E·XFL

AMD Xilinx - XC5204-6PC84C Datasheet

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Obsolete
Number of LABs/CLBs	120
Number of Logic Elements/Cells	480
Total RAM Bits	-
Number of I/O	65
Number of Gates	6000
Voltage - Supply	4.75V ~ 5.25V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	84-LCC (J-Lead)
Supplier Device Package	84-PLCC (29.31x29.31)
Purchase URL	https://www.e-xfl.com/product-detail/xilinx/xc5204-6pc84c

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

carry out co carry3 co A3 DO DO DI וס or Q D Q D B3 FD FD CY MUX F4 F3 F3 A3 and B3 F2 (OF F2 to any two half sum3 sum 3 F1 F1 LC3 LC3 carry2 A2 DO DO DI DI or B2 D Q D Q CY_MUX FD FD F4 F3 F3 A2 and B2 F2 (OF KUE F2 to any two half sum2 sum2 F1 F1 х LC2 LC2 carrv1 DO A1 DO וח DI or B1 D D Q Q FD FD CY_MUX F4 F3 F3 A1 and B1 F2 XOF F2 XOF to any two half sum1 sum1 F1 F1 LC1 LC1 carry0 A0 DO DI DO DI or D Q B0 D Q FD CY_MUX FD F4 F3 F3 A0 and B0 F2 κo F2 to any two half sum0 XOF sum0 F1 ¥ F1 СІ CE CK CLR LC0 СІ CE CK CLR LC0 carry in 0 CY MUX Initialization of carry chain (One Logic Cell) X5709

Figure 6: XC5200 CY_MUX Used for Adder Carry Propagate

Carry Function

The XC5200 family supports a carry-logic feature that enhances the performance of arithmetic functions such as counters, adders, etc. A carry multiplexer (CY_MUX) symbol is used to indicate the XC5200 carry logic. This symbol represents the dedicated 2:1 multiplexer in each LC that performs the one-bit high-speed carry propagate per logic cell (four bits per CLB).

While the carry propagate is performed inside the LC, an adjacent LC must be used to complete the arithmetic function. Figure 6 represents an example of an adder function. The carry propagate is performed on the CLB shown,

which also generates the half-sum for the four-bit adder. An adjacent CLB is responsible for XORing the half-sum with the corresponding carry-out. Thus an adder or counter requires two LCs per bit. Notice that the carry chain requires an initialization stage, which the XC5200 family accomplishes using the carry initialize (CY_INIT) macro and one additional LC. The carry chain can propagate vertically up a column of CLBs.

The XC5200 library contains a set of Relationally-Placed Macros (RPMs) and arithmetic functions designed to take advantage of the dedicated carry logic. Using and modifying these macros makes it much easier to implement cus-

XILINX[®]

tomized RPMs, freeing the designer from the need to become an expert on architectures.

Figure 7: XC5200 CY_MUX Used for Decoder Cascade Logic

Cascade Function

Each CY_MUX can be connected to the CY_MUX in the adjacent LC to provide cascadable decode logic. Figure 7 illustrates how the 4-input function generators can be configured to take advantage of these four cascaded CY_MUXes. Note that AND and OR cascading are specific cases of a general decode. In AND cascading all bits are decoded equal to logic one, while in OR cascading all bits are decoded equal to logic zero. The flexibility of the LUT achieves this result. The XC5200 library contains gate macros designed to take advantage of this function.

CLB Flip-Flops and Latches

The CLB can pass the combinatorial output(s) to the interconnect network, but can also store the combinatorial

XC5200 Series Field Programmable Gate Arrays

results or other incoming data in flip-flops, and connect their outputs to the interconnect network as well. The CLB storage elements can also be configured as latches.

Table 3: CLB Storage Element Functionality(active rising edge is shown)

Mode	СК	CE	CLR	D	Q
Power-Up or GR	х	Х	х	Х	0
	Х	Х	1	Х	0
Flip-Flop	/	1*	0*	D	D
	0	Х	0*	Х	Q
Latch	1	1*	0*	Х	Q
Laton	0	1*	0*	D	D
Both	Х	0	0*	Х	Q

Legend:

Х

1*

____ Don't care

/ Rising edge 0* Input is Low

Input is Low or unconnected (default value)

Input is High or unconnected (default value)

Data Inputs and Outputs

The source of a storage element data input is programmable. It is driven by the function F, or by the Direct In (DI) block input. The flip-flops or latches drive the Q CLB outputs.

Four fast feed-through paths from DI to DO are available, as shown in Figure 4. This bypass is sometimes used by the automated router to repower internal signals. In addition to the storage element (Q) and direct (DO) outputs, there is a combinatorial output (X) that is always sourced by the Lookup Table.

The four edge-triggered D-type flip-flops or level-sensitive latches have common clock (CK) and clock enable (CE) inputs. Any of the clock inputs can also be permanently enabled. Storage element functionality is described in Table 3.

Clock Input

The flip-flops can be triggered on either the rising or falling clock edge. The clock pin is shared by all four storage elements with individual polarity control. Any inverter placed on the clock input is automatically absorbed into the CLB.

Clock Enable

The clock enable signal (CE) is active High. The CE pin is shared by the four storage elements. If left unconnected for any, the clock enable for that storage element defaults to the active state. CE is not invertible within the CLB.

Clear

An asynchronous storage element input (CLR) can be used to reset all four flip-flops or latches in the CLB. This input

XC5200 Series Field Programmable Gate Arrays

Figure 10: 3-State Buffers Implement a Multiplexer

Input/Output Blocks

User-configurable input/output blocks (IOBs) provide the interface between external package pins and the internal logic. Each IOB controls one package pin and can be configured for input, output, or bidirectional signals.

The I/O block, shown in Figure 11, consists of an input buffer and an output buffer. The output driver is an 8-mA full-rail CMOS buffer with 3-state control. Two slew-rate control modes are supported to minimize bus transients. Both the output buffer and the 3-state control are invertible. The input buffer has globally selected CMOS or TTL input thresholds. The input buffer is invertible and also provides a programmable delay line to assure reliable chip-to-chip set-up and hold times. Minimum ESD protection is 3 KV using the Human Body Model.

Figure 11: XC5200 I/O Block

IOB Input Signals

The XC5200 inputs can be globally configured for either TTL (1.2V) or CMOS thresholds, using an option in the bitstream generation software. There is a slight hysteresis of about 300mV.

The inputs of XC5200-Series 5-Volt devices can be driven by the outputs of any 3.3-Volt device, if the 5-Volt inputs are in TTL mode.

