
E·XFL

AMD Xilinx - XC5206-5PQ160C Datasheet

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Details	
Product Status	Obsolete
Number of LABs/CLBs	196
Number of Logic Elements/Cells	784
Total RAM Bits	-
Number of I/O	133
Number of Gates	10000
Voltage - Supply	4.75V ~ 5.25V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	160-BQFP
Supplier Device Package	160-PQFP (28x28)
Purchase URL	https://www.e-xfl.com/product-detail/xilinx/xc5206-5pq160c

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

XILINX[®]

XC5200 Series Field Programmable Gate Arrays

XC3000 family: XC5200 devices support an additional programming mode: Peripheral Synchronous.

XC3000 family: The XC5200 family does not support Power-down, but offers a Global 3-state input that does not reset any flip-flops.

XC3000 family: The XC5200 family does not provide an on-chip crystal oscillator amplifier, but it does provide an internal oscillator from which a variety of frequencies up to 12 MHz are available.

Architectural Overview

Figure 1 presents a simplified, conceptual overview of the XC5200 architecture. Similar to conventional FPGAs, the XC5200 family consists of programmable IOBs, programmable logic blocks, and programmable interconnect. Unlike other FPGAs, however, the logic and local routing resources of the XC5200 family are combined in flexible VersaBlocks (Figure 2). General-purpose routing connects to the VersaBlock through the General Routing Matrix (GRM).

VersaBlock: Abundant Local Routing Plus Versatile Logic

The basic logic element in each VersaBlock structure is the Logic Cell, shown in Figure 3. Each LC contains a 4-input function generator (F), a storage device (FD), and control logic. There are five independent inputs and three outputs to each LC. The independence of the inputs and outputs allows the software to maximize the resource utilization within each LC. Each Logic Cell also contains a direct feedthrough path that does not sacrifice the use of either the function generator or the register; this feature is a first for FPGAs. The storage device is configurable as either a D flip-flop or a latch. The control logic consists of carry logic for fast implementation of arithmetic functions, which can also be configured as a cascade chain allowing decode of very wide input functions.

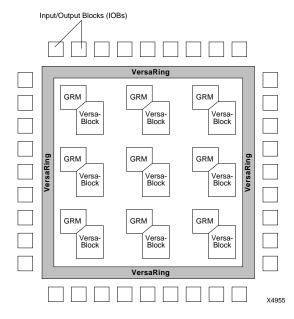


Figure 1: XC5200 Architectural Overview

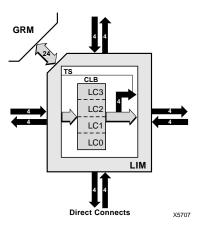


Figure 2: VersaBlock

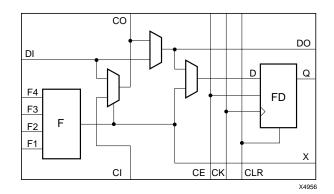
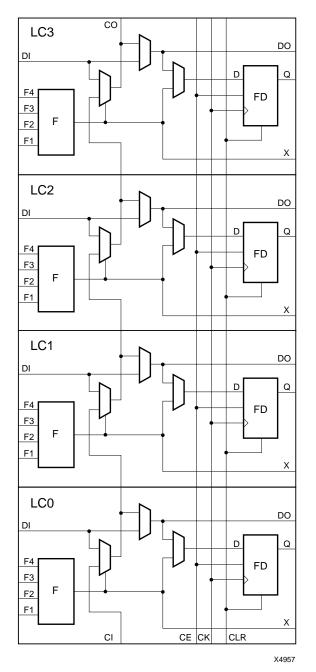



Figure 3: XC5200 Logic Cell (Four LCs per CLB)

The XC5200 CLB consists of four LCs, as shown in Figure 4. Each CLB has 20 independent inputs and 12 independent outputs. The top and bottom pairs of LCs can be configured to implement 5-input functions. The challenge of FPGA implementation software has always been to maximize the usage of logic resources. The XC5200 family addresses this issue by surrounding each CLB with two types of local interconnect — the Local Interconnect Matrix (LIM) and direct connects. These two interconnect resources, combined with the CLB, form the VersaBlock, represented in Figure 2.

The LIM provides 100% connectivity of the inputs and outputs of each LC in a given CLB. The benefit of the LIM is that no general routing resources are required to connect feedback paths within a CLB. The LIM connects to the GRM via 24 bidirectional nodes.

The direct connects allow immediate connections to neighboring CLBs, once again without using any of the general interconnect. These two layers of local routing resource improve the granularity of the architecture, effectively making the XC5200 family a "sea of logic cells." Each Versa-Block has four 3-state buffers that share a common enable line and directly drive horizontal and vertical Lonalines, creating robust on-chip bussing capability. The VersaBlock allows fast, local implementation of logic functions, effectively implementing user designs in a hierarchical fashion. These resources also minimize local routing congestion and improve the efficiency of the general interconnect, which is used for connecting larger groups of logic. It is this combination of both fine-grain and coarse-grain architecture attributes that maximize logic utilization in the XC5200 family. This symmetrical structure takes full advantage of the third metal layer, freeing the placement software to pack user logic optimally with minimal routing restrictions.

VersaRing I/O Interface

The interface between the IOBs and core logic has been redesigned in the XC5200 family. The IOBs are completely decoupled from the core logic. The XC5200 IOBs contain dedicated boundary-scan logic for added board-level testability, but do not include input or output registers. This approach allows a maximum number of IOBs to be placed around the device, improving the I/O-to-gate ratio and decreasing the cost per I/O. A "freeway" of interconnect cells surrounding the device forms the VersaRing, which provides connections from the IOBs to the internal logic. These incremental routing resources provide abundant connections from each IOB to the nearest VersaBlock, in addition to Longline connections surrounding the device. The VersaRing eliminates the historic trade-off between high logic utilization and pin placement flexibility. These incremental edge resources give users increased flexibility in preassigning (i.e., locking) I/O pins before completing their logic designs. This ability accelerates time-to-market, since PCBs and other system components can be manufactured concurrent with the logic design.

General Routing Matrix

The GRM is functionally similar to the switch matrices found in other architectures, but it is novel in its tight coupling to the logic resources contained in the VersaBlocks. Advanced simulation tools were used during the development of the XC5200 architecture to determine the optimal level of routing resources required. The XC5200 family contains six levels of interconnect hierarchy — a series of

segments span the width and height of the chip, respectively.

Two low-skew horizontal and vertical unidirectional global-line segments span each row and column of the chip, respectively.

Single- and Double-Length Lines

The single- and double-length bidirectional line segments make up the bulk of the routing channels. The double-length lines hop across every other CLB to reduce the propagation delays in speed-critical nets. Regenerating the signal strength is recommended after traversing three or four such segments. Xilinx place-and-route software automatically connects buffers in the path of the signal as necessary. Single- and double-length lines cannot drive onto Longlines and global lines; Longlines and global lines can, however, drive onto single- and double-length lines. As a general rule, Longline and global-line connections to the general routing matrix are unidirectional, with the signal direction from these lines toward the routing matrix.

Longlines

Longlines are used for high-fan-out signals, 3-state busses, low-skew nets, and faraway destinations. Row and column splitter PIPs in the middle of the array effectively double the total number of Longlines by electrically dividing them into two separated half-lines. Longlines are driven by the 3-state buffers in each CLB, and are driven by similar buffers at the periphery of the array from the VersaRing I/O Interface.

Bus-oriented designs are easily implemented by using Longlines in conjunction with the 3-state buffers in the CLB and in the VersaRing. Additionally, weak keeper cells at the periphery retain the last valid logic level on the Longlines when all buffers are in 3-state mode.

