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Understanding Embedded - FPGAs (Field
Programmable Gate Array)

Embedded - FPGAs, or Field Programmable Gate Arrays,
are advanced integrated circuits that offer unparalleled
flexibility and performance for digital systems. Unlike
traditional fixed-function logic devices, FPGAs can be
programmed and reprogrammed to execute a wide array
of logical operations, enabling customized functionality
tailored to specific applications. This reprogrammability
allows developers to iterate designs quickly and implement
complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them
indispensable in numerous fields. In telecommunications,
FPGAs are used for high-speed data processing and
network infrastructure. In the automotive industry, they
support advanced driver-assistance systems (ADAS) and
infotainment solutions. Consumer electronics benefit from
FPGAs in devices requiring high performance and
adaptability, such as smart TVs and gaming consoles.
Industrial automation relies on FPGAs for real-time control
and processing in machinery and robotics. Additionally,
FPGAs play a crucial role in aerospace and defense, where
their reliability and ability to handle complex algorithms
are essential.

Common Subcategories of Embedded -
FPGAs

Within the realm of Embedded - FPGAs, several
subcategories address different needs and applications.
General-purpose FPGAs are the most widely used, offering
a balance of performance and flexibility for a broad range
of applications. High-performance FPGAs are designed for
applications requiring exceptional speed and
computational power, such as data centers and high-
frequency trading systems. Low-power FPGAs cater to
battery-operated and portable devices where energy
efficiency is paramount. Lastly, automotive-grade FPGAs
meet the stringent standards of the automotive industry,
ensuring reliability and performance in vehicle systems.

Types of Embedded - FPGAs

Embedded - FPGAs can be classified into several types
based on their architecture and specific capabilities. SRAM-
based FPGAs are prevalent due to their high speed and
ability to support complex designs, making them suitable
for performance-critical applications. Flash-based FPGAs
offer non-volatile storage, retaining their configuration
without power and enabling faster start-up times. Antifuse-
based FPGAs provide a permanent, one-time
programmable solution, ensuring robust security and
reliability for critical systems. Each type of FPGA brings
distinct advantages, making the choice dependent on the
specific needs of the application.
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XC5200 Family Compared to 
XC4000/Spartan™ and XC3000 
Series
For readers already familiar with the XC4000/Spartan and
XC3000 FPGA Families, this section describes significant
differences between them and the XC5200 family. Unless
otherwise indicated, comparisons refer to both
XC4000/Spartan and XC3000 devices.

Configurable Logic Block (CLB) Resources
Each XC5200 CLB contains four independent 4-input func-
tion generators and four registers, which are configured as
four independent Logic Cells™ (LCs). The registers in each
XC5200 LC are optionally configurable as edge-triggered
D-type flip-flops or as transparent level-sensitive latches.

The XC5200 CLB includes dedicated carry logic that pro-
vides fast arithmetic carry capability. The dedicated carry
logic may also be used to cascade function generators for
implementing wide arithmetic functions.

XC4000 family: XC5200 devices have no wide edge
decoders. Wide decoders are implemented using cascade
logic. Although sacrificing speed for some designs, lack of
wide edge decoders reduces the die area and hence cost
of the XC5200.

XC4000/Spartan family: XC5200 dedicated carry logic
differs from that of the XC4000/Spartan family in that the
sum is generated in an additional function generator in the
adjacent column. This design reduces XC5200 die size and
hence cost for many applications. Note, however, that a
loadable up/down counter requires the same number of
function generators in both families. XC3000 has no dedi-
cated carry.

XC4000/Spartan family: XC5200 lookup tables are opti-
mized for cost and hence cannot implement RAM.

Input/Output Block (IOB) Resources
The XC5200 family maintains footprint compatibility with
the XC4000 family, but not with the XC3000 family.

To minimize cost and maximize the number of I/O per Logic
Cell, the XC5200 I/O does not include flip-flops or latches.

For high performance paths, the XC5200 family provides
direct connections from each IOB to the registers in the
adjacent CLB in order to emulate IOB registers.

Each XC5200 I/O Pin provides a programmable delay ele-
ment to control input set-up time. This element can be used
to avoid potential hold-time problems. Each XC5200 I/O
Pin is capable of 8-mA source and sink currents.

IEEE 1149.1-type boundary scan is supported in each
XC5200 I/O.

Routing Resources
The XC5200 family provides a flexible coupling of logic and
local routing resources called the VersaBlock. The XC5200
VersaBlock element includes the CLB, a Local Interconnect
Matrix (LIM), and direct connects to neighboring Versa-
Blocks.

The XC5200 provides four global buffers for clocking or
high-fanout control signals. Each buffer may be sourced by
means of its dedicated pad or from any internal source.

Each XC5200 TBUF can drive up to two horizontal and two
vertical Longlines. There are no internal pull-ups for
XC5200 Longlines.

Configuration and Readback
The XC5200 supports a new configuration mode called
Express mode.

XC4000/Spartan family: The XC5200 family provides a
global reset but not a global set.

XC5200 devices use a different configuration process than
that of the XC3000 family, but use the same process as the
XC4000 and Spartan families.

XC3000 family: Although their configuration processes dif-
fer, XC5200 devices may be used in daisy chains with
XC3000 devices.

XC3000 family: The XC5200 PROGRAM pin is a sin-
gle-function input pin that overrides all other inputs. The
PROGRAM pin does not exist in XC3000.

Table 2: Xilinx Field-Programmable Gate Array 
Families

Parameter XC5200 Spartan XC4000 XC3000

CLB function 
generators

4 3 3 2

CLB inputs 20 9 9 5

CLB outputs 12 4 4 2

Global buffers 4 8 8 2

User RAM no yes yes no

Edge decoders no no yes no

Cascade chain yes no no no

Fast carry logic yes yes yes no

Internal 3-state yes yes yes yes

Boundary scan yes yes yes no

Slew-rate control yes yes yes yes
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Input/Output Blocks
User-configurable input/output blocks (IOBs) provide the
interface between external package pins and the internal
logic.  Each IOB controls one package pin and can be con-
figured for input, output, or bidirectional signals.

The I/O block, shown in Figure 11, consists of an input
buffer and an output buffer. The output driver is an 8-mA
full-rail CMOS buffer with 3-state control. Two slew-rate
control modes are supported to minimize bus transients.
Both the output buffer and the 3-state control are invertible.
The input buffer has globally selected CMOS or TTL input
thresholds. The input buffer is invertible and also provides a
programmable delay line to assure reliable chip-to-chip
set-up and hold times. Minimum ESD protection is 3 KV
using the Human Body Model.

IOB Input Signals

The XC5200 inputs can be globally configured for either
TTL (1.2V) or CMOS thresholds, using an option in the bit-
stream generation software.  There is a slight hysteresis of
about 300mV.