Supported sources for XC5200-Series device inputs are shown in Table 5.

Table 5: Supported Sources	for XC5200-Series	Device
Inputs		

	XC5200 Input Mode			
Source	5 V, TTL	5 V, CMOS		
Any device, Vcc = 3.3 V, CMOS outputs	\checkmark	Unreliable		
Any device, Vcc = 5 V, TTL outputs	\checkmark	Data		
Any device, Vcc = 5 V, CMOS outputs	\checkmark	\checkmark		

Optional Delay Guarantees Zero Hold Time

XC5200 devices do not have storage elements in the IOBs. However, XC5200 IOBs can be efficiently routed to CLB flip-flops or latches to store the I/O signals.

The data input to the register can optionally be delayed by several nanoseconds. With the delay enabled, the setup time of the input flip-flop is increased so that normal clock routing does not result in a positive hold-time requirement. A positive hold time requirement can lead to unreliable, temperature- or processing-dependent operation.

The input flip-flop setup time is defined between the data measured at the device I/O pin and the clock input at the CLB (not at the clock pin). Any routing delay from the device clock pin to the clock input of the CLB must, therefore, be subtracted from this setup time to arrive at the real setup time requirement relative to the device pins. A short specified setup time might, therefore, result in a negative setup time at the device pins, i.e., a positive hold-time requirement.

When a delay is inserted on the data line, more clock delay can be tolerated without causing a positive hold-time requirement. Sufficient delay eliminates the possibility of a data hold-time requirement at the external pin. The maximum delay is therefore inserted as the software default.

The XC5200 IOB has a one-tap delay element: either the delay is inserted (default), or it is not. The delay guarantees a zero hold time with respect to clocks routed through any of the XC5200 global clock buffers. (See "Global Lines" on page 96 for a description of the global clock buffers in the XC5200.) For a shorter input register setup time, with

segments span the width and height of the chip, respectively.

Two low-skew horizontal and vertical unidirectional global-line segments span each row and column of the chip, respectively.

Single- and Double-Length Lines

The single- and double-length bidirectional line segments make up the bulk of the routing channels. The double-length lines hop across every other CLB to reduce the propagation delays in speed-critical nets. Regenerating the signal strength is recommended after traversing three or four such segments. Xilinx place-and-route software automatically connects buffers in the path of the signal as necessary. Single- and double-length lines cannot drive onto Longlines and global lines; Longlines and global lines can, however, drive onto single- and double-length lines. As a general rule, Longline and global-line connections to the general routing matrix are unidirectional, with the signal direction from these lines toward the routing matrix.

Longlines

Longlines are used for high-fan-out signals, 3-state busses, low-skew nets, and faraway destinations. Row and column splitter PIPs in the middle of the array effectively double the total number of Longlines by electrically dividing them into two separated half-lines. Longlines are driven by the 3-state buffers in each CLB, and are driven by similar buffers at the periphery of the array from the VersaRing I/O Interface.

Bus-oriented designs are easily implemented by using Longlines in conjunction with the 3-state buffers in the CLB and in the VersaRing. Additionally, weak keeper cells at the periphery retain the last valid logic level on the Longlines when all buffers are in 3-state mode.

Longlines connect to the single-length or double-length lines, or to the logic inside the CLB, through the General Routing Matrix. The only manner in which a Longline can be driven is through the four 3-state buffers; therefore, a Longline-to-Longline or single-line-to-Longline connection through PIPs in the General Routing Matrix is not possible. Again, as a general rule, long- and global-line connections to the General Routing Matrix are unidirectional, with the signal direction from these lines toward the routing matrix.

The XC5200 family has no pull-ups on the ends of the Longlines sourced by TBUFs, unlike the XC4000 Series. Consequently, wired functions (i.e., WAND and WORAND) and wide multiplexing functions requiring pull-ups for undefined states (i.e., bus applications) must be implemented in a different way. In the case of the wired functions, the same functionality can be achieved by taking advantage of the carry/cascade logic described above, implementing a wide logic function in place of the wired function. In the case of 3-state bus applications, the user must insure that all states of the multiplexing function are defined. This process is as simple as adding an additional TBUF to drive the bus High when the previously undefined states are activated.

Global Lines

Global buffers in Xilinx FPGAs are special buffers that drive a dedicated routing network called Global Lines, as shown in Figure 16. This network is intended for high-fanout clocks or other control signals, to maximize speed and minimize skewing while distributing the signal to many loads.

The XC5200 family has a total of four global buffers (BUFG symbol in the library), each with its own dedicated routing channel. Two are distributed vertically and two horizontally throughout the FPGA.

The global lines provide direct input only to the CLB clock pins. The global lines also connect to the General Routing Matrix to provide access from these lines to the function generators and other control signals.

Four clock input pads at the corners of the chip, as shown in Figure 16, provide a high-speed, low-skew clock network to each of the four global-line buffers. In addition to the dedicated pad, the global lines can be sourced by internal logic. PIPs from several routing channels within the VersaRing can also be configured to drive the global-line buffers.

Details of all the programmable interconnect for a CLB is shown in Figure 17.

Figure 16: Global Lines

Figure 20: Boundary Scan Schematic Example

Even if the boundary scan symbol is used in a schematic, the input pins TMS, TCK, and TDI can still be used as inputs to be routed to internal logic. Care must be taken not to force the chip into an undesired boundary scan state by inadvertently applying boundary scan input patterns to these pins. The simplest way to prevent this is to keep TMS High, and then apply whatever signal is desired to TDI and TCK.

Avoiding Inadvertent Boundary Scan

If TMS or TCK is used as user I/O, care must be taken to ensure that at least one of these pins is held constant during configuration. In some applications, a situation may occur where TMS or TCK is driven during configuration. This may cause the device to go into boundary scan mode and disrupt the configuration process.

To prevent activation of boundary scan during configuration, do either of the following:

- TMS: Tie High to put the Test Access Port controller in a benign RESET state
- TCK: Tie High or Low—do not toggle this clock input.

For more information regarding boundary scan, refer to the Xilinx Application Note XAPP 017, "*Boundary Scan in XC4000 and XC5200 Devices.*"

Power Distribution

Power for the FPGA is distributed through a grid to achieve high noise immunity and isolation between logic and I/O. Inside the FPGA, a dedicated Vcc and Ground ring surrounding the logic array provides power to the I/O drivers, as shown in Figure 21. An independent matrix of Vcc and Ground lines supplies the interior logic of the device.

This power distribution grid provides a stable supply and ground for all internal logic, providing the external package power pins are all connected and appropriately decoupled.