Longlines connect to the single-length or double-length lines, or to the logic inside the CLB, through the General Routing Matrix. The only manner in which a Longline can be driven is through the four 3-state buffers; therefore, a Longline-to-Longline or single-line-to-Longline connection through PIPs in the General Routing Matrix is not possible. Again, as a general rule, long- and global-line connections to the General Routing Matrix are unidirectional, with the signal direction from these lines toward the routing matrix.

The XC5200 family has no pull-ups on the ends of the Longlines sourced by TBUFs, unlike the XC4000 Series. Consequently, wired functions (i.e., WAND and WORAND) and wide multiplexing functions requiring pull-ups for undefined states (i.e., bus applications) must be implemented in a different way. In the case of the wired functions, the same functionality can be achieved by taking advantage of the carry/cascade logic described above, implementing a wide logic function in place of the wired function. In the case of 3-state bus applications, the user must insure that all states of the multiplexing function are defined. This process is as simple as adding an additional TBUF to drive the bus High when the previously undefined states are activated.

Global Lines

Global buffers in Xilinx FPGAs are special buffers that drive a dedicated routing network called Global Lines, as shown in Figure 16. This network is intended for high-fanout clocks or other control signals, to maximize speed and minimize skewing while distributing the signal to many loads.

The XC5200 family has a total of four global buffers (BUFG symbol in the library), each with its own dedicated routing channel. Two are distributed vertically and two horizontally throughout the FPGA.

The global lines provide direct input only to the CLB clock pins. The global lines also connect to the General Routing Matrix to provide access from these lines to the function generators and other control signals.

Four clock input pads at the corners of the chip, as shown in Figure 16, provide a high-speed, low-skew clock network to each of the four global-line buffers. In addition to the dedicated pad, the global lines can be sourced by internal logic. PIPs from several routing channels within the VersaRing can also be configured to drive the global-line buffers.

Details of all the programmable interconnect for a CLB is shown in Figure 17.

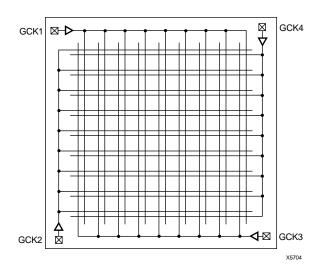


Figure 16: Global Lines

XC5200-Series devices can also be configured through the boundary scan logic. See XAPP 017 for more information.

Data Registers

The primary data register is the boundary scan register. For each IOB pin in the FPGA, bonded or not, it includes three bits for In, Out and 3-State Control. Non-IOB pins have appropriate partial bit population for In or Out only. PROGRAM, CCLK and DONE are not included in the boundary scan register. Each EXTEST CAPTURE-DR state captures all In, Out, and 3-State pins.

The data register also includes the following non-pin bits: TDO.T, and TDO.O, which are always bits 0 and 1 of the data register, respectively, and BSCANT.UPD, which is always the last bit of the data register. These three boundary scan bits are special-purpose Xilinx test signals.

The other standard data register is the single flip-flop BYPASS register. It synchronizes data being passed through the FPGA to the next downstream boundary scan device.

The FPGA provides two additional data registers that can be specified using the BSCAN macro. The FPGA provides two user pins (BSCAN.SEL1 and BSCAN.SEL2) which are the decodes of two user instructions, USER1 and USER2. For these instructions, two corresponding pins (BSCAN.TDO1 and BSCAN.TDO2) allow user scan data to be shifted out on TDO. The data register clock (BSCAN.DRCK) is available for control of test logic which the user may wish to implement with CLBs. The NAND of TCK and RUN-TEST-IDLE is also provided (BSCAN.IDLE).

Instruction Set

The XC5200-Series boundary scan instruction set also includes instructions to configure the device and read back the configuration data. The instruction set is coded as shown in Table 7.

Instr I	ruction 1 IC		Test Selected	TDO Source	I/O Data Source
0	0	0	EXTEST	DR	DR
0	0	1	SAMPLE/PR ELOAD	DR	Pin/Logic
0	1	0	USER 1	BSCAN. TDO1	User Logic
0	1	1	USER 2	BSCAN. TDO2	User Logic
1	0	0	READBACK	Readback Data	Pin/Logic
1	0	1	CONFIGURE	DOUT	Disabled
1	1	0	Reserved	—	_
1	1	1	BYPASS	Bypass Register	—

Table 7: Boundary Scan Instructions

Bit Sequence

The bit sequence within each IOB is: 3-State, Out, In. The data-register cells for the TAP pins TMS, TCK, and TDI have an OR-gate that permanently disables the output buffer if boundary-scan operation is selected. Consequently, it is impossible for the outputs in IOBs used by TAP inputs to conflict with TAP operation. TAP data is taken directly from the pin, and cannot be overwritten by injected boundary-scan data.

The primary global clock inputs (PGCK1-PGCK4) are taken directly from the pins, and cannot be overwritten with boundary-scan data. However, if necessary, it is possible to drive the clock input from boundary scan. The external clock source is 3-stated, and the clock net is driven with boundary scan data through the output driver in the clock-pad IOB. If the clock-pad IOBs are used for non-clock signals, the data may be overwritten normally.

Pull-up and pull-down resistors remain active during boundary scan. Before and during configuration, all pins are pulled up. After configuration, the choice of internal pull-up or pull-down resistor must be taken into account when designing test vectors to detect open-circuit PC traces.

From a cavity-up view of the chip (as shown in XDE or Epic), starting in the upper right chip corner, the boundary scan data-register bits are ordered as shown in Table 8. The device-specific pinout tables for the XC5200 Series include the boundary scan locations for each IOB pin.

Table 8: Boundary Scan Bit Sequence

Bit Position	I/O Pad Location
Bit 0 (TDO)	Top-edge I/O pads (right to left)
Bit 1	
	Left-edge I/O pads (top to bottom)
	Bottom-edge I/O pads (left to right)
	Right-edge I/O pads (bottom to top)
Bit N (TDI)	BSCANT.UPD

BSDL (Boundary Scan Description Language) files for XC5200-Series devices are available on the Xilinx web site in the File Download area.

Including Boundary Scan

If boundary scan is only to be used during configuration, no special elements need be included in the schematic or HDL code. In this case, the special boundary scan pins TDI, TMS, TCK and TDO can be used for user functions after configuration.

To indicate that boundary scan remain enabled after configuration, include the BSCAN library symbol and connect pad symbols to the TDI, TMS, TCK and TDO pins, as shown in Figure 20.

tions During Configuration" on page 124, in the "Configuration Timing" section.