The inputs of XC5200-Series 5-Volt devices can be driven
by the outputs of any 3.3-Volt device, if the 5-Volt inputs are
in TTL mode.

Supported sources for XC5200-Series device inputs are
shown in Table 5.

Optional Delay Guarantees Zero Hold Time

XC5200 devices do not have storage elements in the IOBs.
However, XC5200 IOBs can be efficiently routed to CLB
flip-flops or latches to store the I/O signals.

The data input to the register can optionally be delayed by
several nanoseconds.  With the delay enabled, the setup
time of the input flip-flop is increased so that normal clock
routing does not result in a positive hold-time requirement.
A positive hold time requirement can lead to unreliable,
temperature- or processing-dependent operation.

The input flip-flop setup time is defined between the data
measured at the device I/O pin and the clock input at the
CLB (not at the clock pin).  Any routing delay from the
device clock pin to the clock input of the CLB must, there-
fore, be subtracted from this setup time to arrive at the real
setup time requirement relative to the device pins.  A short
specified setup time might, therefore, result in a negative
setup time at the device pins, i.e., a positive hold-time
requirement.

When a delay is inserted on the data line, more clock delay
can be tolerated without causing a positive hold-time
requirement. Sufficient delay eliminates the possibility of a
data hold-time requirement at the external pin.  The maxi-
mum delay is therefore inserted as the software default.

The XC5200 IOB has a one-tap delay element: either the
delay is inserted (default), or it is not. The delay guarantees
a zero hold time with respect to clocks routed through any
of the XC5200 global clock buffers. (See “Global Lines” on
page 96 for a description of the global clock buffers in the
XC5200.) For a shorter input register setup time, with
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Figure 10:   3-State Buffers Implement a Multiplexer

Figure 11:   XC5200 I/O Block
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Table 5: Supported Sources for XC5200-Series Device 
Inputs

Source

XC5200 Input Mode
5 V,
TTL

5 V, 
CMOS

Any device, Vcc = 3.3 V, 
CMOS outputs

√
Unreliable 

DataAny device, Vcc = 5 V, 
TTL outputs

√

Any device, Vcc = 5 V, 
CMOS outputs

√ √
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non-zero hold, attach a NODELAY attribute or property to
the flip-flop or input buffer.

IOB Output Signals 

Output signals can be optionally inverted within the IOB,
and pass directly to the pad. As with the inputs, a CLB
flip-flop or latch can be used to store the output signal.

An active-High 3-state signal can be used to place the out-
put buffer in a high-impedance state, implementing 3-state
outputs or bidirectional I/O.  Under configuration control,
the output (OUT) and output 3-state (T) signals can be
inverted.  The polarity of these signals is independently
configured for each IOB.

The XC5200 devices provide a guaranteed output sink cur-
rent of 8 mA. 

Supported destinations for XC5200-Series device outputs
are shown in Table 6.(For a detailed discussion of how to
interface between 5 V and 3.3 V devices, see the 3V Prod-
ucts section of The Programmable Logic Data Book.)

An output can be configured as open-drain (open-collector)
by placing an OBUFT symbol in a schematic or HDL code,
then tying the 3-state pin (T) to the output signal, and the
input pin (I) to Ground. (See Figure 12.)

Table 6: Supported Destinations for XC5200-Series 
Outputs  

Output Slew Rate

The slew rate of each output buffer is, by default, reduced,
to minimize power bus transients when switching non-criti-
cal signals.  For critical signals, attach a FAST attribute or
property to the output buffer or flip-flop. 

For XC5200 devices, maximum total capacitive load for
simultaneous fast mode switching in the same direction is
200 pF for all package pins between each Power/Ground
pin pair. For some XC5200 devices, additional internal
Power/Ground pin pairs are connected to special Power
and Ground planes within the packages, to reduce ground
bounce. 

For slew-rate limited outputs this total is two times larger for
each device type: 400 pF for XC5200 devices. This maxi-
mum capacitive load should not be exceeded, as it can
result in ground bounce of greater than 1.5 V amplitude and
more than 5 ns duration. This level of ground bounce may
cause undesired transient behavior on an output, or in the
internal logic. This restriction is common to all high-speed
digital ICs, and is not particular to Xilinx or the XC5200
Series.

XC5200-Series devices have a feature called “Soft
Start-up,”  designed to reduce ground bounce when all out-
puts are turned on simultaneously at the end of configura-
tion.   When the configuration process is finished and the
device starts up, the first activation of the outputs is auto-
matically slew-rate limited.  Immediately following the initial
activation of the I/O, the slew rate of the individual outputs
is determined by the individual configuration option for
each IOB.

Global Three-State 

A separate Global 3-State line (not shown in Figure 11)
forces all FPGA outputs to the high-impedance state,
unless boundary scan is enabled and is executing an
EXTEST instruction. This global net (GTS) does not com-
pete with other routing resources; it uses a dedicated distri-
bution network.

GTS can be driven from any user-programmable pin as a
global 3-state input. To use this global net, place an input
pad and input buffer in the schematic or HDL code, driving
the GTS pin of the STARTUP symbol. A specific pin loca-
tion can be assigned to this input using a LOC attribute or
property, just as with any other user-programmable pad. An
inverter can optionally be inserted after the input buffer to
invert the sense of the Global 3-State signal.   Using GTS is
similar to Global Reset. See Figure 8 on page 90 for
details. Alternatively, GTS can be driven from any internal
node.

Other IOB Options

There are a number of other programmable options in the
XC5200-Series IOB. 

Pull-up and Pull-down Resistors

Programmable IOB pull-up and pull-down resistors are
useful for tying unused pins to Vcc or Ground to minimize
power consumption and reduce noise sensitivity. The con-
figurable pull-up resistor is a p-channel transistor that pulls

Destination

XC5200 Output Mode
5 V, 

CMOS
XC5200 device, VCC=3.3 V, 
CMOS-threshold inputs

√

Any typical device, VCC = 3.3 V, 
CMOS-threshold inputs

some1

1. Only if destination device has 5-V tolerant inputs

Any device, VCC = 5 V, 
TTL-threshold inputs  

√

Any device, VCC = 5 V, 
CMOS-threshold inputs

√

X6702

OPAD
OBUFT

Figure 12:   Open-Drain Output 
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segments span the width and height of the chip, 
respectively.

Two low-skew horizontal and vertical unidirectional glo-
bal-line segments span each row and column of the chip,
respectively.

Single- and Double-Length Lines
The single- and double-length bidirectional line segments
make up the bulk of the routing channels. The dou-
ble-length lines hop across every other CLB to reduce the
propagation delays in speed-critical nets. Regenerating the
signal strength is recommended after traversing three or
four such segments. Xilinx place-and-route software auto-
matically connects buffers in the path of the signal as nec-
essary. Single- and double-length lines cannot drive onto
Longlines and global lines; Longlines and global lines can,
however, drive onto single- and double-length lines. As a
general rule, Longline and global-line connections to the
general routing matrix are unidirectional, with the signal
direction from these lines toward the routing matrix.

