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Understanding Embedded - FPGAs (Field
Programmable Gate Array)

Embedded - FPGAs, or Field Programmable Gate Arrays,
are advanced integrated circuits that offer unparalleled
flexibility and performance for digital systems. Unlike
traditional fixed-function logic devices, FPGAs can be
programmed and reprogrammed to execute a wide array
of logical operations, enabling customized functionality
tailored to specific applications. This reprogrammability
allows developers to iterate designs quickly and implement
complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them
indispensable in numerous fields. In telecommunications,
FPGAs are used for high-speed data processing and
network infrastructure. In the automotive industry, they
support advanced driver-assistance systems (ADAS) and
infotainment solutions. Consumer electronics benefit from
FPGAs in devices requiring high performance and
adaptability, such as smart TVs and gaming consoles.
Industrial automation relies on FPGAs for real-time control
and processing in machinery and robotics. Additionally,
FPGAs play a crucial role in aerospace and defense, where
their reliability and ability to handle complex algorithms
are essential.

Common Subcategories of Embedded -
FPGAs

Within the realm of Embedded - FPGAs, several
subcategories address different needs and applications.
General-purpose FPGAs are the most widely used, offering
a balance of performance and flexibility for a broad range
of applications. High-performance FPGAs are designed for
applications requiring exceptional speed and
computational power, such as data centers and high-
frequency trading systems. Low-power FPGAs cater to
battery-operated and portable devices where energy
efficiency is paramount. Lastly, automotive-grade FPGAs
meet the stringent standards of the automotive industry,
ensuring reliability and performance in vehicle systems.

Types of Embedded - FPGAs

Embedded - FPGAs can be classified into several types
based on their architecture and specific capabilities. SRAM-
based FPGAs are prevalent due to their high speed and
ability to support complex designs, making them suitable
for performance-critical applications. Flash-based FPGAs
offer non-volatile storage, retaining their configuration
without power and enabling faster start-up times. Antifuse-
based FPGAs provide a permanent, one-time
programmable solution, ensuring robust security and
reliability for critical systems. Each type of FPGA brings
distinct advantages, making the choice dependent on the
specific needs of the application.
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Carry Function
The XC5200 family supports a carry-logic feature that
enhances the performance of arithmetic functions such as
counters, adders, etc. A carry multiplexer (CY_MUX) sym-
bol is used to indicate the XC5200 carry logic. This symbol
represents the dedicated 2:1 multiplexer in each LC that
performs the one-bit high-speed carry propagate per logic
cell (four bits per CLB).

While the carry propagate is performed inside the LC, an
adjacent LC must be used to complete the arithmetic func-
tion. Figure 6 represents an example of an adder function.
The carry propagate is performed on the CLB shown,

which also generates the half-sum for the four-bit adder. An
adjacent CLB is responsible for XORing the half-sum with
the corresponding carry-out. Thus an adder or counter
requires two LCs per bit. Notice that the carry chain
requires an initialization stage, which the XC5200 family
accomplishes using the carry initialize (CY_INIT) macro
and one additional LC. The carry chain can propagate ver-
tically up a column of CLBs.

The XC5200 library contains a set of Relationally-Placed
Macros (RPMs) and arithmetic functions designed to take
advantage of the dedicated carry logic. Using and modify-
ing these macros makes it much easier to implement cus-

Figure 6:   XC5200 CY_MUX Used for Adder Carry Propagate
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can also be independently disabled for any flip-flop. CLR is
active High.  It is not invertible within the CLB.

Global Reset 

A separate Global Reset line clears each storage element
during power-up, reconfiguration, or when a dedicated
Reset net is driven active. This global net (GR) does not
compete with other routing resources; it uses a dedicated
distribution network.

GR can be driven from any user-programmable pin as a
global reset input. To use this global net, place an input pad
and input buffer in the schematic or HDL code, driving the
GR pin of the STARTUP symbol. (See Figure 9.) A specific
pin location can be assigned to this input using a LOC
attribute or property, just as with any other user-program-
mable pad. An inverter can optionally be inserted after the
input buffer to invert the sense of the Global Reset signal.
Alternatively, GR can be driven from any internal node.

Using FPGA Flip-Flops and Latches
The abundance of flip-flops in the XC5200 Series invites
pipelined designs. This is a powerful way of increasing per-
formance by breaking the function into smaller subfunc-
tions and executing them in parallel, passing on the results
through pipeline flip-flops. This method should be seriously
considered wherever throughput is more important than
latency. 