Table 9: Pin Descriptions

Pin Name Permanently I	I/O During Config. Dedicated	I/O After Config. I Pins	Pin Description
VCC	I	1	Five or more (depending on package) connections to the nominal +5 V supply voltage. All must be connected, and each must be decoupled with a 0.01 - 0.1 μ F capacitor to Ground.
GND	I	I	Four or more (depending on package type) connections to Ground. All must be connected.
CCLK	l or O	I	During configuration, Configuration Clock (CCLK) is an output in Master modes or Asyn- chronous Peripheral mode, but is an input in Slave mode, Synchronous Peripheral mode, and Express mode. After configuration, CCLK has a weak pull-up resistor and can be selected as the Readback Clock. There is no CCLK High time restriction on XC5200-Series devices, except during Readback. See "Violating the Maximum High and Low Time Specification for the Readback Clock" on page 113 for an explanation of this exception.
DONE	I/O	0	DONE is a bidirectional signal with an optional internal pull-up resistor. As an output, it indicates the completion of the configuration process. As an input, a Low level on DONE can be configured to delay the global logic initialization and the enabling of outputs. The exact timing, the clock source for the Low-to-High transition, and the optional pull-up resistor are selected as options in the program that creates the configuration bit-stream. The resistor is included by default.
PROGRAM	I	I	PROGRAM is an active Low input that forces the FPGA to clear its configuration mem- ory. It is used to initiate a configuration cycle. When PROGRAM goes High, the FPGA executes a complete clear cycle, before it goes into a WAIT state and releases INIT. The PROGRAM pin has an optional weak pull-up after configuration.
User I/O Pins	That Can	Have Sp	ecial Functions
RDY/BUSY	0	I/O	During Peripheral mode configuration, this pin indicates when it is appropriate to write another byte of data into the FPGA. The same status is also available on D7 in Asyn- chronous Peripheral mode, if a read operation is performed when the device is selected. After configuration, RDY/BUSY is a user-programmable I/O pin. RDY/BUSY is pulled High with a high-impedance pull-up prior to INIT going High.
RCLK	0	I/O	During Master Parallel configuration, each change on the A0-A17 outputs is preceded by a rising edge on RCLK, a redundant output signal. RCLK is useful for clocked PROMs. It is rarely used during configuration. After configuration, RCLK is a user-pro- grammable I/O pin.
M0, M1, M2	I	I/O	As Mode inputs, these pins are sampled before the start of configuration to determine the configuration mode to be used. After configuration, M0, M1, and M2 become user-programmable I/O. During configuration, these pins have weak pull-up resistors. For the most popular configuration mode, Slave Serial, the mode pins can thus be left unconnected. A pull-down resistor value of 3.3 k Ω is recommended for other modes.
TDO	0	0	If boundary scan is used, this pin is the Test Data Output. If boundary scan is not used, this pin is a 3-state output, after configuration is completed. This pin can be user output only when called out by special schematic definitions. To use this pin, place the library component TDO instead of the usual pad symbol. An output buffer must still be used.

∑XILINX[®]

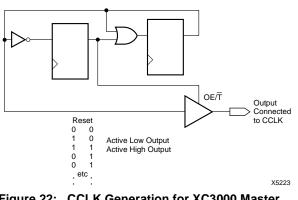


Figure 22: CCLK Generation for XC3000 Master Driving an XC5200-Series Slave

Express Mode

Express mode is similar to Slave Serial mode, except the data is presented in parallel format, and is clocked into the target device a byte at a time rather than a bit at a time. The data is loaded in parallel into eight different columns: it is not internally serialized. Eight bits of configuration data are loaded with every CCLK cycle, therefore this configuration mode runs at eight times the data rate of the other six modes. In this mode the XC5200 family is capable of supporting a CCLK frequency of 10 MHz, which is equivalent to an 80 MHz serial rate, because eight bits of configuration data are being loaded per CCLK cycle. An XC5210 in the Express mode, for instance, can be configured in about 2 ms. The Express mode does not support CRC error checking, but does support constant-field error checking. A length count is not used in Express mode.

In the Express configuration mode, an external signal drives the CCLK input(s). The first byte of parallel configuration data must be available at the D inputs of the FPGA devices a short set-up time before the second rising CCLK edge. Subsequent data bytes are clocked in on each consecutive rising CCLK edge. See Figure 38 on page 123.

Bitstream generation currently generates a bitstream sufficient to program in all configuration modes except Express. Extra CCLK cycles are necessary to complete the configuration, since in this mode data is read at a rate of eight bits per CCLK cycle instead of one bit per cycle. Normally the entire start-up sequence requires a number of bits that is equal to the number of CCLK cycles needed. An additional five CCLKs (equivalent to 40 extra bits) will guarantee completion of configuration, regardless of the start-up options chosen.

Multiple slave devices with identical configurations can be wired with parallel D0-D7 inputs. In this way, multiple devices can be configured simultaneously.

Pseudo Daisy Chain

Multiple devices with different configurations can be connected together in a pseudo daisy chain, provided that all of the devices are in Express mode. A single combined bitstream is used to configure the chain of Express mode devices, but the input data bus must drive D0-D7 of each device. Tie High the CS1 pin of the first device to be configured, or leave it floating in the XC5200 since it has an internal pull-up. Connect the DOUT pin of each FPGA to the CS1 pin of the next device in the chain. The D0-D7 inputs are wired to each device in parallel. The DONE pins are wired together, with one or more internal DONE pull-ups activated. Alternatively, a 4.7 k Ω external resistor can be used, if desired. (See Figure 37 on page 122.) CCLK pins are tied together.

The requirement that all DONE pins in a daisy chain be wired together applies only to Express mode, and only if all devices in the chain are to become active simultaneously. All devices in Express mode are synchronized to the DONE pin. User I/O for each device become active after the DONE pin for that device goes High. (The exact timing is determined by options to the bitstream generation software.) Since the DONE pin is open-drain and does not drive a High value, tying the DONE pins of all devices together prevents all devices in the chain from going High until the last device in the chain has completed its configuration cycle.

The status pin DOUT is pulled LOW two internal-oscillator cycles (nominally 1 MHz) after INIT is recognized as High, and remains Low until the device's configuration memory is full. Then DOUT is pulled High to signal the next device in the chain to accept the configuration data on the D7-D0 bus. All devices receive and recognize the six bytes of preamble and length count, irrespective of the level on CS1; but subsequent frame data is accepted only when CS1 is High and the device's configuration memory is not already full.

Setting CCLK Frequency

For Master modes, CCLK can be generated in one of three frequencies. In the default slow mode, the frequency is nominally 1 MHz. In fast CCLK mode, the frequency is nominally 12 MHz. In medium CCLK mode, the frequency is nominally 6 MHz. The frequency range is -50% to +50%. The frequency is selected by an option when running the bitstream generation software. If an XC5200-Series Master is driving an XC3000- or XC2000-family slave, slow CCLK mode must be used. Slow mode is the default.

Table 11: XC5200 Bitstream Format

Data Type	Value	Occurrences
Fill Byte	11111111	Once per bit-
Preamble	11110010	stream
Length Counter	COUNT(23:0)	
Fill Byte	11111111	

XC5200 Series Field Programmable Gate Arrays

Note that in XC5200-Series devices, configuration data is *not* inverted with respect to configuration as it is in XC2000 and XC3000 families.

Readback of Express mode bitstreams results in data that does not resemble the original bitstream, because the bitstream format differs from other modes.

XC5200-Series Readback does not use any dedicated pins, but uses four internal nets (RDBK.TRIG, RDBK.DATA, RDBK.RIP and RDBK.CLK) that can be routed to any IOB. To access the internal Readback signals, place the READBACK library symbol and attach the appropriate pad symbols, as shown in Figure 27.

After Readback has been initiated by a Low-to-High transition on RDBK.TRIG, the RDBK.RIP (Read In Progress) output goes High on the next rising edge of RDBK.CLK. Subsequent rising edges of this clock shift out Readback data on the RDBK.DATA net.

Readback data does not include the preamble, but starts with five dummy bits (all High) followed by the Start bit (Low) of the first frame. The first two data bits of the first frame are always High.

Each frame ends with four error check bits. They are read back as High. The last seven bits of the last frame are also read back as High. An additional Start bit (Low) and an 11-bit Cyclic Redundancy Check (CRC) signature follow, before RDBK.RIP returns Low.

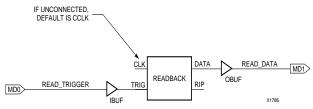


Figure 27: Readback Schematic Example

Readback Options

Readback options are: Read Capture, Read Abort, and Clock Select. They are set with the bitstream generation software.