Longlines
Longlines are used for high-fan-out signals, 3-state busses,
low-skew nets, and faraway destinations. Row and column
splitter PIPs in the middle of the array effectively double the
total number of Longlines by electrically dividing them into
two separated half-lines. Longlines are driven by the
3-state buffers in each CLB, and are driven by similar buff-
ers at the periphery of the array from the VersaRing I/O
Interface.

Bus-oriented designs are easily implemented by using Lon-
glines in conjunction with the 3-state buffers in the CLB and
in the VersaRing. Additionally, weak keeper cells at the
periphery retain the last valid logic level on the Longlines
when all buffers are in 3-state mode.

Longlines connect to the single-length or double-length
lines, or to the logic inside the CLB, through the General
Routing Matrix. The only manner in which a Longline can
be driven is through the four 3-state buffers; therefore, a
Longline-to-Longline or single-line-to-Longline connection
through PIPs in the General Routing Matrix is not possible.
Again, as a general rule, long- and global-line connections
to the General Routing Matrix are unidirectional, with the
signal direction from these lines toward the routing matrix.

The XC5200 family has no pull-ups on the ends of the Lon-
glines sourced by TBUFs, unlike the XC4000 Series. Con-
sequently, wired functions (i.e., WAND and WORAND) and
wide multiplexing functions requiring pull-ups for undefined
states (i.e., bus applications) must be implemented in a dif-
ferent way. In the case of the wired functions, the same
functionality can be achieved by taking advantage of the

carry/cascade logic described above, implementing a wide
logic function in place of the wired function. In the case of
3-state bus applications, the user must insure that all states
of the multiplexing function are defined. This process is as
simple as adding an additional TBUF to drive the bus High
when the previously undefined states are activated.

Global Lines
Global buffers in Xilinx FPGAs are special buffers that drive
a dedicated routing network called Global Lines, as shown
in Figure 16. This network is intended for high-fanout
clocks or other control signals, to maximize speed and min-
imize skewing while distributing the signal to many loads.

The XC5200 family has a total of four global buffers (BUFG
symbol in the library), each with its own dedicated routing
channel. Two are distributed vertically and two horizontally
throughout the FPGA.

The global lines provide direct input only to the CLB clock
pins. The global lines also connect to the General Routing
Matrix to provide access from these lines to the function
generators and other control signals.

Four clock input pads at the corners of the chip, as shown
in Figure 16, provide a high-speed, low-skew clock network
to each of the four global-line buffers. In addition to the ded-
icated pad, the global lines can be sourced by internal
logic. PIPs from several routing channels within the Ver-
saRing can also be configured to drive the global-line buff-
ers.

Details of all the programmable interconnect for a CLB is
shown in Figure 17.

Figure 16:   Global Lines

GCK1 GCK4

GCK3GCK2

X5704
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VersaRing Input/Output Interface
The VersaRing, shown in Figure 18, is positioned between
the core logic and the pad ring; it has all the routing
resources of a VersaBlock without the CLB logic. The Ver-
saRing decouples the core logic from the I/O pads. Each
VersaRing Cell provides up to four pad-cell connections on
one side, and connects directly to the CLB ports on the
other side.

Boundary Scan
The “bed of nails” has been the traditional method of testing
electronic assemblies. This approach has become less
appropriate, due to closer pin spacing and more sophisti-
cated assembly methods like surface-mount technology
and multi-layer boards. The IEEE boundary scan standard
1149.1 was developed to facilitate board-level testing of
electronic assemblies. Design and test engineers can
imbed a standard test logic structure in their device to
achieve high fault coverage for I/O and internal logic. This
structure is easily implemented with a four-pin interface on
any boundary scan-compatible IC. IEEE 1149.1-compatible
devices may be serial daisy-chained together, connected in
parallel, or a combination of the two.

XC5200 devices support all the mandatory boundary-scan
instructions specified in the IEEE standard 1149.1. A Test
Access Port (TAP) and registers are provided that imple-
ment the EXTEST, SAMPLE/PRELOAD, and BYPASS
instructions. The TAP can also support two USERCODE
instructions. When the boundary scan configuration option
is selected, three normal user I/O pins become dedicated
inputs for these functions. Another user output pin
becomes the dedicated boundary scan output.

Boundary-scan operation is independent of individual IOB
configuration and package type. All IOBs are treated as
independently controlled bidirectional pins, including any
unbonded IOBs. Retaining the bidirectional test capability
after configuration provides flexibility for interconnect test-
ing.

Also, internal signals can be captured during EXTEST by
connecting them to unbonded IOBs, or to the unused out-
puts in IOBs used as unidirectional input pins. This tech-
nique partially compensates for the lack of INTEST
support.

The user can serially load commands and data into these
devices to control the driving of their outputs and to exam-
ine their inputs. This method is an improvement over
bed-of-nails testing. It avoids the need to over-drive device
outputs, and it reduces the user interface to four pins. An
optional fifth pin, a reset for the control logic, is described in
the standard but is not implemented in Xilinx devices.

The dedicated on-chip logic implementing the IEEE 1149.1
functions includes a 16-state machine, an instruction regis-
ter and a number of data registers. The functional details
can be found in the IEEE 1149.1 specification and are also
discussed in the Xilinx application note XAPP 017: “Bound-
ary Scan in XC4000 and XC5200 Series devices”

Figure 19 on page 99 is a diagram of the XC5200-Series
boundary scan logic. It includes three bits of Data Register
per IOB, the IEEE 1149.1 Test Access Port controller, and
the Instruction Register with decodes.

The public boundary-scan instructions are always available
prior to configuration. After configuration, the public instruc-
tions and any USERCODE instructions are only available if
specified in the design. While SAMPLE and BYPASS are
available during configuration, it is recommended that
boundary-scan operations not be performed during this
transitory period.

In addition to the test instructions outlined above, the
boundary-scan circuitry can be used to configure the FPGA
device, and to read back the configuration data.

All of the XC4000 boundary-scan modes are supported in
the XC5200 family. Three additional outputs for the User-
Register are provided (Reset, Update, and Shift), repre-

Figure 18:   VersaRing I/O Interface
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senting the decoding of the corresponding state of the
boundary-scan internal state machine. 
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Master Serial mode generates CCLK and receives the con-
figuration data in serial form from a Xilinx serial-configura-
tion PROM. 

CCLK speed is selectable as 1 MHz (default), 6 MHz, or 12
MHz. Configuration always starts at the default slow fre-
quency, then can switch to the higher frequency during the
first frame.  Frequency tolerance is -50% to +50%.