To include a CLB flip-flop, place the appropriate library
symbol.  For example, FDCE is a D-type flip-flop with clock
enable and asynchronous clear.  The corresponding latch
symbol is called LDCE.

In XC5200-Series devices, the flip-flops can be used as
registers or shift registers without blocking the function
generators from performing a different, perhaps unrelated
task. This ability increases the functional capacity of the
devices. 

The CLB setup time is specified between the function gen-
erator inputs and the clock input CK.  Therefore, the speci-
fied CLB flip-flop setup time includes the delay through the
function generator.

Three-State Buffers
The XC5200 family has four dedicated Three-State Buffers
(TBUFs, or BUFTs in the schematic library) per CLB (see
Figure 9). The four buffers are individually configurable
through four configuration bits to operate as simple
non-inverting buffers or in 3-state mode. When in 3-state
mode the CLB output enable (TS) control signal drives the
enable to all four buffers. Each TBUF can drive up to two
horizontal and/or two vertical Longlines. These 3-state buff-
ers can be used to implement multiplexed or bidirectional
buses on the horizontal or vertical longlines, saving logic
resources.

The 3-state buffer enable is an active-High 3-state (i.e. an
active-Low enable), as shown in Table 4.

Another 3-state buffer with similar access is located near
each I/O block along the right and left edges of the array.

The longlines driven by the 3-state buffers have a weak
keeper at each end.  This circuit prevents undefined float-
ing levels.  However, it is overridden by any driver. To
ensure the longline goes high when no buffers are on, add
an additional BUFT to drive the output High during all of the
previously undefined states.

Figure 10 shows how to use the 3-state buffers to imple-
ment a multiplexer. The selection is accomplished by the
buffer 3-state signal.

PAD
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CLK DONEIN
Q1Q4
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STARTUP

X9009

Figure 8:   Schematic Symbols for Global Reset

Table 4: Three-State Buffer Functionality
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Figure 9:   XC5200 3-State Buffers
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CLB inputs have several possible sources: the 24 signals
from the GRM, 16 direct connections from neighboring
VersaBlocks, four signals from global, low-skew buffers,
and the four signals from the CLB output multiplexers.
Unlike the output multiplexers, the input multiplexers are
not fully populated; i.e., only a subset of the available sig-
nals can be connected to a given CLB input. The flexibility
of LUT input swapping and LUT mapping compensates for
this limitation. For example, if a 2-input NAND gate is
required, it can be mapped into any of the four LUTs, and
use any two of the four inputs to the LUT.

Direct Connects
The unidirectional direct-connect segments are connected
to the logic input/output pins through the CLB input and out-
put multiplexer arrays, and thus bypass the general routing
matrix altogether. These lines increase the routing channel
utilization, while simultaneously reducing the delay
incurred in speed-critical connections.

The direct connects also provide a high-speed path from
the edge CLBs to the VersaRing input/output buffers, and
thus reduce pin-to-pin set-up time, clock-to-out, and combi-
national propagation delay. Direct connects from the input
buffers to the CLB DI pin (direct flip-flop input) are only
available on the left and right edges of the device. CLB
look-up table inputs and combinatorial/registered outputs
have direct connects to input/output buffers on all four
sides.

The direct connects are ideal for developing customized
RPM cells. Using direct connects improves the macro per-
formance, and leaves the other routing channels intact for
improved routing. Direct connects can also route through a
CLB using one of the four cell-feedthrough paths.

General Routing Matrix
The General Routing Matrix, shown in Figure 15, provides
flexible bidirectional connections to the Local Interconnect

Figure 14:   VersaBlock Details
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segments span the width and height of the chip, 
respectively.

Two low-skew horizontal and vertical unidirectional glo-
bal-line segments span each row and column of the chip,
respectively.

Single- and Double-Length Lines
The single- and double-length bidirectional line segments
make up the bulk of the routing channels. The dou-
ble-length lines hop across every other CLB to reduce the
propagation delays in speed-critical nets. Regenerating the
signal strength is recommended after traversing three or
four such segments. Xilinx place-and-route software auto-
matically connects buffers in the path of the signal as nec-
essary. Single- and double-length lines cannot drive onto
Longlines and global lines; Longlines and global lines can,
however, drive onto single- and double-length lines. As a
general rule, Longline and global-line connections to the
general routing matrix are unidirectional, with the signal
direction from these lines toward the routing matrix.