XC5200 Series Field Programmable Gate Arrays

Typically, a 0.1 μF capacitor connected near the Vcc and Ground pins of the package will provide adequate decoupling.

Output buffers capable of driving/sinking the specified 8 mA loads under specified worst-case conditions may be capable of driving/sinking up to 10 times as much current under best case conditions.

Noise can be reduced by minimizing external load capacitance and reducing simultaneous output transitions in the same direction. It may also be beneficial to locate heavily loaded output buffers near the Ground pads. The I/O Block output buffers have a slew-rate limited mode (default) which should be used where output rise and fall times are not speed-critical.

Figure 21: XC5200-Series Power Distribution

Pin Descriptions

There are three types of pins in the XC5200-Series devices:

- · Permanently dedicated pins
- User I/O pins that can have special functions
- Unrestricted user-programmable I/O pins.

Before and during configuration, all outputs not used for the configuration process are 3-stated and pulled high with a 20 k Ω - 100 k Ω pull-up resistor.

After configuration, if an IOB is unused it is configured as an input with a 20 k Ω - 100 k Ω pull-up resistor.

Device pins for XC5200-Series devices are described in Table 9. Pin functions during configuration for each of the seven configuration modes are summarized in "Pin Func-

Table 11: XC5200 Bitstream Format

Data Type	Value	Occurrences				
Start Byte	11111110	Once per data				
Data Frame *	DATA(N-1:0)	frame				
Cyclic Redundancy Check or Constant Field Check	CRC(3:0) or 0110					
Fill Nibble	1111					
Extend Write Cycle	FFFFF					
Postamble	11111110	Once per de-				
Fill Bytes (30)	FFFFFF	vice				
Start-Up Byte	FF	Once per bit- stream				
*Bits per Frame (N) depends on device size, as described for table 11.						

Data Stream Format

The data stream ("bitstream") format is identical for all configuration modes, with the exception of Express mode. In Express mode, the device becomes active when DONE goes High, therefore no length count is required. Additionally, CRC error checking is not supported in Express mode.

The data stream formats are shown in Table 11. Express mode data is shown with D0 at the left and D7 at the right. For all other modes, bit-serial data is read from left to right, and byte-parallel data is effectively assembled from this serial bitstream, with the first bit in each byte assigned to D0.

The configuration data stream begins with a string of eight ones, a preamble code, followed by a 24-bit length count and a separator field of ones (or 24 fill bits, in Express mode). This header is followed by the actual configuration data in frames. The length and number of frames depends on the device type (see Table 12). Each frame begins with a start field and ends with an error check. In all modes except Express mode, a postamble code is required to signal the end of data for a single device. In all cases, additional start-up bytes of data are required to provide four clocks for the startup sequence at the end of configuration. Long daisy chains require additional startup bytes to shift the last data through the chain. All startup bytes are don't-cares; these bytes are not included in bitstreams created by the Xilinx software.

In Express mode, only non-CRC error checking is supported. In all other modes, a selection of CRC or non-CRC error checking is allowed by the bitstream generation software. The non-CRC error checking tests for a designated end-of-frame field for each frame. For CRC error checking, the software calculates a running CRC and inserts a unique four-bit partial check at the end of each frame. The 11-bit CRC check of the last frame of an FPGA includes the last seven data bits.

Detection of an error results in the suspension of data loading and the pulling down of the INIT pin. In Master modes,

XC5200 Series Field Programmable Gate Arrays

CCLK and address signals continue to operate externally. The user must detect INIT and initialize a new configuration by pulsing the PROGRAM pin Low or cycling Vcc.

Table 12: Internal Configuration Data Structure

Device	VersaBlock Array	PROM Size (bits)	Xilinx Serial PROM Needed
XC5202	8 x 8	42,416	XC1765E
XC5204	10 x 12	70,704	XC17128E
XC5206	14 x 14	106,288	XC17128E
XC5210	18 x 18	165,488	XC17256E
XC5215	22 x 22	237,744	XC17256E

Bits per Frame = $(34 \times \text{number of Rows}) + 28$ for the top + 28 for the bottom + 4 splitter bits + 8 start bits + 4 error check bits + 4 fill bits * + 24 extended write bits

= (34 x number of Rows) + 100

* In the XC5202 (8 x 8), there are 8 fill bits per frame, not 4 Number of Frames = (12 x number of Columns) + 7 for the left edge + 8 for the right edge + 1 splitter bit

= (12 x number of Columns) + 16

Program Data = (Bits per Frame x Number of Frames) + 48 header bits + 8 postamble bits + 240 fill bits + 8 start-up bits = (Bits per Frame x Number of Frames) + 304 PROM Size = Program Data

Cyclic Redundancy Check (CRC) for Configuration and Readback

The Cyclic Redundancy Check is a method of error detection in data transmission applications. Generally, the transmitting system performs a calculation on the serial bitstream. The result of this calculation is tagged onto the data stream as additional check bits. The receiving system performs an identical calculation on the bitstream and compares the result with the received checksum.

Each data frame of the configuration bitstream has four error bits at the end, as shown in Table 11. If a frame data error is detected during the loading of the FPGA, the configuration process with a potentially corrupted bitstream is terminated. The FPGA pulls the INIT pin Low and goes into a Wait state.

During Readback, 11 bits of the 16-bit checksum are added to the end of the Readback data stream. The checksum is computed using the CRC-16 CCITT polynomial, as shown in Figure 23. The checksum consists of the 11 most significant bits of the 16-bit code. A change in the checksum indicates a change in the Readback bitstream. A comparison to a previous checksum is meaningful only if the readback data is independent of the current device state. CLB outputs should not be included (Read Capture option not used). Statistically, one error out of 2048 might go undetected.

XC5200 Series Field Programmable Gate Arrays

F = Finished, no more configuration clocks needed Daisy-chain lead device must have latest F

Heavy lines describe default timing

X6700

7

Synchronous Peripheral Mode

Synchronous Peripheral mode can also be considered Slave Parallel mode. An external signal drives the CCLK input(s) of the FPGA(s). The first byte of parallel configuration data must be available at the Data inputs of the lead FPGA a short setup time before the rising CCLK edge. Subsequent data bytes are clocked in on every eighth consecutive rising CCLK edge.

The same CCLK edge that accepts data, also causes the RDY/BUSY output to go High for one CCLK period. The pin name is a misnomer. In Synchronous Peripheral mode it is really an ACKNOWLEDGE signal. Synchronous operation does not require this response, but it is a meaningful signal

for test purposes. Note that RDY/BUSY is pulled High with a high-impedance pullup prior to INIT going High.