Read Capture

When the Read Capture option is selected, the readback data stream includes sampled values of CLB and IOB signals. The rising edge of RDBK.TRIG latches the inverted values of the CLB outputs and the IOB output and input signals. Note that while the bits describing configuration (interconnect and function generators) are *not* inverted, the CLB and IOB output signals *are* inverted.

When the Read Capture option is not selected, the values of the capture bits reflect the configuration data originally written to those memory locations. The readback signals are located in the lower-left corner of the device.

Read Abort

When the Read Abort option is selected, a High-to-Low transition on RDBK.TRIG terminates the readback operation and prepares the logic to accept another trigger.

After an aborted readback, additional clocks (up to one readback clock per configuration frame) may be required to re-initialize the control logic. The status of readback is indicated by the output control net RDBK.RIP. RDBK.RIP is High whenever a readback is in progress.

Clock Select

CCLK is the default clock. However, the user can insert another clock on RDBK.CLK. Readback control and data are clocked on rising edges of RDBK.CLK. If readback must be inhibited for security reasons, the readback control nets are simply not connected.

Violating the Maximum High and Low Time Specification for the Readback Clock

The readback clock has a maximum High and Low time specification. In some cases, this specification cannot be met. For example, if a processor is controlling readback, an interrupt may force it to stop in the middle of a readback. This necessitates stopping the clock, and thus violating the specification.

The specification is mandatory only on clocking data at the end of a frame prior to the next start bit. The transfer mechanism will load the data to a shift register during the last six clock cycles of the frame, prior to the start bit of the following frame. This loading process is dynamic, and is the source of the maximum High and Low time requirements.

Therefore, the specification only applies to the six clock cycles prior to and including any start bit, including the clocks before the first start bit in the readback data stream. At other times, the frame data is already in the register and the register is not dynamic. Thus, it can be shifted out just like a regular shift register.

The user must precisely calculate the location of the readback data relative to the frame. The system must keep track of the position within a data frame, and disable interrupts before frame boundaries. Frame lengths and data formats are listed in Table 11 and Table 12.

Readback with the XChecker Cable

The XChecker Universal Download/Readback Cable and Logic Probe uses the readback feature for bitstream verification. It can also display selected internal signals on the PC or workstation screen, functioning as a low-cost in-circuit emulator.

XC5200 Series Field Programmable Gate Arrays

TO DIN OF OPTIONAL HIGH DAISY-CHAINED FPGAS or LOW 3.3 K N/C \sim N/C M1 M2 M0 TO CCLK OF OPTIONAL DAISY-CHAINED FPGAS CCLK DOUT NOTE:M0 can be shorted to Ground if not used as I/O. MO M1 M2 A17 XC5200 A16 DOUT DIN VCC Master EPROM Parallel A15 (8K x 8) (OR LARGER) CCLK ≶ X 4.7K A14 XC5200/ USER CONTROL OF HIGHER INIT A13 ORDER PROM ADDRESS BITS XC4000E/EX/ Spartan SLAVE CAN BE USED TO SELECT BETWEEN A12 A12 ALTERNATIVE CONFIGURATIONS A11 A11 PROGRAM A10 A10 PROGRAM A9 A9 DONE INIT \leftrightarrow D7 A8 A8 D6 A7 A7 D7 D5 A6 A6 D6 D4 A5 D5 A5 D3 A4 > A4 D4 D2 A3 D3 A3 D1 A2 D2 A2 D0 A1 A1 D1 A0 D0 A0 ŌE DONE > CE DATA BUS / 8 PROGRAM

Figure 31: Master Parallel Mode Circuit Diagram

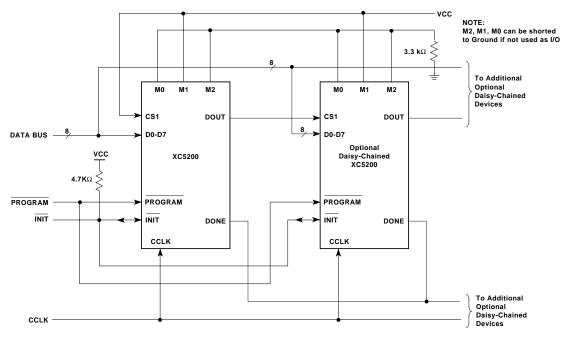
X9004_01

XILINX[®]

Express Mode

Express mode is similar to Slave Serial mode, except that data is processed one byte per CCLK cycle instead of one bit per CCLK cycle. An external source is used to drive CCLK, while byte-wide data is loaded directly into the configuration data shift registers. A CCLK frequency of 10 MHz is equivalent to an 80 MHz serial rate, because eight bits of configuration data are loaded per CCLK cycle. Express mode does not support CRC error checking, but does support constant-field error checking.

In Express mode, an external signal drives the CCLK input of the FPGA device. The first byte of parallel configuration data must be available at the D inputs of the FPGA a short setup time before the second rising CCLK edge. Subsequent data bytes are clocked in on each consecutive rising CCLK edge.


If the first device is configured in Express mode, additional devices may be daisy-chained only if every device in the chain is also configured in Express mode. CCLK pins are tied together and D0-D7 pins are tied together for all devices along the chain. A status signal is passed from DOUT to CS1 of successive devices along the chain. The lead device in the chain has its CS1 input tied High (or floating, since there is an internal pullup). Frame data is accepted only when CS1 is High and the device's configu-

ration memory is not already full. The status <u>pin</u> DOUT is pulled Low two internal-oscillator cycles after INIT is recognized as High, and remains Low until the device's configuration memory is full. DOUT is then pulled High to signal the next device in the chain to accept the configuration data on the D0-D7 bus.

The DONE pins of all devices in the chain should be tied together, with one or more active internal pull-ups. If a large number of devices are included in the chain, deactivate some of the internal pull-ups, since the Low-driving DONE pin of the last device in the chain must sink the current from all pull-ups in the chain. The DONE pull-up is activated by default. It can be deactivated using an option in the bitstream generation software.

XC5200 devices in Express mode are always synchronized to DONE. The device becomes active after DONE goes High. DONE is an open-drain output. With the DONE pins tied together, therefore, the external DONE signal stays low until all devices are configured, then all devices in the daisy chain become active simultaneously. If the DONE pin of a device is left unconnected, the device becomes active as soon as that device has been configured.

Express mode is selected by a <010> on the mode pins (M2, M1, M0).

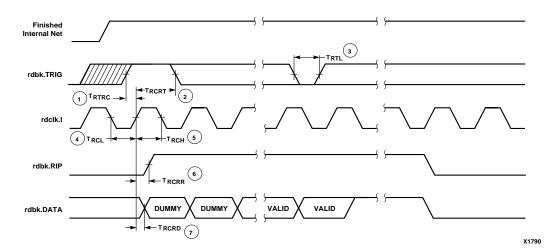

X6611_01

Figure 37: Express Mode Circuit Diagram

XC5200 Program Readback Switching Characteristic Guidelines

Testing of the switching parameters is modeled after testing methods specified by MIL-M-38510/605. All devices are 100% functionally tested. Internal timing parameters are not measured directly. They are derived from benchmark timing patterns that are taken at device introduction, prior to any process improvements.

The following guidelines reflect worst-case values over the recommended operating conditions.

	Description	S	Symbol	Min	Max	Units
rdbk.TRIG	rdbk.TRIG setup to initiate and abort Readback	1	T _{RTRC}	200	-	ns
	rdbk.TRIG hold to initiate and abort Readback	2	T _{RCRT}	50	-	ns
rdclk.1	rdbk.DATA delay	7	T _{RCRD}	-	250	ns
	rdbk.RIP delay	6	T _{RCRR}	-	250	ns
	High time	5	T _{RCH}	250	500	ns
	Low time	4	T _{RCL}	250	500	ns

Note 1: Timing parameters apply to all speed grades.