Longlines
Longlines are used for high-fan-out signals, 3-state busses,
low-skew nets, and faraway destinations. Row and column
splitter PIPs in the middle of the array effectively double the
total number of Longlines by electrically dividing them into
two separated half-lines. Longlines are driven by the
3-state buffers in each CLB, and are driven by similar buff-
ers at the periphery of the array from the VersaRing I/O
Interface.

Bus-oriented designs are easily implemented by using Lon-
glines in conjunction with the 3-state buffers in the CLB and
in the VersaRing. Additionally, weak keeper cells at the
periphery retain the last valid logic level on the Longlines
when all buffers are in 3-state mode.

Longlines connect to the single-length or double-length
lines, or to the logic inside the CLB, through the General
Routing Matrix. The only manner in which a Longline can
be driven is through the four 3-state buffers; therefore, a
Longline-to-Longline or single-line-to-Longline connection
through PIPs in the General Routing Matrix is not possible.
Again, as a general rule, long- and global-line connections
to the General Routing Matrix are unidirectional, with the
signal direction from these lines toward the routing matrix.

The XC5200 family has no pull-ups on the ends of the Lon-
glines sourced by TBUFs, unlike the XC4000 Series. Con-
sequently, wired functions (i.e., WAND and WORAND) and
wide multiplexing functions requiring pull-ups for undefined
states (i.e., bus applications) must be implemented in a dif-
ferent way. In the case of the wired functions, the same
functionality can be achieved by taking advantage of the

carry/cascade logic described above, implementing a wide
logic function in place of the wired function. In the case of
3-state bus applications, the user must insure that all states
of the multiplexing function are defined. This process is as
simple as adding an additional TBUF to drive the bus High
when the previously undefined states are activated.

Global Lines
Global buffers in Xilinx FPGAs are special buffers that drive
a dedicated routing network called Global Lines, as shown
in Figure 16. This network is intended for high-fanout
clocks or other control signals, to maximize speed and min-
imize skewing while distributing the signal to many loads.

The XC5200 family has a total of four global buffers (BUFG
symbol in the library), each with its own dedicated routing
channel. Two are distributed vertically and two horizontally
throughout the FPGA.

The global lines provide direct input only to the CLB clock
pins. The global lines also connect to the General Routing
Matrix to provide access from these lines to the function
generators and other control signals.

Four clock input pads at the corners of the chip, as shown
in Figure 16, provide a high-speed, low-skew clock network
to each of the four global-line buffers. In addition to the ded-
icated pad, the global lines can be sourced by internal
logic. PIPs from several routing channels within the Ver-
saRing can also be configured to drive the global-line buff-
ers.

Details of all the programmable interconnect for a CLB is
shown in Figure 17.

Figure 16:   Global Lines

GCK1 GCK4

GCK3GCK2

X5704
7-96 November 5, 1998 (Version 5.2)



R

XC5200 Series Field Programmable Gate Arrays

Product Obsolete or Under Obsolescence
VersaRing Input/Output Interface
The VersaRing, shown in Figure 18, is positioned between
the core logic and the pad ring; it has all the routing
resources of a VersaBlock without the CLB logic. The Ver-
saRing decouples the core logic from the I/O pads. Each
VersaRing Cell provides up to four pad-cell connections on
one side, and connects directly to the CLB ports on the
other side.

Boundary Scan
The “bed of nails” has been the traditional method of testing
electronic assemblies. This approach has become less
appropriate, due to closer pin spacing and more sophisti-
cated assembly methods like surface-mount technology
and multi-layer boards. The IEEE boundary scan standard
1149.1 was developed to facilitate board-level testing of
electronic assemblies. Design and test engineers can
imbed a standard test logic structure in their device to
achieve high fault coverage for I/O and internal logic. This
structure is easily implemented with a four-pin interface on
any boundary scan-compatible IC. IEEE 1149.1-compatible
devices may be serial daisy-chained together, connected in
parallel, or a combination of the two.

XC5200 devices support all the mandatory boundary-scan
instructions specified in the IEEE standard 1149.1. A Test
Access Port (TAP) and registers are provided that imple-
ment the EXTEST, SAMPLE/PRELOAD, and BYPASS
instructions. The TAP can also support two USERCODE
instructions. When the boundary scan configuration option
is selected, three normal user I/O pins become dedicated
inputs for these functions. Another user output pin
becomes the dedicated boundary scan output.

Boundary-scan operation is independent of individual IOB
configuration and package type. All IOBs are treated as
independently controlled bidirectional pins, including any
unbonded IOBs. Retaining the bidirectional test capability
after configuration provides flexibility for interconnect test-
ing.