Peripheral Modes

The two Peripheral modes accept byte-wide data from a
bus.  A RDY/BUSY status is available as a handshake sig-
nal.  In Asynchronous Peripheral mode, the internal oscilla-
tor generates a CCLK burst signal that serializes the
byte-wide data.  CCLK can also drive slave devices.  In the
synchronous mode, an externally supplied clock input to
CCLK serializes the data.

Slave Serial Mode

In Slave Serial mode, the FPGA receives serial configura-
tion data on the rising edge of CCLK and, after loading its
configuration, passes additional data out, resynchronized
on the next falling edge of CCLK.  

Multiple slave devices with identical configurations can be
wired with parallel DIN inputs.  In this way, multiple devices
can be configured simultaneously.  

Serial Daisy Chain

Multiple devices with different configurations can be con-
nected together in a “daisy chain,” and a single combined
bitstream used to configure the chain of slave devices.  

To configure a daisy chain of devices, wire the CCLK pins
of all devices in parallel, as shown in Figure 28 on page
114. Connect the DOUT of each device to the DIN of the
next. The lead or master FPGA and following slaves each
passes resynchronized configuration data coming from a
single source. The header data, including the length count,
is passed through and is captured by each FPGA when it
recognizes the 0010 preamble. Following the length-count
data, each FPGA outputs a High on DOUT until it has
received its required number of data frames. 

After an FPGA has received its configuration data, it
passes on any additional frame start bits and configuration
data on DOUT. When the total number of configuration
clocks applied after memory initialization equals the value
of the 24-bit length count, the FPGAs begin the start-up
sequence and become operational together. FPGA I/O are
normally released two CCLK cycles after the last configura-
tion bit is received. Figure 25 on page 109 shows the
start-up timing for an XC5200-Series device.

The daisy-chained bitstream is not simply a concatenation
of the individual bitstreams. The PROM file formatter must
be used to combine the bitstreams for a daisy-chained con-
figuration.

Multi-Family Daisy Chain

All Xilinx FPGAs of the XC2000, XC3000, XC4000, and
XC5200 Series use a compatible bitstream format and can,
therefore, be connected in a daisy chain in an arbitrary
sequence. There is, however, one limitation. If the chain
contains XC5200-Series devices, the master normally can-
not be an XC2000 or XC3000 device. 

The reason for this rule is shown in Figure 25 on page 109.
Since all devices in the chain store the same length count
value and generate or receive one common sequence of
CCLK pulses, they all recognize length-count match on the
same CCLK edge, as indicated on the left edge of
Figure 25. The master device then generates additional
CCLK pulses until it reaches its finish point F. The different
families generate or require different numbers of additional
CCLK pulses until they reach F. Not reaching F means that
the device does not really finish its configuration, although
DONE may have gone High, the outputs became active,
and the internal reset was released. For the
XC5200-Series device, not reaching F means that read-
back cannot be initiated and most boundary scan instruc-
tions cannot be used. 

The user has some control over the relative timing of these
events and can, therefore, make sure that they occur at the
proper time and the finish point F is reached.  Timing is con-
trolled using options in the bitstream generation software.

XC5200 devices always have the same number of CCLKs
in the power up delay, independent of the configuration
mode, unlike the XC3000/XC4000 Series devices. To guar-
antee all devices in a daisy chain have finished the
power-up delay, tie the INIT pins together, as shown in
Figure 27.

XC3000 Master with an XC5200-Series Slave

Some designers want to use an XC3000 lead device in
peripheral mode and have the I/O pins of the
XC5200-Series devices all available for user I/O. Figure 22
provides a solution for that case. 

This solution requires one CLB, one IOB and pin, and an
internal oscillator with a frequency of up to 5 MHz as a
clock source.  The XC3000 master device must be config-
ured with late Internal Reset, which is the default option.

One CLB and one IOB in the lead XC3000-family device
are used to generate the additional CCLK pulse required by
the XC5200-Series devices.  When the lead device
removes the internal RESET signal, the 2-bit shift register
responds to its clock input and generates an active Low
output signal for the duration of the subsequent clock
period.  An external connection between this output and
CCLK thus creates the extra CCLK pulse.
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Data Stream Format 
The data stream (“bitstream”) format is identical for all con-
figuration modes, with the exception of Express mode.  In
Express mode, the device becomes active when DONE
goes High, therefore no length count is required.  Addition-
ally, CRC error checking is not supported in Express mode.

The data stream formats are shown in Table 11. Express
mode data is shown with D0 at the left and D7 at the right.
For all other modes, bit-serial data is read from left to right,
and byte-parallel data is effectively assembled from this
serial bitstream, with the first bit in each byte assigned to
D0.

The configuration data stream begins with a string of eight
ones, a preamble code, followed by a 24-bit length count
and a separator field of ones (or 24 fill bits, in Express
mode). This header is followed by the actual configuration
data in frames. The length and number of frames depends
on the device type (see Table 12).   Each frame begins with
a start field and ends with an error check. In all modes
except Express mode, a postamble code is required to sig-
nal the end of data for a single device. In all cases, addi-
tional start-up bytes of data are required to provide four
clocks for the startup sequence at the end of configuration.
Long daisy chains require additional startup bytes to shift
the last data through the chain. All startup bytes are
don’t-cares; these bytes are not included in bitstreams cre-
ated by the Xilinx software.

In Express mode, only non-CRC error checking is sup-
ported.  In all other modes, a selection of CRC or non-CRC
error checking is allowed by the bitstream generation soft-
ware.  The non-CRC error checking tests for a designated
end-of-frame field for each frame.  For CRC error checking,
the software calculates a running CRC and inserts a unique
four-bit partial check at the end of each frame.  The 11-bit
CRC check of the last frame of an FPGA includes the last
seven data bits.

Detection of an error results in the suspension of data load-
ing and the pulling down of the INIT pin.  In Master modes,

CCLK and address signals continue to operate externally.
The user must detect INIT and initialize a new configuration
by pulsing the PROGRAM pin Low or cycling Vcc.

Cyclic Redundancy Check (CRC) for 
Configuration and Readback
The Cyclic Redundancy Check is a method of error detec-
tion in data transmission applications. Generally, the trans-
mitting system performs a calculation on the serial
bitstream. The result of this calculation is tagged onto the
data stream as additional check bits. The receiving system
performs an identical calculation on the bitstream and com-
pares the result with the received checksum.

Each data frame of the configuration bitstream has four
error bits at the end, as shown in Table 11. If a frame data
error is detected during the loading of the FPGA, the con-
figuration process with a potentially corrupted bitstream is
terminated. The FPGA pulls the INIT pin Low and goes into
a Wait state.

During Readback, 11 bits of the 16-bit checksum are added
to the end of the Readback data stream. The checksum is
computed using the CRC-16 CCITT polynomial, as shown
in Figure 23. The checksum consists of the 11 most signifi-
cant bits of the 16-bit code. A change in the checksum indi-
cates a change in the Readback bitstream. A comparison
to a previous checksum is meaningful only if the readback
data is independent of the current device state. CLB out-
puts should not be included (Read Capture option not
used). Statistically, one error out of 2048 might go undetec-
ted.