Note 2: rdbk.TRIG is High prior to Finished, Finished will trigger the first Readback

<7	VII	Ð
<⊾	ЛΙ	

Pin	Description	VQ64*	PC84	PQ100	VQ100	TQ144	PG156	Boundary Scan Order
35.	I/O (HDC)	19	36	31	28	40	D14	204
36.	I/O	-	-	32	29	43	E14	207
37.	I/O (LDC)	20	37	33	30	44	C16	210
	GND	-	-	-	-	45	F14	-
38.	I/O	-	38	34	31	48	F16	216
39.	I/O	21	39	35	32	49	G14	219
40.	I/O	-	-	36	33	50	G15	222
41.	I/O	-	-	37	34	51	G16	228
42.	I/O	22	40	38	35	52	H16	231
43.	I/O (ERR, INIT)	23	41	39	36	53	H15	234
	VCC	24	42	40	37	54	H14	-
	GND	25	43	41	38	55	J14	-
44.	I/O	26	44	42	39	56	J15	240
45.	I/O	27	45	43	40	57	J16	243
46.	I/O	-	-	44	41	58	K16	246
47.	I/O	-	-	45	42	59	K15	252
48.	I/O	28	46	46	43	60	K14	255
49.	I/O	29	47	47	44	61	L16	258
	GND	-	-	-	-	64	L14	-
50.	1/0	-	48	48	45	65	P16	264
51.	I/O	30	49	49	46	66	M14	267
52.	I/O	-	50	50	40	69	N14	276
53.	I/O	31	50	50	48	70	R16	279
55.	GND	-	52	52	49	70	P14	-
	DONE	32	53	53	49 50	71	R15	-
	VCC	32	53 54	53	50	72	P13	-
	PROG	33	55	55	52	73	R14	-
E 4					52			
54.	I/O (D7)	35	56	56		75	T16	288
55.	GCK3 (I/O)	36	57	57	54	76	T15	291
56.	I/O (D6)	37	58	58	55	79	T14	300
57.	I/O	-	-	59	56	80	T13	303
	GND	-	-	-	-	81	P11	-
58.	I/O (D5)	38	59	60	57	84	T10	306
59.	I/O (CS0)	-	60	61	58	85	P10	312
60.	I/O	-	-	62	59	86	R10	315
61.	I/O	-	-	63	60	87	T9	318
62.	I/O (D4)	39	61	64	61	88	R9	324
63.	I/O	-	62	65	62	89	P9	327
	VCC	40	63	66	63	90	R8	-
	GND	41	64	67	64	91	P8	-
64.	I/O (D3)	42	65	68	65	92	Т8	336
65.	I/O (RS)	43	66	69	66	93	T7	339
66.	I/O	-	-	70	67	94	Т6	342
67.	I/O	-	-	-	-	95	R7	348
68.	I/O (D2)	44	67	71	68	96	P7	351
69.	I/O	-	68	72	69	97	T5	360
	GND	-	-	-	-	100	P6	-
70.	I/O (D1)	45	69	73	70	101	T3	363
71.	I/O (RCLK-BUSY/RDY)	-	70	74	71	102	P5	366
72.	I/O (D0, DIN)	46	71	75	72	105	P4	372
73.	I/O (DOUT)	47	72	76	73	106	T2	375

Pin Locations for XC5206 Devices

The following table may contain pinout information for unsupported device/package combinations. Please see the availability charts elsewhere in the XC5200 Series data sheet for availability information.

Pin	Description	PC84	PQ100	VQ100	TQ144	PQ160	TQ176	PG191	PQ208	Boundary Scan Order
	VCC	2	92	89	128	142	155	J4	183	-
1.	I/O (A8)	3	93	90	129	143	156	J3	184	87
2.	I/O (A9)	4	94	91	130	144	157	J2	185	90
3.	I/O	-	95	92	131	145	158	J1	186	93
4.	I/O	-	96	93	132	146	159	H1	187	99
5.	I/O	-	-	-	-	-	160	H2	188	102
6.	I/O	-	-	-	-	-	161	H3	189	105
7.	I/O (A10)	5	97	94	133	147	162	G1	190	111
8.	I/O (A11)	6	98	95	134	148	163	G2	191	114
9.	I/O	-	-	-	135	149	164	F1	192	117
10.	I/O	-	-	-	136	150	165	E1	193	123
	GND	-	-	-	137	151	166	G3	194	-
11.	I/O	-	-	-	-	152	168	C1	197	126
12.	I/O	-	-	-	-	153	169	E2	198	129
13.	I/O (A12)	7	99	96	138	154	170	F3	199	138
14.	I/O (A13)	8	100	97	139	155	171	D2	200	141
15.	I/O	-	-	-	140	156	172	B1	201	150
16.	I/O	-	-	-	141	157	173	E3	202	153
17.	I/O (A14)	9	1	98	142	158	174	C2	203	162
18.	I/O (A15)	10	2	99	143	159	175	B2	204	165
	VCC	11	3	100	144	160	176	D3	205	-
	GND	12	4	1	1	1	1	D4	2	-
19.	GCK1 (A16, I/O)	13	5	2	2	2	2	C3	4	174
20.	I/O (A17)	14	6	3	3	3	3	C4	5	177
21.	I/O	-	-	-	4	4	4	B3	6	183
22.	I/O	-	-	-	5	5	5	C5	7	186
23.	I/O (TDI)	15	7	4	6	6	6	A2	8	189
24.	I/O (TCK)	16	8	5	7	7	7	B4	9	195
25.	I/O	-	-	-	-	8	8	C6	10	198
26.	I/O	-	-	-	-	9	9	A3	11	201
-	GND	_	-	-	8	10	10	C7	14	-
27.	I/O	-	-	-	9	11	11	A4	15	207
28.	I/O	-	-	-	10	12	12	A5	16	210
29.	I/O (TMS)	17	9	6	11	13	13	B7	17	213
30.	I/O	18	10	7	12	14	14	A6	18	219
31.	I/O	-	-	-	-	-	15	C8	19	222
32.	I/O	-	-	-	-	-	16	A7	20	225
33.	I/O	-	-	-	13	15	17	B8	21	234
34.	1/O	-	11	8	10	16	18	A8	22	237
35.	1/O	19	12	9	15	10	19	B9	23	246
36.	1/O	20	12	10	16	18	20	C9	24	249
	GND	20	10	10	10	19	20	D9	25	-
	VCC	22	15	12	18	20	21	D10	26	-
37.	1/O	23	16	12	10	20	22	C10	20	255
38.	1/O	23	10	13	20	21	23	B10	28	258
39.	1/O	-	17	14	20	22	24	A9	28	258
40.	1/O	-	-	-	21	23	25	A9 A10	30	267
40.	1/O						20		31	270
41.	1/0	-	-	-	-	-	21	A11	31	270