The lead FPGA serializes the data and presents the preamble data (and all data that overflows the lead device) on its DOUT pin. There is an internal delay of 1.5 CCLK periods, which means that DOUT changes on the falling CCLK edge, and the next FPGA in the daisy chain accepts data on the subsequent rising CCLK edge.

In order to complete the serial shift operation, 10 additional CCLK rising edges are required after the last data byte has been loaded, plus one more CCLK cycle for each daisy-chained device.

Synchronous Peripheral mode is selected by a <011> on the mode pins (M2, M1, M0).

Figure 33: Synchronous Peripheral Mode Circuit Diagram

Express Mode

Express mode is similar to Slave Serial mode, except that data is processed one byte per CCLK cycle instead of one bit per CCLK cycle. An external source is used to drive CCLK, while byte-wide data is loaded directly into the configuration data shift registers. A CCLK frequency of 10 MHz is equivalent to an 80 MHz serial rate, because eight bits of configuration data are loaded per CCLK cycle. Express mode does not support CRC error checking, but does support constant-field error checking.

In Express mode, an external signal drives the CCLK input of the FPGA device. The first byte of parallel configuration data must be available at the D inputs of the FPGA a short setup time before the second rising CCLK edge. Subsequent data bytes are clocked in on each consecutive rising CCLK edge.

If the first device is configured in Express mode, additional devices may be daisy-chained only if every device in the chain is also configured in Express mode. CCLK pins are tied together and D0-D7 pins are tied together for all devices along the chain. A status signal is passed from DOUT to CS1 of successive devices along the chain. The lead device in the chain has its CS1 input tied High (or floating, since there is an internal pullup). Frame data is accepted only when CS1 is High and the device's configu-

ration memory is not already full. The status <u>pin</u> DOUT is pulled Low two internal-oscillator cycles after INIT is recognized as High, and remains Low until the device's configuration memory is full. DOUT is then pulled High to signal the next device in the chain to accept the configuration data on the D0-D7 bus.

The DONE pins of all devices in the chain should be tied together, with one or more active internal pull-ups. If a large number of devices are included in the chain, deactivate some of the internal pull-ups, since the Low-driving DONE pin of the last device in the chain must sink the current from all pull-ups in the chain. The DONE pull-up is activated by default. It can be deactivated using an option in the bitstream generation software.

XC5200 devices in Express mode are always synchronized to DONE. The device becomes active after DONE goes High. DONE is an open-drain output. With the DONE pins tied together, therefore, the external DONE signal stays low until all devices are configured, then all devices in the daisy chain become active simultaneously. If the DONE pin of a device is left unconnected, the device becomes active as soon as that device has been configured.

Express mode is selected by a <010> on the mode pins (M2, M1, M0).

X6611_01

Figure 37: Express Mode Circuit Diagram

Pin Functions During Configuration Table 13.

CONFIGURATION MODE: <m2:m1:m0></m2:m1:m0>								
SLAVE <1:1:1>	MASTER-SER <0:0:0>	SYN.PERIPH <0:1:1>	ASYN.PERIPH <1:0:1>	MASTER-HIGH <1:1:0>	MASTER-LOW <1:0:0>	EXPRESS <0:1:0>	OPERATION	
	1		•	A16	A16		GCK1-I/O	
				A17	A17		I/O	
TDI	TDI	TDI	TDI	TDI	TDI	TDI	TDI-I/O	
TCK	TCK	TCK	TCK	TCK	TCK	TCK	TCK-I/O	
TMS	TMS	TMS	TMS	TMS	TMS	TMS	TMS-I/O	
			·				I/O	
M1 (HIGH) (I)	M1 (LOW) (I)	M1 (HIGH) (I)	M1 (LOW) (I)	M1 (HIGH) (I)	M1 (LOW) (I)	M1 (HIGH) (I)	I/O	
M0 (HIGH) (I)	M0 (LOW) (I)	M0 (HIGH) (I)	M0 (HIGH) (I)	M0 (LOW) (I)	M0 (LOW) (I)	M0 (LOW) (I)	I/O	
M2 (HIGH) (I)	M2 (LOW) (I)	M2 (LOW) (I)	M2 (HIGH) (I)	M2 (HIGH) (I)	M2 (HIGH) (I)	M2 (LOW) (I)	I/O	
							GCK2-I/O	
HDC (HIGH)	HDC (HIGH)	HDC (HIGH)	HDC (HIGH)	HDC (HIGH)	HDC (HIGH)	HDC (HIGH)	I/O	
LDC (LOW)	LDC (LOW)	LDC (LOW)	LDC (LOW)	LDC (LOW)	LDC (LOW)	LDC (LOW)	I/O	
INIT-ERROR	INIT-ERROR	INIT-ERROR	INIT-ERROR	INIT-ERROR	INIT-ERROR	INIT-ERROR	I/O	
							I/O	
DONE	DONE	DONE	DONE	DONE	DONE	DONE	DONE	
PROGRAM (I)	PROGRAM (I)	PROGRAM (I)	PROGRAM (I)	PROGRAM (I)	PROGRAM (I)	PROGRAM (I)	PROGRAM	
		DATA 7 (I)	DATA 7 (I)	DATA 7 (I)	DATA 7 (I)	DATA 7 (I)	I/O	
				1	T	T	GCK3-I/O	
		DATA 6 (I)	DATA 6 (I)	DATA 6 (I)	DATA 6 (I)	DATA 6 (I)	I/O	
		DATA 5 (I)	DATA 5 (I)	DATA 5 (I)	DATA 5 (I)	DATA 5 (I)	I/O	
			CSO (I)				1/0	
		DATA 4 (I)	DATA 4 (I)	DATA 4 (I)	DATA 4 (I)	DATA 4 (I)	I/O	
		DATA 3 (I)	DATA 3 (I)	DATA 3 (I)	DATA 3 (I)	DATA 3 (I)	I/O	
			RS (I)		//		1/0	
		DATA 2 (I)	DATA 2 (I)	DATA 2 (I)	DATA 2 (I)	DATA 2 (I)	1/0	
				DATA 1 (I)	DATA 1 (I)	DATA1(I)	1/0	
		RDY/BUSY	RDY/BUSY	RCLK	RCLK		1/0	
DIN (I)	DIN (I)						1/0	
							1/0	
	CCLK (U)		CCLK (U)	CCLK (U)	CCLK (O)			
TDO	TDO	IDO		100	1DO	100	100-1/0	
			VVS (I)	AU	AU			
			CS1 (I)	A1	A1	CS1 (I)	GCK4-I/O	
			031(1)	A2 A2	A2		1/0	
				A3	AJ		1/0	
				Δ5	Δ5		1/0	
				A6	A6		1/0	
				Δ7	Δ7		1/0	
				Δ <u>Α</u>	<u>A8</u>		1/0	
				Α9	A9		1/O	
				A10	A10		1/O	
				A11	A11		/O	
				A12	A12			
				A13	A13		I/O	
				A14	A14		/O	
				A15	A15		I/O	
							ALL OTHERS	

Notes: 1. A shaded table cell represents a 20-kΩ to 100-kΩ pull-up resistor before and during configuration.
2. (I) represents an input (O) represents an output.
3. INIT is an open-drain output during configuration.