Start Byte 11111110 Once per data 
frameData Frame * DATA(N-1:0)

Cyclic Redundancy Check or
Constant Field Check

CRC(3:0) or
0110

Fill Nibble 1111
Extend Write Cycle FFFFFF
Postamble 11111110 Once per de-

viceFill Bytes (30) FFFF…FF
Start-Up Byte FF Once per bit-

stream
*Bits per Frame (N) depends on device size, as described for 
table 11.

Table 11: XC5200 Bitstream Format

Data Type Value Occurrences

Table 12: Internal Configuration Data Structure

Device
VersaBlock

Array

PROM
Size
(bits)

Xilinx
Serial PROM

Needed

XC5202 8 x 8 42,416 XC1765E
XC5204 10 x 12 70,704 XC17128E
XC5206 14 x 14 106,288 XC17128E
XC5210 18 x 18 165,488 XC17256E
XC5215 22 x 22 237,744 XC17256E
Bits per Frame = (34 x number of Rows) + 28 for the top + 28 for 
the bottom + 4 splitter bits + 8 start bits + 4 error check bits + 4 fill 
bits * + 24 extended write bits
= (34 x number of Rows) + 100
* In the XC5202 (8 x 8), there are 8 fill bits per frame, not 4
Number of Frames = (12 x number of Columns) + 7 for the left 
edge + 8 for the right edge + 1 splitter bit
= (12 x number of Columns) + 16
Program Data = (Bits per Frame x Number of Frames) + 48 
header bits + 8 postamble bits + 240 fill bits + 8 start-up bits
= (Bits per Frame x Number of Frames) + 304
PROM Size = Program Data
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XC4000E/EX
XC5200/

UCLK_SYNC

XC4000E/EX
XC5200/

UCLK_NOSYNC

XC4000E/EX
XC5200/

CCLK_SYNC

XC4000E/EX
XC5200/

CCLK_NOSYNC

XC3000

XC2000

CCLK

GSR Active

UCLK Period

DONE IN

DONE IN

Di    Di+1           Di+2

Di       Di+1           Di+2

U2              U3               U4

U2              U3               U4

U2              U3               U4C1

Synchronization
Uncertainty

Di      Di+1 

Di          Di+1 

DONE

I/O

GSR Active

DONE

I/O

GSR Active

DONE

C1 C2

C1 U2

C3 C4

C2 C3 C4

C2 C3 C4

I/O

GSR Active

DONE

I/O

DONE

Global Reset

I/O

DONE

Global Reset

I/O

F = Finished, no more
configuration clocks needed
Daisy-chain lead device
must have latest F

Heavy lines describe
default timing

CCLK Period
Length Count Match

F

F

F

F

F

F

X6700

C1, C2 or C3

Figure 25:   Start-up Timing
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M0 M1

DOUT

VCC

M2

PROGRAM

D7

D6

D5

D4

D3

D2

D1

D0

PROGRAM

CCLK

DIN

M0 M1 M2

DOUT

PROGRAM

EPROM
(8K x 8)

(OR LARGER)

A10

A11

A12

A9

A8

A7

A6

A5

A4

A3

A2

A1

A0

D7

DONE

D6

D5

D4

D3

D2

D1

D0

N/C

N/C

CE

OE

XC5200/
XC4000E/EX/

Spartan
SLAVE

8DATA BUS

CCLK

A15

A14

A13

A12

A11

A10

A9

A8

A7

A6

A5

A4

A3

A2

A1

A0

INIT 

INIT 

. . .

. . .

. . .
USER CONTROL OF HIGHER
ORDER PROM ADDRESS BITS
CAN BE USED TO SELECT BETWEEN
ALTERNATIVE CONFIGURATIONS

DONE

TO DIN OF OPTIONAL
DAISY-CHAINED FPGAS

A16 . . .

A17 . . .

HIGH 
or 

LOW

X9004_01

TO CCLK OF OPTIONAL
DAISY-CHAINED FPGAS

3.3 K 

4.7K 

NOTE:M0 can be shorted
to Ground if not used
as I/O.

XC5200
Master
Parallel

Figure 31:   Master Parallel Mode Circuit Diagram 
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.

Note: 1. At power-up, VCC must rise from 2.0 V to VCC min in less then 25 ms, otherwise delay configuration by pulling PROGRAM 
Low until VCC is Valid.

2. The first Data byte is loaded and CCLK starts at the end of the first RCLK active cycle (rising edge).

This timing diagram shows that the EPROM requirements are extremely relaxed.  EPROM access time can be longer than
500 ns.  EPROM data output has no hold-time requirements.

Figure 32:   Master Parallel Mode Programming Switching Characteristics

Address for Byte n

Byte 

2 TDRC

Address for Byte n + 1

D7D6

A0-A17
(output)

D0-D7

RCLK
(output)

CCLK
(output)

DOUT
(output)

1 TRAC

7 CCLKs CCLK

3 TRCD

Byte n - 1 X6078

Description Symbol Min Max Units

CCLK

Delay to Address valid 1 TRAC 0 200 ns

Data setup time 2 TDRC 60 ns

Data hold time 3 TRCD 0 ns
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Synchronous Peripheral Mode
Synchronous Peripheral mode can also be considered
Slave Parallel mode.  An external signal drives the CCLK
input(s) of the FPGA(s).  The first byte of parallel configura-
tion data must be available at the Data inputs of the lead
FPGA a short setup time before the rising CCLK edge.
Subsequent data bytes are clocked in on every eighth con-
secutive rising CCLK edge.  

The same CCLK edge that accepts data, also causes the
RDY/BUSY output to go High for one CCLK period. The pin
name is a misnomer. In Synchronous Peripheral mode it is
really an ACKNOWLEDGE signal. Synchronous operation
does not require this response, but it is a meaningful signal

for test purposes. Note that RDY/BUSY is pulled High with
a high-impedance pullup prior to INIT going High.

The lead FPGA serializes the data and presents the pre-
amble data (and all data that overflows the lead device) on
its DOUT pin.  There is an internal delay of 1.5 CCLK peri-
ods, which means that DOUT changes on the falling CCLK
edge, and the next FPGA in the daisy chain accepts data
on the subsequent rising CCLK edge.  

In order to complete the serial shift operation, 10 additional
CCLK rising edges are required after the last data byte has
been loaded, plus one more CCLK cycle for each
daisy-chained device. 

Synchronous Peripheral mode is selected by a <011> on
the mode pins (M2, M1, M0).

