCVR FIFO. For the transmitter, the DMA request line is active on an empty XMIT FIFO and inactive on non-empty.

In multi-transfer mode, the RCVR DMA goes active at the trigger level and inactive on RCVR FIFO empty. The XMIT DMA is active on non-full XMIT FIFO and inactive on a full XMIT FIFO.

Bit 3 in the FCR controls the DMA mode for the PC interface. If a 1 is programmed into this bit, multi-byte DMA is enabled. A 0 in this bit (default) enables single byte DMA.

As specified, the 16550 does not have any means of handling the error status bits in the FIFO in this multitransfer mode. Such DMA transfers would require blocks with some checksum or other error checking scheme.

For the MPU interface, the DMA is controlled by a nonempty transmit FIFO and by a non-full receive FIFO conditions (THRE and the DR bits in the LSR). If the delay timers are enabled, the respective shadow bits are used for DMA control. The effect of the DMA logic is to request DMA service when at least one byte of data is available to be read or written to the FIFO's by the Z180. The Z180's DMA channel can be programmed to trigger on edge or on level.

EMULATION MODES

The Z80182/Z8L182 provides four modes of operation. The modes are selected by the EV1 and EV2 pins. These four modes allow the system development and commercial production to be done with the same device. The four emulation modes are shown in Table 20.

Table 20. EV2 and EV1, Emulation Mode Control					
EV2 EV1 EV Description					
Mode 0	0	0	Normal Mode, on-chip Z180 bus master		
Mode 1	0	1	Emulation Adapter Mode		
Mode 2	1	0	Emulator Probe Mode		
Mode 3	1	1	RESERVED, for Test Use Only		

Table 20. EV2 and EV1, Emulation Mode Control

Mode 0 Normal Mode

This is the normal operating mode for the Z80182/Z8L182.

Mode 1 Emulation Adapter Mode

The Emulation Adaptor Mode enables system development for the Z182 with a readily available Z180 emulator. The Emulator provides the Z180[™] MPU and Z180 peripheral functions to the target system, with their signals passing through the emulation adapter. In Emulation Adaptor Mode the Z182s, Z180 MPU and Z180 peripheral signals are tristate or physically disconnected. The Z182 continues to provide its ESCC, MIMIC, chip select, and Port functions and signals to the target system. The Mode 1 effects on the Z182 are shown in Table 21. Note that INT1-2 Edge Detect Logic cannot be used in Emulation Adaptor EV Mode 2.

EMULATION MODES (Continued)

Table 21. Emulation Mode 1

Signal	Normal Mode 0	Emulation Adaptor Mode 1	
PHI	Output	Input	
/M1	Output	Input	
/MREQ,/MRD	Output	Input	
/IORQ	Output	Input	
/RD	Output	Input	
/WR	Output	Input	
/RFSH	Output	Input	
/HALT	Output	Input	
ST	Output	Input	
E	Output	Tri-state	
/BUSACK	Output	Input	
/WAIT	Input	Output	
A19,A18/T _{out}	Output	Input	
A17-A0	Output	Input	
D7-D0	Input/Output	Input/Output	
TxA0	Output	Tri-state	
/RTS0	Output	Tri-state	
TxA1	Output	Tri-state	
/INTO	Input	Output, Open-Drain	

Mode 2 Emulation Probe Mode

In the Emulator Probe Mode all of the Z182 output signals are tri-state. This scheme allows a Z182 emulator probe to grab on to the Z182 package leads on the target system.

Mode 3 RESERVED (for test purposes only)

This mode is reserved for test purpose only, do not use.

Notes:

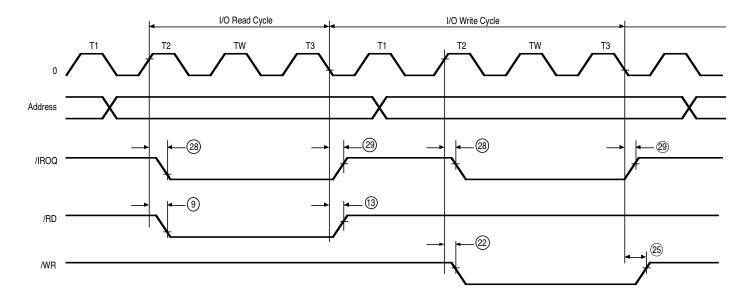
Z182 has two branches of reset. /RESET controls the Z182 overall configuration, RAM and ROM boundaries, plus the ESCC, Port and the 16550 MIMIC interface. In Normal Mode, a "one shot" circuit samples the input of the /RESET pin to assert the internal reset to its proper duration. In Adapter Mode, this "one shot" circuit is bypassed. Note also that the Z180's crystal oscillator is disabled in Mode 1 and Mode 2.

In Mode 1 the emulator must provide /MREQ on the (/MREQ,/MRD) Z80182/Z8L182 pin (not /MRD); and A18 (not T_{out}) on the A18/T_{out} pin.