XC5200 Program Readback Switching Characteristic Guidelines

Testing of the switching parameters is modeled after testing methods specified by MIL-M-38510/605. All devices are 100% functionally tested. Internal timing parameters are not measured directly. They are derived from benchmark timing patterns that are taken at device introduction, prior to any process improvements.

The following guidelines reflect worst-case values over the recommended operating conditions.

	Description		Symbol	Min	Max	Units
rdbk.TRIG	rdbk.TRIG setup to initiate and abort Readback	1	T _{RTRC}	200	-	ns
	rdbk.TRIG hold to initiate and abort Readback	2	T _{RCRT}	50	-	ns
rdclk.1	rdbk.DATA delay	7	T _{RCRD}	-	250	ns
	rdbk.RIP delay	6	T _{RCRR}	-	250	ns
	High time	5	T _{RCH}	250	500	ns
	Low time	4	T _{RCL}	250	500	ns

Note 1: Timing parameters apply to all speed grades.

Note 2: rdbk.TRIG is High prior to Finished, Finished will trigger the first Readback

XC5200 IOB Switching Characteristic Guidelines

Testing of the switching parameters is modeled after testing methods specified by MIL-M-38510/605. All devices are 100% functionally tested. Since many internal timing parameters cannot be measured directly, they are derived from benchmark timing patterns. The following guidelines reflect worst-case values over the recommended operating conditions. For more detailed, more precise, and more up-to-date timing information, use the values provided by the timing calculator and used in the simulator.

Speed	-6	-5	-4	-3	
Description	Symbol	Max (ns)	Max (ns)	Max (ns)	Max (ns)
Input					
Propagation Delays from CMOS or TTL Levels					
Pad to I (no delay)	T _{PI}	5.7	5.0	4.8	3.3
Pad to I (with delay)	T _{PID}	11.4	10.2	10.2	9.5
Output					
Propagation Delays to CMOS or TTL Levels					
Output (O) to Pad (fast)	T _{OPF}	4.6	4.5	4.5	3.5
Output (O) to Pad (slew-limited)	T _{OPS}	9.5	8.4	8.0	5.0
From clock (CK) to output pad (fast), using direct connect between Q and output (O)	T _{OKPOF}	10.1	9.3	8.3	7.5
From clock (CK) to output pad (slew-limited), using direct connect be- tween Q and output (O)	T _{OKPOS}	14.9	13.1	11.8	10.0
3-state to Pad active (fast)	T _{TSONF}	5.6	5.2	4.9	4.6
3-state to Pad active (slew-limited)	T _{TSONS}	10.4	9.0	8.3	6.0
Internal GTS to Pad active	T _{GTS}	17.7	15.9	14.7	13.5

Note: 1. Timing is measured at pin threshold, with 50-pF external capacitance loads. Slew-limited output rise/fall times are approximately two times longer than fast output rise/fall times.

2. Unused and unbonded IOBs are configured by default as inputs with internal pull-up resistors.

3. Timing is based upon the XC5215 device. For other devices, see Timing Calculator.

XC5200 Boundary Scan (JTAG) Switching Characteristic Guidelines

The following guidelines reflect worst-case values over the recommended operating conditions. They are expressed in units of nanoseconds and apply to all XC5200 devices unless otherwise noted.

Speed Grade		-	6	-	5	-4		-3	
Description	Symbol	Min	Max	Min	Max	Min	Max	Min	Max
Setup and Hold									
Input (TDI) to clock (TCK) setup time	T _{TDITCK}	30.0		30.0		30.0		30.0	
Input (TDI) to clock (TCK) hold time	Т _{ТСКТОІ}	0		0		0		0	
Input (TMS) to clock (TCK) setup time	T _{TMSTCK}	15.0		15.0		15.0		15.0	
Input (TMS) to clock (TCK) hold time	Т _{ТСКТМЅ}	0		0		0		0	
Propagation Delay									
Clock (TCK) to Pad (TDO)	T _{TCKPO}		30.0		30.0		30.0		30.0
Clock									
Clock (TCK) High	Т _{ТСКН}	30.0		30.0		30.0		30.0	
Clock (TCK) Low	T _{TCKL}	30.0		30.0		30.0		30.0	
F _{MAX} (MHz)	F _{MAX}		10.0		10.0		10.0		10.0

Note 1: Input pad setup and hold times are specified with respect to the internal clock.

XC5200 Series Field Programmable Gate Arrays

<7	VII	IN IV®
<.	ΛIL	.IINA

Pin	Description	PC84	PQ100	VQ100	TQ144	PG156	PQ160	Boundary Scan Order
99.	I/O	68	72	69	97	T5	107	486
100.	I/O	-	-	-	98	R6	108	492
101.	I/O	-	-	-	99	T4	109	495
	GND	-	-	-	100	P6	110	-
102.	I/O (D1)	69	73	70	101	Т3	113	498
103.	I <u>/O</u> (RCLK-BUSY/RDY)	70	74	71	102	P5	114	504
104.	I/O	-	-	-	103	R4	115	507
105.	I/O	-	-	-	104	R3	116	510
106.	I/O (D0, DIN)	71	75	72	105	P4	117	516
107.	I/O (DOUT)	72	76	73	106	T2	118	519
	CCLK	73	77	74	107	R2	119	-
	VCC	74	78	75	108	P3	120	-
108.	I/O (TDO)	75	79	76	109	T1	121	0
	GND	76	80	77	110	N3	122	-
109.	I/O (A0, WS)	77	81	78	111	R1	123	9
110.	GCK4 (A1, I/O)	78	82	79	112	P2	124	15
111.	I/O	-	-	-	113	N2	125	18
112.	I/O	-	-	-	114	M3	126	21
113.	I/O (A2, CS1)	79	83	80	115	P1	127	27
114.	I/O (A3)	80	84	81	116	N1	128	30
115.	I/O	-	-	-	117	M2	129	33
116.	I/O	-	-	-	-	M1	130	39
	GND	-	-	-	118	L3	131	-
117.	I/O	-	-	-	119	L2	132	42
118.	I/O	-	-	-	120	L1	133	45
119.	I/O (A4)	81	85	82	121	K3	134	51
120.	I/O (A5)	82	86	83	122	K2	135	54
121.	I/O	-	87	84	123	K1	137	57
122.	I/O	-	88	85	124	J1	138	63
123.	I/O (A6)	83	89	86	125	J2	139	66
124.	I/O (A7)	84	90	87	126	J3	140	69
	GND	1	91	88	127	H2	141	-