X9005

CONTROL
SIGNALS

DATA BUS

PROGRAM

DOUT

M0 M1 M2

D0-7

INIT DONE

PROGRAM

4.7 kΩ

3.3 kΩ

3.3 kΩ

RDY/BUSY

VCC

OPTIONAL
DAISY-CHAINED
FPGAs

NOTE:
M2 can be shorted to Ground
if not used as I/O

CCLKCLOCK

PROGRAM

DOUT

XC5200E/EX
SLAVE

M0 M1

N/C

8

M2

DIN

INIT DONE

CCLK

N/C

XC5200
SYNCHRO-

NOUS
PERIPHERAL

Figure 33:   Synchronous Peripheral Mode Circuit Diagram 
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Notes: 1.  A shaded table cell represents a 20-kΩ to 100-kΩ pull-up resistor before and during configuration.
2.  (I) represents an input (O) represents an output.
3.  INIT is an open-drain output during configuration.

Table 13. Pin Functions During Configuration

CONFIGURATION MODE: <M2:M1:M0>
USER

OPERATIONSLAVE
<1:1:1>

MASTER-SER
<0:0:0>

SYN.PERIPH
<0:1:1>

ASYN.PERIPH
<1:0:1>

MASTER-HIGH
<1:1:0>

MASTER-LOW
<1:0:0>

EXPRESS
<0:1:0>

A16 A16 GCK1-I/O
A17 A17 I/O

TDI TDI TDI TDI TDI TDI TDI TDI-I/O
TCK TCK TCK TCK TCK TCK TCK TCK-I/O
TMS TMS TMS TMS TMS TMS TMS TMS-I/O

I/O
M1 (HIGH) (I) M1 (LOW) (I) M1 (HIGH) (I) M1 (LOW) (I) M1 (HIGH) (I) M1 (LOW) (I) M1 (HIGH) (I) I/O
M0 (HIGH) (I) M0 (LOW) (I) M0 (HIGH) (I) M0 (HIGH) (I) M0 (LOW) (I) M0 (LOW) (I) M0 (LOW) (I) I/O
M2 (HIGH) (I) M2 (LOW) (I) M2 (LOW) (I) M2 (HIGH) (I) M2 (HIGH) (I) M2 (HIGH) (I) M2 (LOW) (I) I/O

GCK2-I/O
HDC (HIGH) HDC (HIGH) HDC (HIGH) HDC (HIGH) HDC (HIGH) HDC (HIGH) HDC (HIGH) I/O
LDC (LOW) LDC (LOW) LDC (LOW) LDC (LOW) LDC (LOW) LDC (LOW) LDC (LOW) I/O

INIT-ERROR INIT-ERROR INIT-ERROR INIT-ERROR INIT-ERROR INIT-ERROR INIT-ERROR I/O
I/O

DONE DONE DONE DONE DONE DONE DONE DONE
PROGRAM (I) PROGRAM (I) PROGRAM (I) PROGRAM (I) PROGRAM (I) PROGRAM (I) PROGRAM (I) PROGRAM

DATA 7 (I) DATA 7 (I) DATA 7 (I) DATA 7 (I) DATA 7 (I) I/O
GCK3-I/O

DATA 6 (I) DATA 6 (I) DATA 6 (I) DATA 6 (I) DATA 6 (I) I/O
DATA 5 (I) DATA 5 (I) DATA 5 (I) DATA 5 (I) DATA 5 (I) I/O

CSO (I) I/O
DATA 4 (I) DATA 4 (I) DATA 4 (I) DATA 4 (I) DATA 4 (I) I/O
DATA 3 (I) DATA 3 (I) DATA 3 (I) DATA 3 (I) DATA 3 (I) I/O

RS (I) I/O
DATA 2 (I) DATA 2 (I) DATA 2 (I) DATA 2 (I) DATA 2 (I) I/O
DATA 1 (I) DATA 1 (I) DATA 1 (I) DATA 1 (I) DATA 1 (I) I/O
RDY/BUSY RDY/BUSY RCLK RCLK I/O

DIN (I) DIN (I) DATA 0 (I) DATA 0 (I) DATA 0 (I) DATA 0 (I) DATA 0 (I) I/O
DOUT DOUT DOUT DOUT DOUT DOUT DOUT I/O

CCLK (I) CCLK (O) CCLK (I) CCLK (O) CCLK (O) CCLK (O) CCLK (I) CCLK (I)
TDO TDO TDO TDO TDO TDO TDO TDO-I/O

WS (I) A0 A0 I/O
A1 A1 GCK4-I/O

CS1 (I) A2 A2 CS1 (I) I/O
A3 A3 I/O
A4 A4 I/O
A5 A5 I/O
A6 A6 I/O
A7 A7 I/O
A8 A8 I/O
A9 A9 I/O

A10 A10 I/O
A11 A11 I/O
A12 A12 I/O
A13 A13 I/O
A14 A14 I/O
A15 A15 I/O

ALL OTHERS
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XC5200 CLB Switching Characteristic Guidelines
Testing of the switching parameters is modeled after testing methods specified by MIL-M-38510/605. All devices are 100%
functionally tested. Since many internal timing parameters cannot be measured directly, they are derived from benchmark
timing patterns. The following guidelines reflect worst-case values over the recommended operating conditions. For more
detailed, more precise, and more up-to-date timing information, use the values provided by the timing calculator and used
in the simulator.

Speed Grade -6 -5 -4 -3

Description Symbol
Min
(ns)

Max
(ns)

Min
(ns)

Max
(ns)

Min
(ns)

Max
(ns)

Min
(ns)

Max
(ns)

Combinatorial Delays
F inputs to X output TILO 5.6 4.6 3.8 3.0
F inputs via transparent latch to Q TITO 8.0 6.6 5.4 4.3
DI inputs to DO output (Logic-Cell 
Feedthrough)

TIDO 4.3 3.5 2.8 2.4

F inputs via F5_MUX to DO output TIMO 7.2 5.8 5.0 4.3
Carry Delays

Incremental delay per bit TCY 0.7 0.6 0.5 0.5
Carry-in overhead from DI TCYDI 1.8 1.6 1.5 1.4
Carry-in overhead from F TCYL 3.7 3.2 2.9 2.4
Carry-out overhead to DO TCYO 4.0 3.2 2.5 2.1

Sequential Delays
Clock (CK) to out (Q) (Flip-Flop) TCKO 5.8 4.9 4.0 4.0
Gate (Latch enable) going active to out (Q) TGO 9.2 7.4 5.9 5.5

Set-up Time Before Clock (CK)
F inputs TICK 2.3 1.8 1.4 1.3
F inputs via F5_MUX TMICK 3.8 3.0 2.5 2.4
DI input TDICK 0.8 0.5 0.4 0.4
CE input TEICK 1.6 1.2 0.9 0.9

Hold Times After Clock (CK)
F inputs TCKI 0 0 0 0
F inputs via F5_MUX TCKMI 0 0 0 0
DI input TCKDI 0 0 0 0
CE input TCKEI 0 0 0 0

Clock Widths
Clock High Time TCH 6.0 6.0 6.0 6.0
Clock Low Time TCL 6.0 6.0 6.0 6.0
Toggle Frequency (MHz) (Note 3) FTOG 83 83 83 83

Reset Delays
Width (High) TCLRW 6.0 6.0 6.0 6.0
Delay from CLR to Q (Flip-Flop) TCLR 7.7 6.3 5.1 4.0
Delay from CLR to Q (Latch) TCLRL 6.5 5.2 4.2 3.0

Global Reset Delays
Width (High) TGCLRW 6.0 6.0 6.0 6.0
Delay from internal GR to Q TGCLR 14.7 12.1 9.1 8.0

Note: 1. The CLB K to Q output delay (TCKO) of any CLB, plus the shortest possible interconnect delay, is always longer than the 
Data In hold-time requirement (TCKDI) of any CLB on the same die.