Pin	Description	PC84	PQ100	VQ100	TQ144	PQ160	TQ176	PG191	PQ208	Boundary Scan Order
87.	I/O	-	-	-	-	72	80	P17	94	468
88.	I/O	48	48	45	65	73	81	N16	95	471
89.	I/O	49	49	46	66	74	82	T17	96	480
90.	I/O	-	-	-	67	75	83	R17	97	483
91.	I/O	-	-	-	68	76	84	P16	98	486
92.	I/O	50	50	47	69	77	85	U18	99	492
93.	I/O	51	51	48	70	78	86	T16	100	495
	GND	52	52	49	71	79	87	R16	101	-
	DONE	53	53	50	72	80	88	U17	103	-
	VCC	54	54	51	73	81	89	R15	106	-
	PROG	55	55	52	74	82	90	V18	108	-
94.	I/O (D7)	56	56	53	75	83	91	T15	109	504
95.	GCK3 (I/O)	57	57	54	76	84	92	U16	110	507
96.	I/O	-	-	-	77	85	93	T14	111	516
97.	I/O	-	-	-	78	86	94	U15	112	519
98.	I/O (D6)	58	58	55	79	87	95	V17	113	522
99.	I/O	-	59	56	80	88	96	V16	114	528
100.	I/O	-	-	-	-	89	97	T13	115	531
101.	I/O	-	-	-	-	90	98	U14	116	534
	GND	-	-	-	81	91	99	T12	119	-
102.	I/O	-	-	-	82	92	100	U13	120	540
103.	I/O	-	-	-	83	93	101	V13	121	543
104.	I/O (D5)	59	60	57	84	94	102	U12	122	552
105.	I/O (<u>CS0</u>)	60	61	58	85	95	103	V12	123	555
106.	I/O	-	-	-	-	-	104	T11	124	558
107.	I/O	-	-	-	-	-	105	U11	125	564
108.	I/O	-	62	59	86	96	106	V11	126	567
109.	I/O	-	63	60	87	97	107	V10	127	570
110.	I/O (D4)	61	64	61	88	98	108	U10	128	576
111.	I/O	62	65	62	89	99	109	T10	129	579
	VCC	63	66	63	90	100	110	R10	130	-
	GND	64	67	64	91	101	111	R9	131	-
112.	I/O (D3)	65	68	65	92	102	112	T9	132	588
113.	I/O (RS)	66	69	66	93	103	113	U9	133	591
114.	1/O	-	70	67	94	104	114	V9	134	600
115.	I/O	-	-	-	95	105	115	V8	135	603
116.	I/O	-	-	-	-	-	116	U8	136	612
117.	I/O	-	-	-	-	-	117	Т8	137	615
118.	I/O (D2)	67	71	68	96	106	118	V7	138	618
119.	I/O	68	72	69	97	107	119	U7	139	624
120.	I/O	-	-	-	98	108	120	V6	140	627
121.	1/O	-	-	-	99	109	121	U6	141	630
	GND	-	-	-	100	110	122	T7	142	-
122.	I/O	-	-	-	-	111	123	U5	145	636
123.	1/O	-	-	-	-	112	124	T6	146	639
124.	I/O (D1)	69	73	70	101	113	125	V3	147	642
125.	I/O (RCLK-BUSY/RD Y)	70	74	71	102	114	126	V2	148	648
126.	I/O	-	-	-	103	115	127	U4	149	651
127.	I/O	_	-	-	104	116	128	T5	150	654
128.	I/O (D0, DIN)	71	75	72	105	117	129	U3	151	660
129.	I/O (DOUT)	72	76	73	106	118	130	T4	152	663

Pin	Description	PC84	TQ144	PQ160	TQ176	PQ208	PG223	BG225	PQ240	Boundary Scan Order
7.	I/O (A10)	5	133	147	162	190	G1	A6	220	135
8.	I/O (A11)	6	134	148	163	191	G2	B6	221	138
	VCC	-	-	-	-	-	-	VCC*	222	-
9.	I/O	-	-	-	-	-	H4	C6	223	141
10.	I/O	-	-	-	-	-	G4	F7	224	150
11.	I/O	-	135	149	164	192	F1	A5	225	153
12.	I/O	-	136	150	165	193	E1	B5	226	162
	GND	-	137	151	166	194	G3	GND*	227	-
13.	I/O	-	-	-	-	195	F2	D6	228	165
14.	I/O	-	-	-	167	196	D1	C5	229	171
15.	I/O	-	-	152	168	197	C1	A4	230	174
16.	I/O	-	-	153	169	198	E2	E6	231	177
17.	I/O (A12)	7	138	154	170	199	F3	B4	232	183
18.	I/O (A13)	8	139	155	171	200	D2	D5	233	186
19.	I/O	-	-	-	-	-	F4	A3	234	189
20.	I/O	-	-	-	-	-	E4	C4	235	195
21.	I/O	-	140	156	172	201	B1	B3	236	198
22.	1/0	-	141	157	173	202	E3	F6	237	201
23.	I/O (A14)	9	142	158	174	203	C2	A2	238	210
24.	I/O (A15)	10	143	159	175	204	B2	C3	239	213
	VCC	11	144	160	176	205	D3	VCC*	240	-
	GND	12	1	1	1	2	D4	GND*	1	-
25.	GCK1 (A16, I/O)	13	2	2	2	4	C3	D4	2	222
26.	I/O (A17)	14	3	3	3	5	C4	B1	3	225
27.	I/O	-	4	4	4	6	B3	C2	4	231
28.	1/O	-	5	5	5	7	C5	E5	5	234
29.	I/O (TDI)	15	6	6	6	8	A2	D3	6	237
30.	I/O (TCK)	16	7	7	7	9	B4	C1	7	243
31.	I/O	-	-	8	8	10	C6	D2	8	246
32.	I/O	_	-	9	9	10	A3	G6	9	249
33.	I/O		_	-	-	12	B5	E4	10	243
34.	I/O		_	_	_	12	B6	D1	10	258
34.	I/O	-		-		-	D5	E3	11	238
35. 36.	1/O	-	-	-	-	-	D5 D6	E3 E2	12	267
30.	GND		- 8	- 10	- 10	- 14	C7	GND*	13	207
27	I/O	-	9							270
37.	1/O		9 10	11 12	11 12	15	A4	F5 E1	15	270
38.	I/O (TMS)	-	10	12	12	16 17	A5 B7	E1 F4	16	273
39.		17							17	
40.	I/O	18	12	14	14	18	A6	F3	18	282
44	VCC	-	-	-	-	-	-	VCC*	19	-
41.	I/O	-	-	-	-	-	D7	F2	20	285
42.	I/O	-	-	-	-	-	D8	F1	21	291
43.	I/O	-	-	-	15	19	C8	G4	23	294
44.	I/O	-	-	-	16	20	A7	G3	24	297
45.	I/O	-	13	15	17	21	B8	G2	25	306
46.	I/O	-	14	16	18	22	A8	G1	26	309
47.	I/O	19	15	17	19	23	B9	G5	27	318
48.	I/O	20	16	18	20	24	C9	H3	28	321
	GND	21	17	19	21	25	D9	GND*	29	-
	VCC	22	18	20	22	26	D10	VCC*	30	-
49.	I/O	23	19	21	23	27	C10	H4	31	327