Additional No Connect (N.C.) Connections for PQ160 Package

PQ160												
8 30 89 111 136												
9	31	90	112									

Notes: Boundary Scan Bit 0 = TDO.T Boundary Scan Bit 1 = TDO.O Boundary Scan Bit 1056 = BSCAN.UPD

Pin	Description	PC84	PQ100	VQ100	TQ144	PQ160	TQ176	PG191	PQ208	Boundary Scan Order
87.	I/O	-	-	-	-	72	80	P17	94	468
88.	I/O	48	48	45	65	73	81	N16	95	471
89.	I/O	49	49	46	66	74	82	T17	96	480
90.	I/O	-	-	-	67	75	83	R17	97	483
91.	I/O	-	-	-	68	76	84	P16	98	486
92.	I/O	50	50	47	69	77	85	U18	99	492
93.	I/O	51	51	48	70	78	86	T16	100	495
	GND	52	52	49	71	79	87	R16	101	-
	DONE	53	53	50	72	80	88	U17	103	-
	VCC	54	54	51	73	81	89	R15	106	-
	PROG	55	55	52	74	82	90	V18	108	-
94.	I/O (D7)	56	56	53	75	83	91	T15	109	504
95.	GCK3 (I/O)	57	57	54	76	84	92	U16	110	507
96.	I/O	-	-	-	77	85	93	T14	111	516
97.	I/O	-	-	-	78	86	94	U15	112	519
98.	I/O (D6)	58	58	55	79	87	95	V17	113	522
99.	I/O	-	59	56	80	88	96	V16	114	528
100.	I/O	-	-	-	-	89	97	T13	115	531
101.	I/O	-	-	-	-	90	98	U14	116	534
	GND	-	-	-	81	91	99	T12	119	-
102.	I/O	-	-	-	82	92	100	U13	120	540
103.	I/O	-	-	-	83	93	101	V13	121	543
104.	I/O (D5)	59	60	57	84	94	102	U12	122	552
105.	$I/O(\overline{CS0})$	60	61	58	85	95	103	V12	123	555
106	1/O	-	-	-	-	-	104	T11	124	558
107	1/O	-	-	-	-	-	105	U11	125	564
108.	1/O	-	62	59	86	96	106	V11	126	567
109.	1/O	-	63	60	87	97	107	V10	127	570
110.	I/O (D4)	61	64	61	88	98	108	U10	128	576
111.	1/O	62	65	62	89	99	109	T10	129	579
	VCC	63	66	63	90	100	110	R10	130	-
	GND	64	67	64	91	100	111	R9	131	
112		65	68	65	92	102	112	Т9	132	588
113.	$I/O(\overline{RS})$	66	69	66	93	103	113	10	133	591
114	1/0	-	70	67	94	104	114	V9	134	600
115	1/0	_	-	-	95	105	115	V8	135	603
116	1/O		_	_	-	-	116	118	136	612
117	1/O		_	_	_	_	117	тя	137	615
118	I/O (D2)	67	71	68	96	106	118	10	138	618
110.	1/0 (02)	68	72	69	90	100	110	117	130	624
120	1/0	-	12	03	08	107	120	Ve	139	627
120.	1/0		_		90	100	120	116	140	630
121.	GND		_		100	110	121	T7	141	-
100		-	-	-	100	111	122	115	142	626
122.	1/0	-	-	-	-	112	123	03 Te	145	630
123.		-	- 70	-	-	112	124	10	140	642
124.	1/O (DT)	70	73	70	101	113	120	V3	147	642
125.	(RCLK-BUSY/RD Y)	70	74	71	102	114	120	V2	140	040
126.	I/O	-	-	-	103	115	127	U4	149	651
127.	I/O	-	-	-	104	116	128	T5	150	654
128.	I/O (D0, DIN)	71	75	72	105	117	129	U3	151	660
129.	I/O (DOUT)	72	76	73	106	118	130	T4	152	663
I	•									

Pin	Description	PQ160	HQ208	HQ240	PG299	BG225	BG352	Boundary Scan Order
100.	I/O	-	-	-	F17	-	AE22	558
101.	I/O	-	-	-	G16	-	AF23	564
102.	I/O	49	63	69	D19	K7	AD20	567
103.	I/O	50	64	70	E18	M5	AE21	570
104.	I/O	-	65	71	D20	R4	AF21	576
105.	I/O	-	66	72	G17	N5	AC19	579
106.	I/O	-	-	73	F18	P5	AD19	582
107.	I/O	-	-	74	H16	L6	AE20	588
108.	I/O	-	-	-	E19	-	AF20	591
109.	I/O	-	-	-	F19	-	AC18	594
	GND	51	67	75	E20	GND*	GND*	-
110.	I/O	52	68	76	H17	R5	AD18	600
111.	I/O	53	69	77	G18	M6	AE19	603
112.	I/O	54	70	78	G19	N6	AC17	606
113.	I/O	55	71	79	H18	P6	AD17	612
	VCC	-	-	80	F20	VCC*	VCC*	-
114.	I/O	-	72	81	J16	R6	AE17	615
115.	I/O	-	73	82	G20	M7	AE16	618
116.	I/O	-	-	-	H20	-	AF16	624
117.	I/O	-	-	-	J18	-	AC15	627
118.	I/O	-	-	84	J19	N7	AD15	630
119.	1/Q	-	_	85	K16	P7	AF15	636
120.	1/Q	56	74	86	.120	R7	AF15	639
121.	1/Q	57	75	87	K17	17	AD14	642
122	1/0	58	76	88	K18	 N8	AF14	648
122.		59	77	89	K19	P8	AF14	651
120.	VCC	60	78	90	1.20	VCC*		-
	GND	61	79	91	K20	GND*	GND*	_
124	1/0	62	80	92	119	18	AF13	660
125	1/0	63	81	02	118	PQ	AC13	663
120.	1/0	64	82	94 94	116	RQ	AD13	672
120.		65	83	95	117	NIG	ΔE12	675
127.		-	84	96	M20	MQ		678
120.		_	85	97	M1Q	10		684
120.		_		57	N20		AC12	687
130.				_	M18		ΔE11	690
132		_		00	N10	P10		696
133		_		100	P20	P10		699
100.		-		101	T20			-
13/	1/0			107	N18	N10		702
134.	1/0	67	87	102	D10	KO		702
135.	1/0	68	07	103	F 19 N17	P11	AC10	708
130.	1/0	60	80	104	P10	D11	AC10	711
137.		70	09	105	R 19 R 20			/ 14
120		10	90	001	N16	GND		-
130.	1/0	-	-	-		-		722
139.	1/0	-	-	-	F 10	- M10		123
140.	1/0	-	-	107	D20	NI 1	ACS	720
141.	1/0	-	-	100	T10			1.52
142.	1/0	-	91	109	D10	rt I Z		739
143.	1/0	- 74	92	110				744
144.	1/0	71	93	111	017	riz Maa		744
145.		72	94	112	v20	IV111	AE5	/4/