2. Timing is based upon the XC5215 device. For other devices, see Timing Calculator.
3. Maximum flip-flop toggle rate for export control purposes.
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XC5200 Boundary Scan (JTAG) Switching Characteristic Guidelines
The following guidelines reflect worst-case values over the recommended operating conditions.  They are expressed in units
of nanoseconds and apply to all XC5200 devices unless otherwise noted.          

                          Speed Grade -6 -5 -4 -3
Description Symbol Min Max Min Max Min Max Min Max

Setup and Hold
Input (TDI) to clock (TCK) 
      setup time
Input (TDI) to clock (TCK) 
      hold time
Input (TMS) to clock (TCK) 
      setup time
Input (TMS) to clock (TCK) 
      hold time

TTDITCK

TTCKTDI

TTMSTCK

TTCKTMS

30.0

0

15.0

0

30.0

0

15.0

0

30.0

0

15.0

0

30.0

0

15.0

0

Propagation Delay
Clock (TCK) to Pad (TDO) TTCKPO 30.0 30.0 30.0 30.0

Clock
Clock (TCK) High
Clock (TCK) Low 

TTCKH
TTCKL

30.0
30.0

30.0
30.0

30.0
30.0

30.0
30.0

FMAX (MHz) FMAX 10.0 10.0 10.0 10.0

Note 1: Input pad setup and hold times are specified with respect to the internal clock.
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35. I/O (HDC) 19 36 31 28 40 D14 204

36. I/O - - 32 29 43 E14 207

37. I/O (LDC) 20 37 33 30 44 C16 210

GND - - - - 45 F14 -

38. I/O - 38 34 31 48 F16 216

39. I/O 21 39 35 32 49 G14 219

40. I/O - - 36 33 50 G15 222

41. I/O - - 37 34 51 G16 228

42. I/O 22 40 38 35 52 H16 231

43. I/O (ERR, INIT) 23 41 39 36 53 H15 234

VCC 24 42 40 37 54 H14 -

GND 25 43 41 38 55 J14 -

44. I/O 26 44 42 39 56 J15 240

45. I/O 27 45 43 40 57 J16 243

46. I/O - - 44 41 58 K16 246

47. I/O - - 45 42 59 K15 252

48. I/O 28 46 46 43 60 K14 255

49. I/O 29 47 47 44 61 L16 258

GND - - - - 64 L14 -

50. I/O - 48 48 45 65 P16 264

51. I/O 30 49 49 46 66 M14 267

52. I/O - 50 50 47 69 N14 276

53. I/O 31 51 51 48 70 R16 279

GND - 52 52 49 71 P14 -

DONE 32 53 53 50 72 R15 -

VCC 33 54 54 51 73 P13 -

PROG 34 55 55 52 74 R14 -

54. I/O (D7) 35 56 56 53 75 T16 288

55. GCK3 (I/O) 36 57 57 54 76 T15 291

56. I/O (D6) 37 58 58 55 79 T14 300

57. I/O - - 59 56 80 T13 303

GND - - - - 81 P11 -

58. I/O (D5) 38 59 60 57 84 T10 306

59. I/O (CS0) - 60 61 58 85 P10 312

60. I/O - - 62 59 86 R10 315

61. I/O - - 63 60 87 T9 318

62. I/O (D4) 39 61 64 61 88 R9 324

63. I/O - 62 65 62 89 P9 327

VCC 40 63 66 63 90 R8 -

GND 41 64 67 64 91 P8 -

64. I/O (D3) 42 65 68 65 92 T8 336

65. I/O (RS) 43 66 69 66 93 T7 339

66. I/O - - 70 67 94 T6 342

67. I/O - - - - 95 R7 348

68. I/O (D2) 44 67 71 68 96 P7 351

69. I/O - 68 72 69 97 T5 360

GND - - - - 100 P6 -

70. I/O (D1) 45 69 73 70 101 T3 363

71. I/O 
(RCLK-BUSY/RDY)

- 70 74 71 102 P5 366

72. I/O (D0, DIN) 46 71 75 72 105 P4 372

73. I/O (DOUT) 47 72 76 73 106 T2 375

Pin Description VQ64* PC84 PQ100 VQ100 TQ144 PG156 Boundary Scan Order
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Additional No Connect (N.C.) Connections for PQ160 Package 

Notes: Boundary Scan Bit 0 = TDO.T
Boundary Scan Bit 1 = TDO.O
Boundary Scan Bit 1056 = BSCAN.UPD

99. I/O 68 72 69 97 T5 107 486

100. I/O - - - 98 R6 108 492

101. I/O - - - 99 T4 109 495

GND - - - 100 P6 110 -

102. I/O (D1) 69 73 70 101 T3 113 498

103. I/O 
(RCLK-BUSY/RDY)

70 74 71 102 P5 114 504

104. I/O - - - 103 R4 115 507

105. I/O - - - 104 R3 116 510

106. I/O (D0, DIN) 71 75 72 105 P4 117 516

107. I/O (DOUT) 72 76 73 106 T2 118 519

CCLK 73 77 74 107 R2 119 -

VCC 74 78 75 108 P3 120 -

108. I/O (TDO) 75 79 76 109 T1 121 0

GND 76 80 77 110 N3 122 -

109. I/O (A0, WS) 77 81 78 111 R1 123 9

110. GCK4 (A1, I/O) 78 82 79 112 P2 124 15

111. I/O - - - 113 N2 125 18

112. I/O - - - 114 M3 126 21

113. I/O (A2, CS1) 79 83 80 115 P1 127 27

114. I/O (A3) 80 84 81 116 N1 128 30

115. I/O - - - 117 M2 129 33

116. I/O - - - - M1 130 39

GND - - - 118 L3 131 -

117. I/O - - - 119 L2 132 42

118. I/O - - - 120 L1 133 45

119. I/O (A4) 81 85 82 121 K3 134 51

120. I/O (A5) 82 86 83 122 K2 135 54

121. I/O - 87 84 123 K1 137 57

122. I/O - 88 85 124 J1 138 63

123. I/O (A6) 83 89 86 125 J2 139 66

124. I/O (A7) 84 90 87 126 J3 140 69

GND 1 91 88 127 H2 141 -

PQ160
8 30 89 111 136

9 31 90 112

Pin Description PC84 PQ100 VQ100 TQ144 PG156 PQ160 Boundary Scan Order
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Pin Locations for XC5206 Devices
The following table may contain pinout information for unsupported device/package combinations. Please see the
availability charts elsewhere in the XC5200 Series data sheet for availability information.