Pin	Description	PC84	TQ144	PQ160	TQ176	PQ208	PG223	BG225	PQ240	Boundary Scan Order
50.	I/O	24	20	22	24	28	B10	H5	32	330
51.	I/O	-	21	23	25	29	A9	J2	33	333
52.	I/O	-	22	24	26	30	A10	J1	34	339
53.	I/O	-	-	-	27	31	A11	J3	35	342
54.	I/O	-	-	-	28	32	C11	J4	36	345
55.	I/O	-	-	-	-	-	D11	J5	38	351
56.	I/O	-	-	-	-	-	D12	K1	39	354
	VCC	-	-	-	-	-	-	VCC*	40	-
57.	I/O	25	23	25	29	33	B11	K2	41	357
58.	I/O	26	24	26	30	34	A12	K3	42	363
59.	I/O	-	25	27	31	35	B12	J6	43	366
60.	I/O	-	26	28	32	36	A13	L1	44	369
	GND	-	27	29	33	37	C12	GND*	45	-
61.	1/0	-	-	-	-	-	D13	L2	46	375
62.	1/O	-	-	-	-	-	D13	K4	47	378
63.	I/O		-	-	-	38	B13	L3	47	381
64.	1/O		-	-	-	39	A14	M1	40	387
65.	1/O		-	- 30	- 34	40	A14 A15	K5	49 50	390
65. 66.	1/O	-		30 31	34 35	40	C13	K5 M2	50 51	390
		-	-							
67.	I/O	27	28	32	36	42	B14	L4	52	399
68.	I/O	-	29	33	37	43	A16	N1	53	402
69.	I/O	-	30	34	38	44	B15	M3	54	405
70.	I/O	-	31	35	39	45	C14	N2	55	411
71.	I/O	28	32	36	40	46	A17	K6	56	414
72.	I/O	29	33	37	41	47	B16	P1	57	417
73.	M1 (I/O)	30	34	38	42	48	C15	N3	58	426
	GND	31	35	39	43	49	D15	GND*	59	-
74.	M0 (I/O)	32	36	40	44	50	A18	P2	60	429
	VCC	33	37	41	45	55	D16	VCC*	61	-
75.	M2 (I/O)	34	38	42	46	56	C16	M4	62	432
76.	GCK2 (I/O)	35	39	43	47	57	B17	R2	63	435
77.	I/O (HDC)	36	40	44	48	58	E16	P3	64	444
78.	I/O	-	41	45	49	59	C17	L5	65	447
79.	I/O	-	42	46	50	60	D17	N4	66	450
80.	I/O	-	43	47	51	61	B18	R3	67	456
81.	I/O (LDC)	37	44	48	52	62	E17	P4	68	459
82.	I/O	-	-	49	53	63	F16	K7	69	462
83.	1/0	-	-	50	54	64	C18	M5	70	468
84.	1/O	-	-	-	-	65	D18	R4	71	471
85.	I/O	_	-	-	-	66	F17	N5	72	474
86.	I/O	-	-	_	-	-	E15	P5	72	480
87.	1/O		-	_	-	-	F15	L6	73	480
07.	GND	-	- 45	- 51	- 55	67	G16	GND*	74	- 403
00	I/O		45 46							
88.		-		52	56	68 60	E18	R5	76	486
89.	I/O	-	47	53	57	69 70	F18	M6	77	492
90.	I/O	38	48	54	58	70	G17	N6	78	495
91.	I/O	39	49	55	59	71	G18	P6	79	504
	VCC	-	-	-	-	-	-	VCC*	80	-
92.	I/O	-	-	-	60	72	H16	R6	81	507
93.	I/O	-	-	-	61	73	H17	M7	82	510
94.	I/O	-	-	-	-	-	G15	N7	84	516

XC5200 Series Field Programmable Gate Arrays

Pin	Description	PC84	TQ144	PQ160	TQ176	PQ208	PG223	BG225	PQ240	Boundary Scan Order
180.	I/O	-	-	-	-	-	N4	D11	190	39
181.	I/O	-	117	129	141	167	P2	A12	191	42
182.	I/O	-	-	130	142	168	T1	C11	192	45
183.	I/O	-	-	-	-	169	R1	B11	193	51
184.	I/O	-	-	-	-	170	N2	E10	194	54
	-	-	-	-	-	-	-	GND*		-
	GND	-	118	131	143	171	M3	-	196	-
185.	I/O	-	119	132	144	172	P1	A11	197	57
186.	I/O	-	120	133	145	173	N1	D10	198	66
187.	I/O	-	-	-	-	-	M4	C10	199	69
188.	I/O	-	-	-	-	-	L4	B10	200	75
	VCC	-	-	-	-	-	-	VCC*	201	-
189.	I/O (A4)	81	121	134	146	174	M2	A10	202	78
190.	I/O (A5)	82	122	135	147	175	M1	D9	203	81
191.	I/O	-	-	-	148	176	L3	C9	205	87
192.	I/O	-	-	136	149	177	L2	B9	206	90
193.	I/O	-	123	137	150	178	L1	A9	207	93
194.	I/O	-	124	138	151	179	K1	E9	208	99
195.	I/O (A6)	83	125	139	152	180	K2	C8	209	102
196.	I/O (A7)	84	126	140	153	181	K3	B8	210	105
	GND	1	127	141	154	182	K4	GND*	211	-

Additional No Connect (N.C.) Connections for PQ208 and PQ240 Packages

		PQ208		PQ240			
1	53	105	157	208	22	143	219
3	54	107	158		37	158	
51	102	155	206		83	195	
52	104	156	207		98	204	

Notes: * Pins labeled VCC* are internally bonded to a VCC plane within the BG225 package. The external pins are: B2, D8, H15, R8, B14, R1, H1, and R15.

Pins labeled GND* are internally bonded to a ground plane within the BG225 package. The external pins are: A1, D12, G7, G9, H6, H8, H10, J8, K8, A8, F8, G8, H2, H7, H9, J7, J9, M8.

Boundary Scan Bit 0 = TDO.T Boundary Scan Bit 1 = TDO.O

Boundary Scan Bit 1056 = BSCAN.UPD

Pin Locations for XC5215 Devices

The following table may contain pinout information for unsupported device/package combinations. Please see the availability charts elsewhere in the XC5200 Series data sheet for availability information.

Pin	Description	PQ160	HQ208	HQ240	PG299	BG225	BG352	Boundary Scan Order
	VCC	142	183	212	K1	VCC*	VCC*	-
1.	I/O (A8)	143	184	213	K2	E8	D14	138
2.	I/O (A9)	144	185	214	K3	B7	C14	141
3.	I/O	145	186	215	K5	A7	A15	147
4.	I/O	146	187	216	K4	C7	B15	150
5.	I/O	-	188	217	J1	D7	C15	153
6.	I/O	-	189	218	J2	E7	D15	159
7.	I/O (A10)	147	190	220	H1	A6	A16	162

XC5200 Series Field Programmable Gate Arrays

∑XILINX[®]