Pin	Description	PQ160	HQ208	HQ208 HQ240		PG299 BG225		Boundary Scan Order	
146.	I/O	-	-	-	R17	-	AD6	750	
147.	I/O	-	-	-	T18	-	AC7	756	
148.	I/O	73	95	113	U19	R13	AF4	759	
149.	I/O	74	96	114	V19	N12	AF3	768	
150.	I/O	75	97	115	R16	P13	AD5	771	
151.	I/O	76	98	116	T17	K10	AE3	774	
152.	I/O	77	99	117	U18	R14	AD4	780	
153.	I/O	78	100	118	X20	N13	AC5	783	
	GND	79	101	119	W20	GND*	GND*	_	
	DONE	80	103	120	V18	P14	AD3	_	
	VCC	81	106	121	X19	VCC*	VCC*	_	
	PROG	82	108	122	U17	M12	AC4	-	
154.	I/O (D7)	83	109	123	W19	P15	AD2	792	
155	GCK3 (I/O)	84	110	124	W18	N14	AC3	795	
156		85	111	125	T15	111	ΔB4	804	
150.	1/0	86	112	120	110	M13		807	
157.	1/O		-	120	V17	N15		810	
150.	1/0	-	_	127	V17 V19	M14	AA3	816	
159.	1/0	-	-	120	1115	10114	AR3 AR2	810	
100.	1/0	-	-	-	U13 T14	-	ADZ	019	
101.		- 07	-	-	114	-	ACT	020	
162.	I/O (D6)	87	113	129	VV17	J10	¥3	831	
163.	1/0	88	114	130	V16	LIZ	AAZ	834	
164.	1/0	89	115	131	X17	M15	AA1	840	
165.	1/0	90	116	132	U14	L13	VV4	843	
166.	1/0	-	11/	133	V15	L14	W3	846	
167.	1/0	-	118	134	113	K11	Y2	852	
168.	1/0	-	-	-	W16	-	Y1	855	
169.	1/0	-	-	-	W15	-	V4	858	
	GND	91	119	135	X16	GND*	GND*	-	
170.	1/0	-	-	136	U13	L15	V3	864	
171.	1/0	-	-	137	V14	K12	W2	867	
172.	1/0	92	120	138	W14	K13	04	870	
173.	1/0	93	121	139	V13	K14	U3	876	
	VCC	-	-	140	X15	VCC*	VCC*	-	
174.	I/O (D5)	94	122	141	T12	K15	V2	879	
175.	I/O (CS0)	95	123	142	X14	J12	V1	882	
176.	1/0	-	-	-	X13	-	T1	888	
177.	1/0	-	-	-	V12	-	R4	891	
178.	I/O	-	124	144	W12	J13	R3	894	
179.	I/O	-	125	145	T11	J14	R2	900	
180.	I/O	96	126	146	X12	J15	R1	903	
181.	I/O	97	127	147	U11	J11	P3	906	
182.	I/O (D4)	98	128	148	V11	H13	P2	912	
183.	I/O	99	129	149	W11	H14	P1	915	
	VCC	100	130	150	X10	VCC*	VCC*	-	
	GND	101	131	151	X11	GND*	GND*	-	
184.	I/O (D3)	102	132	152	W10	H12	N2	924	
185.	I/O (RS)	103	133	153	V10	H11	N4	927	
186.	I/O	104	134	154	T10	G14	N3	936	
187.	I/O	105	135	155	U10	G15	M1	939	
188.	I/O	-	136	156	X9	G13	M2	942	
189.	I/O	-	137	157	W9	G12	M3	948	

5	XII	INX ®
~		

Pin	Description	PQ160	HQ208	HQ240	PG299	BG225	BG352	Boundary Scan Order
190.	I/O	-	-	-	X8	-	M4	951
191.	I/O	-	-	-	V9	-	L1	954
192.	I/O (D2)	106	138	159	W8	G11	J1	960
193.	I/O	107	139	160	X7	F15	K3	963
	VCC	-	-	161	X5	VCC*	VCC*	
194.	I/O	108	140	162	V8	F14	J2	966
195.	I/O	109	141	163	W7	F13	J3	972
196.	I/O	-	-	164	U8	G10	K4	975
197.	I/O	-	-	165	W6	E15	G1	978
	GND	110	142	166	X6	GND*	GND*	
198.	I/O	-	-	-	T8	-	H2	984
199.	I/O	-	-	-	V7	-	H3	987
200.	I/O	-	-	167	X4	E14	J4	990
201.	I/O	-	-	168	U7	F12	F1	996
202.	I/O	-	143	169	W5	E13	G2	999
203.	I/O	-	144	170	V6	D15	G3	1002
204.	I/O	111	145	171	T7	F11	F2	1008
205.	I/O	112	146	172	Х3	D14	E2	1011
206.	I/O (D1)	113	147	173	U6	E12	F3	1014
207.	I/O (RCLK-BUSY/RDY)	114	148	174	V5	C15	G4	1020
208.	I/O	-	-	-	W4	-	D2	1023
209.	I/O	-	-	-	W3	-	F4	1032
210.	I/O	115	149	175	T6	D13	E3	1035
211.	I/O	116	150	176	U5	C14	C2	1038
212.	I/O (D0, DIN)	117	151	177	V4	F10	D3	1044
213.	I/O (DOUT)	118	152	178	X1	B15	E4	1047
	CCLK	119	153	179	V3	C13	C3	-
	VCC	120	154	180	W1	VCC*	VCC*	-
214.	I/O (TDO)	121	159	181	U4	A15	D4	0
	GND	122	160	182	X2	GND*	GND*	-
215.	I/O (A0, WS)	123	161	183	W2	A14	B3	9
216.	GCK4 (A1, I/O)	124	162	184	V2	B13	C4	15
217.	I/O	125	163	185	R5	E11	D5	18
218.	I/O	126	164	186	T4	C12	A3	21
219.	I/O (A2, CS1)	127	165	187	U3	A13	D6	27
220.	I/O (A3)	128	166	188	V1	B12	C6	30
221.	I/O	-	-	-	R4	-	B5	33
222.	I/O	-	-	-	P5	-	A4	39
223.	I/O	-	-	189	U2	F9	C7	42
224.	I/O	-	-	190	T3	D11	B6	45
225.	I/O	129	167	191	U1	A12	A6	51
226.	I/O	130	168	192	P4	C11	D8	54
227.	I/O	-	169	193	R3	B11	B7	57
228.	I/O	-	170	194	N5	E10	A7	63
229.	I/O	-	-	195	T2	-	D9	66
230.	I/O	-	-	-	R2	-	C9	69
	GND	131	171	196	T1	GND*	GND*	-
231.	I/O	132	172	197	N4	A11	B8	75
232.	I/O	133	173	198	P3	D10	D10	78
233.	I/O	-	-	199	P2	C10	C10	81
234.	I/O	-	-	200	N3	B10	B9	87
	VCC	-	-	201	R1	VCC*	VCC*	-