Pin Description PC84 PQ100 VQ100 TQ144 PQ160 TQ176 PG191 PQ208 Boundary Scan Order

VCC 2 92 89 128 142 155 J4 183 -

1. I/O (A8) 3 93 90 129 143 156 J3 184 87

2. I/O (A9) 4 94 91 130 144 157 J2 185 90

3. I/O - 95 92 131 145 158 J1 186 93

4. I/O - 96 93 132 146 159 H1 187 99

5. I/O - - - - - 160 H2 188 102

6. I/O - - - - - 161 H3 189 105

7. I/O (A10) 5 97 94 133 147 162 G1 190 111

8. I/O (A11) 6 98 95 134 148 163 G2 191 114

9. I/O - - - 135 149 164 F1 192 117

10. I/O - - - 136 150 165 E1 193 123

GND - - - 137 151 166 G3 194 -

11. I/O - - - - 152 168 C1 197 126

12. I/O - - - - 153 169 E2 198 129

13. I/O (A12) 7 99 96 138 154 170 F3 199 138

14. I/O (A13) 8 100 97 139 155 171 D2 200 141

15. I/O - - - 140 156 172 B1 201 150

16. I/O - - - 141 157 173 E3 202 153

17. I/O (A14) 9 1 98 142 158 174 C2 203 162

18. I/O (A15) 10 2 99 143 159 175 B2 204 165

VCC 11 3 100 144 160 176 D3 205 -

GND 12 4 1 1 1 1 D4 2 -

19. GCK1 (A16, I/O) 13 5 2 2 2 2 C3 4 174

20. I/O (A17) 14 6 3 3 3 3 C4 5 177

21. I/O - - - 4 4 4 B3 6 183

22. I/O - - - 5 5 5 C5 7 186

23. I/O (TDI) 15 7 4 6 6 6 A2 8 189

24. I/O (TCK) 16 8 5 7 7 7 B4 9 195

25. I/O - - - - 8 8 C6 10 198

26. I/O - - - - 9 9 A3 11 201

GND - - - 8 10 10 C7 14 -

27. I/O - - - 9 11 11 A4 15 207

28. I/O - - - 10 12 12 A5 16 210

29. I/O (TMS) 17 9 6 11 13 13 B7 17 213

30. I/O 18 10 7 12 14 14 A6 18 219

31. I/O - - - - - 15 C8 19 222

32. I/O - - - - - 16 A7 20 225

33. I/O - - - 13 15 17 B8 21 234

34. I/O - 11 8 14 16 18 A8 22 237

35. I/O 19 12 9 15 17 19 B9 23 246

36. I/O 20 13 10 16 18 20 C9 24 249

GND 21 14 11 17 19 21 D9 25 -

VCC 22 15 12 18 20 22 D10 26 -

37. I/O 23 16 13 19 21 23 C10 27 255

38. I/O 24 17 14 20 22 24 B10 28 258

39. I/O - 18 15 21 23 25 A9 29 261

40. I/O - - - 22 24 26 A10 30 267

41. I/O - - - - - 27 A11 31 270
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100. I/O - - - F17 - AE22 558

101. I/O - - - G16 - AF23 564

102. I/O 49 63 69 D19 K7 AD20 567

103. I/O 50 64 70 E18 M5 AE21 570

104. I/O - 65 71 D20 R4 AF21 576

105. I/O - 66 72 G17 N5 AC19 579

106. I/O - - 73 F18 P5 AD19 582

107. I/O - - 74 H16 L6 AE20 588

108. I/O - - - E19 - AF20 591

109. I/O - - - F19 - AC18 594

GND 51 67 75 E20 GND* GND* -

110. I/O 52 68 76 H17 R5 AD18 600

111. I/O 53 69 77 G18 M6 AE19 603

112. I/O 54 70 78 G19 N6 AC17 606

113. I/O 55 71 79 H18 P6 AD17 612

VCC - - 80 F20 VCC* VCC* -

114. I/O - 72 81 J16 R6 AE17 615

115. I/O - 73 82 G20 M7 AE16 618

116. I/O - - - H20 - AF16 624

117. I/O - - - J18 - AC15 627

118. I/O - - 84 J19 N7 AD15 630

119. I/O - - 85 K16 P7 AE15 636

120. I/O 56 74 86 J20 R7 AF15 639

121. I/O 57 75 87 K17 L7 AD14 642

122. I/O 58 76 88 K18 N8 AE14 648

123. I/O (ERR, INIT) 59 77 89 K19 P8 AF14 651

VCC 60 78 90 L20 VCC* VCC* -

GND 61 79 91 K20 GND* GND* -

124. I/O 62 80 92 L19 L8 AE13 660

125. I/O 63 81 93 L18 P9 AC13 663

126. I/O 64 82 94 L16 R9 AD13 672

127. I/O 65 83 95 L17 N9 AF12 675

128. I/O - 84 96 M20 M9 AE12 678

129. I/O - 85 97 M19 L9 AD12 684

130. I/O - - - N20 - AC12 687

131. I/O - - - M18 - AF11 690

132. I/O - - 99 N19 R10 AE11 696

133. I/O - - 100 P20 P10 AD11 699

VCC - - 101 T20 VCC* VCC* -

134. I/O 66 86 102 N18 N10 AE9 702

135. I/O 67 87 103 P19 K9 AD9 708

136. I/O 68 88 104 N17 R11 AC10 711

137. I/O 69 89 105 R19 P11 AF7 714

GND 70 90 106 R20 GND* GND* -

138. I/O - - - N16 - AE8 720

139. I/O - - - P18 - AD8 723

140. I/O - - 107 U20 M10 AC9 726

141. I/O - - 108 P17 N11 AF6 732

142. I/O - 91 109 T19 R12 AE7 735

143. I/O - 92 110 R18 L10 AD7 738

144. I/O 71 93 111 P16 P12 AE6 744

145. I/O 72 94 112 V20 M11 AE5 747

Pin Description PQ160 HQ208 HQ240 PG299 BG225 BG352 Boundary Scan Order
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Product Obsolete or Under Obsolescence
Revisions
Version Description

12/97 Rev 5.0 added -3, -4 specification

7/98 Rev 5.1 added Spartan family to comparison, removed HQ304

11/98 Rev 5.2 All specifications made final.
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