Pin	Description	PQ160	HQ208	HQ240	PG299	BG225	BG352	Boundary Scan Order
8.	I/O (A11)	148	191	221	J3	B6	B16	165
9.	I/O	-	-	-	H2	-	C17	171
10.	I/O	-	-	-	G1	-	B18	174
	VCC	-	-	222	E1	VCC*	VCC*	-
11.	I/O	-	-	223	H3	C6	C18	177
12.	I/O	-	-	224	G2	F7	D17	183
13.	I/O	149	192	225	H4	A5	A20	186
14.	I/O	150	193	226	F2	B5	B19	189
	GND	151	194	227	F1	GND*	GND*	-
15.	I/O	-	-	-	H5	-	C19	195
16.	I/O	-	-	-	G3	-	D18	198
17.	I/O	-	195	228	D1	D6	A21	201
18.	I/O	-	196	229	G4	C5	B20	207
19.	I/O	152	197	230	E2	A4	C20	210
20.	I/O	153	198	231	F3	E6	B21	213
21.	I/O (A12)	154	199	232	G5	B4	B21	219
22.	I/O (A13)	155	200	233	C1	D5	C21	213
23.	I/O	-	-	-	F4	-	D20	225
23.	I/O	-	_	_	E3	-	A23	234
25.	I/O	-	-	234	D2	A3	D21	237
25.	I/O		-	234	C2	C4	C22	243
20.	I/O	156	201	235	F5	B3	B24	243
27.	I/O I/O	150	201	230	E4	F6	C23	240
29.	I/O (A14)	158	203	238	D3	A2	D22	258
30.	I/O (A15)	159	204	239	C3	C3	C24	261
	VCC	160	205	240	A2	VCC*	VCC*	-
	GND	1	2	1	B1	GND*	GND*	-
31.	GCK1 (A16, I/O)	2	4	2	D4	D4	D23	270
32.	I/O (A17)	3	5	3	B2	B1	C25	273
33.	I/O	4	6	4	B3	C2	D24	279
34.	I/O	5	7	5	E6	E5	E23	282
35.	I/O (TDI)	6	8	6	D5	D3	C26	285
36.	I/O (TCK)	7	9	7	C4	C1	E24	294
37.	I/O	-	-	-	A3	-	F24	297
38.	I/O	-	-	-	D6	-	E25	303
39.	I/O	8	10	8	E7	D2	D26	306
40.	I/O	9	11	9	B4	G6	G24	309
41.	I/O	-	12	10	C5	E4	F25	315
42.	I/O	-	13	11	A4	D1	F26	318
43.	I/O	-	-	12	D7	E3	H23	321
44.	I/O	-	-	13	C6	E2	H24	327
45.	I/O	-	-	-	E8	-	G25	330
46.	I/O	-	-	-	B5	-	G26	333
	GND	10	14	14	A5	GND*	GND*	-
47.	I/O	11	15	15	B6	F5	J23	339
48.	I/O	12	16	16	D8	E1	J24	342
49.	I/O (TMS)	13	17	10	C7	F4	H25	345
50.	I/O	14	18	18	B7	F3	K23	351
	VCC	-	-	19	A6	VCC*	VCC*	-
51.	I/O	-	-	20	C8	F2	L24	354
51. 52.	1/O			20	E9	F2 F1	K25	354
52. 53.	1/O 1/O	-	-	-	E9 B8	-	L25	357

Pin	Description	PQ160	HQ208	HQ240	PG299	BG225	BG352	Boundary Scan Order
100.	I/O	-	-	-	F17	-	AE22	558
101.	I/O	-	-	-	G16	-	AF23	564
102.	I/O	49	63	69	D19	K7	AD20	567
103.	I/O	50	64	70	E18	M5	AE21	570
104.	I/O	-	65	71	D20	R4	AF21	576
105.	I/O	-	66	72	G17	N5	AC19	579
106.	I/O	-	-	73	F18	P5	AD19	582
107.	I/O	-	-	74	H16	L6	AE20	588
108.	I/O	-	-	-	E19	-	AF20	591
109.	I/O	-	-	-	F19	-	AC18	594
	GND	51	67	75	E20	GND*	GND*	-
110.	I/O	52	68	76	H17	R5	AD18	600
111.	I/O	53	69	77	G18	M6	AE19	603
112.	I/O	54	70	78	G19	N6	AC17	606
113.	I/O	55	71	79	H18	P6	AD17	612
	VCC	-	-	80	F20	VCC*	VCC*	-
114.	1/O	-	72	81	J16	R6	AE17	615
114.	I/O	-	72	82	G20	M7	AE16	618
115.	1/O	-	-	-	H20	-	AE16 AF16	624
117.	1/O			-	J18	-		627
	1/O	-	-				AC15	
118.		-	-	84	J19	N7	AD15	630
119.	I/O	-	-	85	K16	P7	AE15	636
120.	I/O	56	74	86	J20	R7	AF15	639
121.	I/O	57	75	87	K17	L7	AD14	642
122.	I/O	58	76	88	K18	N8	AE14	648
123.	I/O (ERR, INIT)	59	77	89	K19	P8	AF14	651
	VCC	60	78	90	L20	VCC*	VCC*	-
	GND	61	79	91	K20	GND*	GND*	-
124.	I/O	62	80	92	L19	L8	AE13	660
125.	I/O	63	81	93	L18	P9	AC13	663
126.	I/O	64	82	94	L16	R9	AD13	672
127.	I/O	65	83	95	L17	N9	AF12	675
128.	I/O	-	84	96	M20	M9	AE12	678
129.	I/O	-	85	97	M19	L9	AD12	684
130.	I/O	-	-	-	N20	-	AC12	687
131.	I/O	-	-	-	M18	-	AF11	690
132.	I/O	-	-	99	N19	R10	AE11	696
133.	I/O	-	-	100	P20	P10	AD11	699
	VCC	-	-	101	T20	VCC*	VCC*	-
134.	I/O	66	86	102	N18	N10	AE9	702
135.	I/O	67	87	103	P19	K9	AD9	708
136.	I/O	68	88	104	N17	R11	AC10	711
137.	I/O	69	89	105	R19	P11	AF7	714
	GND	70	90	106	R20	GND*	GND*	-
138.	I/O	-	-	-	N16	-	AE8	720
139.	I/O	-	-	-	P18	-	AD8	723
140.	I/O	-	-	107	U20	M10	AC9	726
141.	I/O	-	-	107	P17	N11	AF6	732
142.	I/O		91	109	T19	R12	AF0 AE7	735
142.	1/O	-	91	109	R18	L10	AD7	735
143.	1/O	71	92	110	P16	P12	AD7 AE6	738
144.	"0	71	93	111	V20	M11	AE6 AE5	744

XILINX[®]

XC5200 Series Field Programmable Gate Arrays

Pin	Description	PQ160	HQ208	HQ240	PG299	BG225	BG352	Boundary Scan Order
235.	I/O	-	-	-	M5	-	B11	90
236.	I/O	-	-	-	P1	-	A11	93
237.	I/O (A4)	134	174	202	N1	A10	D12	99
238.	I/O (A5)	135	175	203	M3	D9	C12	102
239.	I/O	-	176	205	M2	C9	B12	105
240.	I/O	136	177	206	L5	B9	A12	111
241.	I/O	137	178	207	M1	A9	C13	114
242.	I/O	138	179	208	L4	E9	B13	117
243.	I/O (A6)	139	180	209	L3	C8	A13	126
244.	I/O (A7)	140	181	210	L2	B8	B14	129
	GND	141	182	211	L1	GND*	GND*	-

Additional No Connect (N.C.) Connections for HQ208 and HQ240 Packages

HQ	HQ208					
206	102	219				
207	104	22				
208	105	37				
1	107	83				
3	155	98				
51	156	143				
52	157	158				
53	158	204				
54	-	-				

Notes: * Pins labeled VCC* are internally bonded to a VCC plane within the BG225 and BG352 packages. The external pins for the BG225 are: B2, D8, H15, R8, B14, R1, H1, and R15. The external pins for the BG352 are: A10, A17, B2, B25, D13, D19, D7, G23, H4, K1, K26, N23, P4, U1, U26, W23, Y4, AC14, AC20, AC8, AE2, AE25, AF10, and AF17. Pins labeled GND* are internally bonded to a ground plane within the BG225 and BG352 packages. The external pins for the BG225 are: A1, D12, G7, G9, H6, H8, H10, J8, K8, A8, F8, G8, H2, H7, H9, J7, J9, M8. The external pins for the BG352 are: A1, A2, A5, A8, A14, A19, A22, A25, A26, B1, B26, E1, E26, H1, H26, N1, P26, W1, W26, AB1, AB26, AE1, AE26, AF1, AF13, AF19, AF2, AF22, AF25, AF26, AF5, AF8.

Boundary Scan Bit 0 = TDO.T Boundary Scan Bit 1 = TDO.O Boundary Scan Bit 1056 = BSCAN.UPD

Revisions

Version	Description
12/97	Rev 5.0 added -3, -4 specification
7/98	Rev 5.1 added Spartan family to comparison, removed HQ304
11/98	Rev 5.2 All specifications made final.