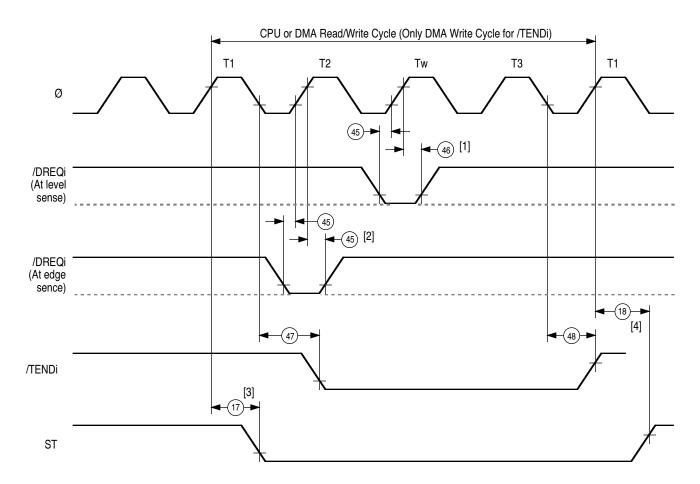
SLEEP, HALT EFFECT ON MIMIC AND 182 SIGNALS

The following Z80182/Z8L182 signals are driven High when Z180[™] MPU enters a SLEEP or HALT state:

- /MRD when selected in the Interrupt Edge/Pin MUX Register.
- /MWR when selected in the Interrupt Edge/Pin MUX Register.
- /ROMCS,/RAMCS always High in SLEEP or HALT.


The following signals are High-Z during SLEEP and HALT:

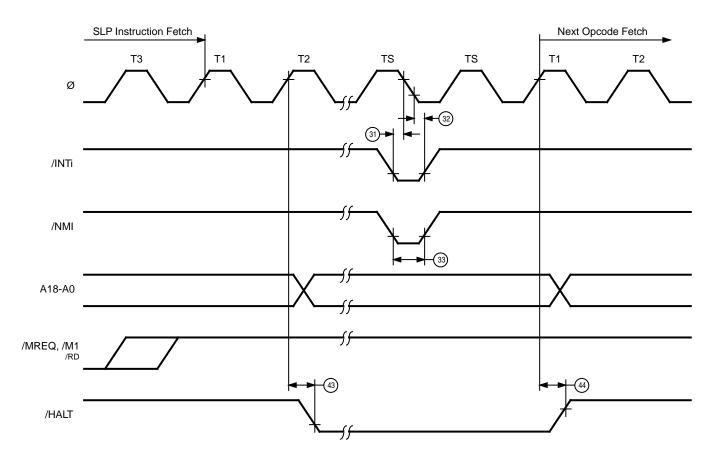
- /IOCS when so selected in the Interrupt Edge/Pin MUX Register.
- /RD and /WR.


A0-A19 (A18 if selected) always High-Z in power down.

D0-D7 always High-Z in power down modes.

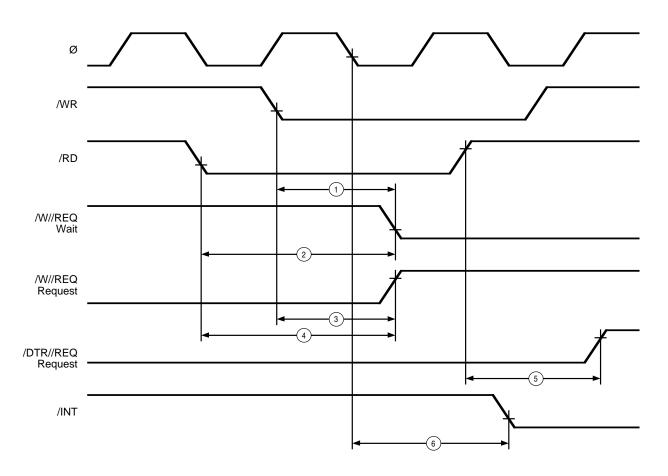
The MIMIC logic of the 182 is disabled during power down modes of the Z180.

DMA Control Signals [1] tDRQS and tDRQH are specified for the rising edge of clock followed by T3.


[2] tDRQS and tDRQH are specified for the rising edge of clock.[3] DMA cycle starts.

[4] CPU cycle starts.

Figure 93. DMA Control Signals


PS009801-0301

TIMING DIAGRAMS (Continued)