Also, internal signals can be captured during EXTEST by
connecting them to unbonded IOBs, or to the unused out-
puts in IOBs used as unidirectional input pins. This tech-
nique partially compensates for the lack of INTEST
support.

The user can serially load commands and data into these
devices to control the driving of their outputs and to exam-
ine their inputs. This method is an improvement over
bed-of-nails testing. It avoids the need to over-drive device
outputs, and it reduces the user interface to four pins. An
optional fifth pin, a reset for the control logic, is described in
the standard but is not implemented in Xilinx devices.

The dedicated on-chip logic implementing the IEEE 1149.1
functions includes a 16-state machine, an instruction regis-
ter and a number of data registers. The functional details
can be found in the IEEE 1149.1 specification and are also
discussed in the Xilinx application note XAPP 017: “Bound-
ary Scan in XC4000 and XC5200 Series devices”

Figure 19 on page 99 is a diagram of the XC5200-Series
boundary scan logic. It includes three bits of Data Register
per IOB, the IEEE 1149.1 Test Access Port controller, and
the Instruction Register with decodes.

The public boundary-scan instructions are always available
prior to configuration. After configuration, the public instruc-
tions and any USERCODE instructions are only available if
specified in the design. While SAMPLE and BYPASS are
available during configuration, it is recommended that
boundary-scan operations not be performed during this
transitory period.

In addition to the test instructions outlined above, the
boundary-scan circuitry can be used to configure the FPGA
device, and to read back the configuration data.

All of the XC4000 boundary-scan modes are supported in
the XC5200 family. Three additional outputs for the User-
Register are provided (Reset, Update, and Shift), repre-

Figure 18:   VersaRing I/O Interface
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senting the decoding of the corresponding state of the
boundary-scan internal state machine. 
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TDI, TCK, 
TMS

I
I/O
or I 

(JTAG)

If boundary scan is used, these pins are Test Data In, Test Clock, and Test Mode Select 
inputs respectively.  They come directly from the pads, bypassing the IOBs.  These pins 
can also be used as inputs to the CLB logic after configuration is completed.  
If the BSCAN symbol is not placed in the design, all boundary scan functions are inhib-
ited once configuration is completed, and these pins become user-programmable I/O. 
In this case, they must be called out by special schematic definitions.  To use these pins, 
place the library components TDI, TCK, and TMS instead of the usual pad symbols.  In-
put or output buffers must still be used. 

HDC O I/O
High During Configuration (HDC) is driven High until the I/O go active.  It is available as 
a control output indicating that configuration is not yet completed.  After configuration, 
HDC is a user-programmable I/O pin. 

LDC O I/O
Low During Configuration (LDC) is driven Low until the I/O go active. It is available as a 
control output indicating that configuration is not yet completed.  After configuration, 
LDC is a user-programmable I/O pin. 

INIT I/O I/O

Before and during configuration, INIT is a bidirectional signal.  A 1 kΩ - 10 kΩ external 
pull-up resistor is recommended.  
As an active-Low open-drain output, INIT is held Low during the power stabilization and 
internal clearing of the configuration memory.   As an active-Low input, it can be used 
to hold the FPGA in the internal WAIT state before the start of configuration.   Master 
mode devices stay in a WAIT state an additional 50 to 250 µs after INIT has gone High.  
During configuration, a Low on this output indicates that a configuration data error has 
occurred.  After the I/O go active, INIT is a user-programmable I/O pin. 

GCK1 - 
GCK4 

Weak 
Pull-up

I or I/O

Four Global inputs each drive a dedicated internal global net with short delay and min-
imal skew.  These internal global nets can also be driven from internal logic.  If not used 
to drive a global net, any of these pins is a user-programmable I/O pin. 
The GCK1-GCK4 pins provide the shortest path to the four Global Buffers.  Any input 
pad symbol connected directly to the input of a BUFG symbol is automatically placed on 
one of these pins.

CS0, CS1, 
WS, RS 

I I/O

These four inputs are used in Asynchronous Peripheral mode.  The chip is selected 
when CS0 is Low and CS1 is High.   While the chip is selected, a Low on Write Strobe 
(WS) loads the data present on the D0 - D7 inputs into the internal data buffer.  A Low 
on Read Strobe (RS) changes D7 into a status output — High if Ready, Low if Busy — 
and drives D0 - D6 High. 
In Express mode, CS1 is used as a serial-enable signal for daisy-chaining.
WS and RS should be mutually exclusive, but if both are Low simultaneously, the Write 
Strobe overrides.  After configuration, these are user-programmable I/O pins. 