XILINX[®]

XC5200 Series Field Programmable Gate Arrays

Pin	Description	PQ160	HQ208	HQ240	PG299	BG225	BG352	Boundary Scan Order
235.	I/O	-	-	-	M5	-	B11	90
236.	I/O			-	P1	-	A11	93
237.	I/O (A4)	134	174	202	N1	A10	D12	99
238.	I/O (A5)	135	175	203	M3	D9	C12	102
239.	I/O	-	176	205	M2	C9	B12	105
240.	I/O	136	177	206	L5	B9	A12	111
241.	I/O	137	178	207	M1	A9	C13	114
242.	I/O	138	179	208	L4	E9	B13	117
243.	I/O (A6)	139	180	209	L3	C8	A13	126
244.	I/O (A7)	140	181	210	L2	B8	B14	129
	GND	141	182	211	L1	GND*	GND*	-

Additional No Connect (N.C.) Connections for HQ208 and HQ240 Packages

HQ	208	HQ240				
206	102	219				
207	104	22				
208	105	37				
1	107	83				
3	155	98				
51	156	143				
52	157	158				
53	53 158					
54	-	-				

Notes: * Pins labeled VCC* are internally bonded to a VCC plane within the BG225 and BG352 packages. The external pins for the BG225 are: B2, D8, H15, R8, B14, R1, H1, and R15. The external pins for the BG352 are: A10, A17, B2, B25, D13, D19, D7, G23, H4, K1, K26, N23, P4, U1, U26, W23, Y4, AC14, AC20, AC8, AE2, AE25, AF10, and AF17. Pins labeled GND* are internally bonded to a ground plane within the BG225 and BG352 packages. The external pins for the BG225 are: A1, D12, G7, G9, H6, H8, H10, J8, K8, A8, F8, G8, H2, H7, H9, J7, J9, M8. The external pins for the BG352 are: A1, A2, A5, A8, A14, A19, A22, A25, A26, B1, B26, E1, E26, H1, H26, N1, P26, W1, W26, AB1, AB26, AE1, AE26, AF1, AF13, AF19, AF2, AF22, AF25, AF26, AF5, AF8.

Boundary Scan Bit 0 = TDO.T Boundary Scan Bit 1 = TDO.O Boundary Scan Bit 1056 = BSCAN.UPD

XC5200 Series Field Programmable Gate Arrays

∑XILINX[®]

Product Availability

	PINS	64	84	100	100	144	156	160	176	191	208	208	223	225	240	240	299	352
	TYPE	Plast. VQFP	Plast. PLCC	Plast. PQFP	Plast. VQFP	Plast. TQFP	Ceram. PGA	Plast. PQFP	Plast. TQFP	Ceram. PGA	High-Perf. QFP	Plast. PQFP	Ceram. PGA	Plast. BGA	High-Perf. QFP	Plast. PQFP	Ceram. PGA	Plast. BGA
	CODE	VQ64*	PC84	PQ100	VQ100	TQ144	PG156	PQ160	т0176	PG191	HQ208	PQ208	PG223	BG225	HQ240	PQ240	PG299	BG352
	-6	CI	CI	CI	CI	CI	CI											
XC5202	-5	CI	CI	CI	CI	CI	CI											
700202	-4	С	С	С	С	С	С											
	-3	С	С	С	С	С	С											
XC5204	-6		CI	CI	CI	CI	CI	CI										
	-5		CI	CI	CI	CI	CI	CI										
	-4		С	С	С	С	С	С										
	-3		С	С	С	С	С	С										
	-6		CI	CI	CI	CI		CI	CI	CI		CI						
XC5206	-5		CI	CI	CI	CI		CI	CI	CI		CI						
700200	-4		С	С	С	С		С	С	С		С						
	-3		С	С	С	С		С	С	С		С						
	-6		CI			CI		CI	CI			CI	CI	CI		CI		
XC5210	-5		CI			CI		CI	CI			CI	CI	CI		CI		
	-4		С			С		С	С			С	С	С		С		
	-3		С			С		С	С			С	С	С		С		
	-6							CI			CI			CI	CI		CI	CI
XC5215	-5							С			С			С	С		С	С
7.00210	-4							С			С			С	С		С	С
	-3							С			С			С	С		С	С

C = Commercial $T_J = 0^{\circ}$ to +85°C

I= Industrial $T_J = -40^{\circ}C$ to $+100^{\circ}C$

* VQ64 package supports Master Serial, Slave Serial, and Express configuration modes only.

User I/O Per Package

_	Мах	Package Type																
Device	I/O	VQ64	PC84	PQ100	VQ100	TQ144	PG156	PQ160	TQ176	PG191	HQ208	PQ208	PG223	BG225	HQ240	PQ240	PG299	BG352
XC5202	84	52	65	81	81	84	84											
XC5204	124		65	81	81	117	124	124										
XC5206	148		65	81	81	117		133	148	148		148						
XC5210	196		65			117		133	149			164	196	196		196		
XC5215	244							133			164			196	197		244	244

7/8/98

Ordering Information