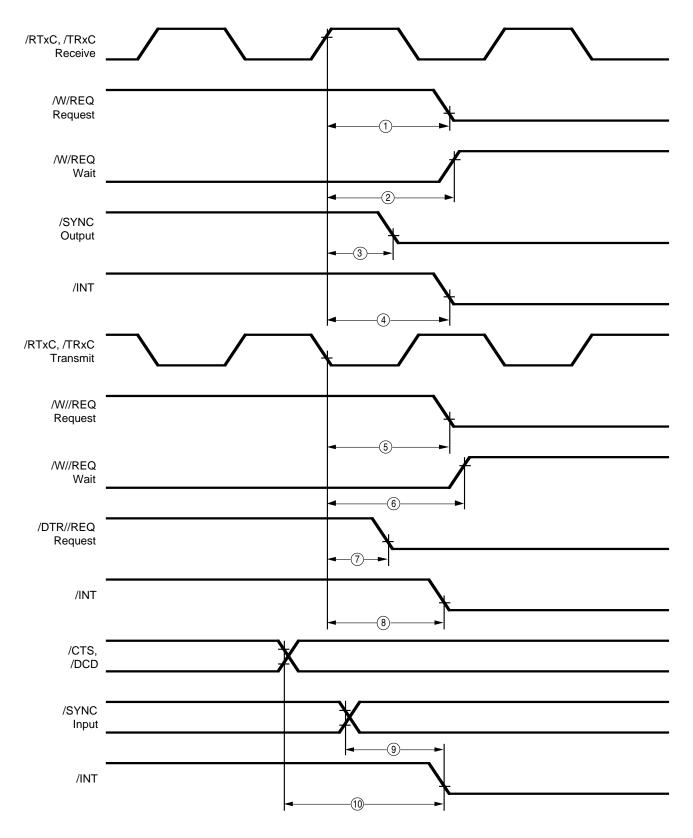
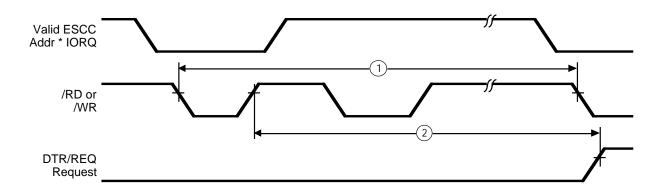

ESCC Timing

Table B. ESCC Timing Parameters


		20 MHz					
No.	Symbol	Parameter	Min	Max	Unit		
1 2 3	TdWR(W) TdRD(W) TdWRf(REQ)	/WR Fall to Wait Valid Delay /RD Fall to Wait Valid Delay /WR Fall to /W//REQ		50 50	ns		
0		Not Valid Delay		65			
4	TdRDf(REQ)	/RD Fall to /W//REQ Not Valid Delay		65			
5	TdRdr(REQ)	/RD Rise to /DTR//REQ Not Valid Delay		TBD			
6	TdPC(INT)	Clock to /INT Valid Delay		160			

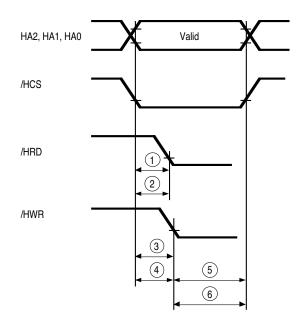
AC CHARACTERISTICS (Continued) Z85230 System Timing Diagram

ESCC External Bus Master Timing

			Z8L182 20 MHz		Z80182 33 MHz			
No.	Symbol	Parameter	Min	Max	Min	Max	Units	Notes
1	TrC	Valid Access Recovery Time	4TcC		4TcC		ns	[1]
2	TdRDr(REQ)	/RD Rise to /DTR//REQ Not Valid Delay	4TcC		4TcC		ns	

Table G. External Bus Master Interface Timing (SCC Related Timing)

Notes:

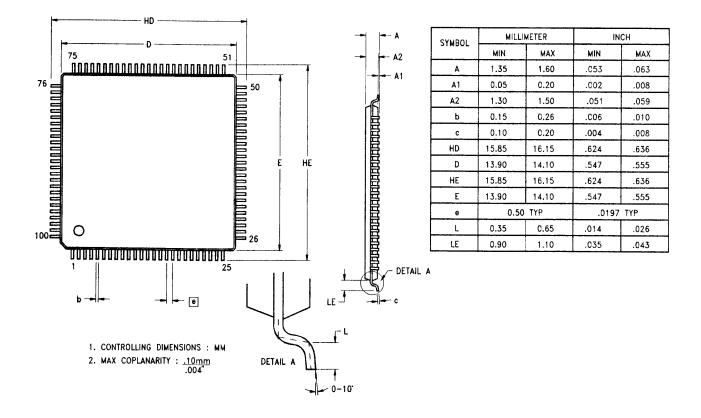

These AC parameter values are preliminary and are subject to change without notice.

[1] Applies only between transactions involving the ESCC.

 $T_{cc} = ESCC$ clock period time

16550 MIMIC TIMING

Refer to Figures 106 thru 112 for MIMIC AC Timing.


Table H.	PC Host /RD	/WR	Timina
			· · · · · · · · · · · · · · · · · · ·

No	Symbol	Parameter	Z8L182 20 MHz	Z80182 33 MHz	
			Min Max	Min Max	Units
1	tAR	/HRD Delay from Address	30	30	ns
2	tCSR	/HRD Delay from /HCS	30	30	ns
3	tAW	/HWR Delay from Address	30	30	ns
4	tCSW	/HWR Delay from /HCS	30	30	ns
5	tAh	Address Hold Time	20	20	ns
6	tCSh	/HCS Hold Time	20	20	ns

Note:

These AC parameter values are preliminary and are subject to change without notice.

PACKAGE INFORMATION

100-Pin VQFP Package Diagram