A0 - A17 O I/O
During Master Parallel configuration, these 18 output pins address the configuration 
EPROM.  After configuration, they are user-programmable I/O pins. 

D0 - D7 I I/O
During Master Parallel, Peripheral, and Express configuration, these eight input pins re-
ceive configuration data. After configuration, they are user-programmable I/O pins. 

DIN I I/O
During Slave Serial or Master Serial configuration, DIN is the serial configuration data 
input receiving data on the rising edge of CCLK.  During Parallel configuration, DIN is 
the D0 input.  After configuration, DIN is a user-programmable I/O pin. 

DOUT O I/O

During configuration in any mode but Express mode, DOUT is the serial configuration 
data output that can drive the DIN of daisy-chained slave FPGAs.  DOUT data changes 
on the falling edge of CCLK.   
In Express mode, DOUT is the status output that can drive the CS1 of daisy-chained 
FPGAs, to enable and disable downstream devices. 
After configuration, DOUT is a user-programmable I/O pin.

Table 9: Pin Descriptions (Continued)

Pin Name

I/O 
During 
Config.

I/O 
After 

Config. Pin Description
November 5, 1998 (Version 5.2) 7-103
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Configuration Sequence 
There are four major steps in the XC5200-Series power-up
configuration sequence.

• Power-On Time-Out
• Initialization
• Configuration
• Start-Up

The full process is illustrated in Figure 24.

Power-On Time-Out

An internal power-on reset circuit is triggered when power
is applied. When VCC reaches the voltage at which portions
of the FPGA begin to operate (i.e., performs a
write-and-read test of a sample pair of configuration mem-
ory bits), the programmable I/O buffers are 3-stated with
active high-impedance pull-up resistors. A time-out delay
— nominally 4 ms — is initiated to allow the power-supply
voltage to stabilize. For correct operation the power supply
must reach VCC(min) by the end of the time-out, and must
not dip below it thereafter.

There is no distinction between master and slave modes
with regard to the time-out delay. Instead, the INIT line is
used to ensure that all daisy-chained devices have com-
pleted initialization. Since XC2000 devices do not have this
signal, extra care must be taken to guarantee proper oper-
ation when daisy-chaining them with XC5200 devices. For
proper operation with XC3000 devices, the RESET signal,
which is used in XC3000 to delay configuration, should be
connected to INIT.

If the time-out delay is insufficient, configuration should be
delayed by holding the INIT pin Low until the power supply
has reached operating levels.

This delay is applied only on power-up. It is not applied
when reconfiguring an FPGA by pulsing the PROGRAM
pin Low. During all three phases — Power-on, Initialization,
and Configuration — DONE is held Low; HDC, LDC, and
INIT are active; DOUT is driven; and all I/O buffers are dis-
abled.

Initialization

This phase clears the configuration memory and estab-
lishes the configuration mode.

The configuration memory is cleared at the rate of one
frame per internal clock cycle (nominally 1 MHz). An
open-drain bidirectional signal, INIT, is released when the
configuration memory is completely cleared. The device
then tests for the absence of an external active-low level on
INIT. The mode lines are sampled two internal clock cycles
later (nominally 2 µs). 

The master device waits an additional 32 µs to 256 µs
(nominally 64-128 µs) to provide adequate time for all of the
slave devices to recognize the release of INIT as well. Then
the master device enters the Configuration phase. 
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Figure 23:   Circuit for Generating CRC-16

Figure 24:   Configuration Sequence
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When the UCLK_SYNC option is enabled, the user can
externally hold the open-drain DONE output Low, and thus
stall all further progress in the start-up sequence until
DONE is released and has gone High.  This option can be
used to force synchronization of several FPGAs to a com-
mon user clock, or to guarantee that all devices are suc-
cessfully configured before any I/Os go active. 

If either of these two options is selected, and no user clock
is specified in the design or attached to the device, the chip
could reach a point where the configuration of the device is
complete and the Done pin is asserted, but the outputs do
not become active.  The solution is either to recreate the
bitstream specifying the start-up clock as CCLK, or to sup-
ply the appropriate user clock.

Start-up Sequence 

The Start-up sequence begins when the configuration
memory is full, and the total number of configuration clocks
received since INIT went High equals the loaded value of
the length count.  

The next rising clock edge sets a flip-flop Q0, shown in
Figure 26. Q0 is the leading bit of a 5-bit shift register. The
outputs of this register can be programmed to control three
events. 

• The release of the open-drain DONE output
• The change of configuration-related pins to the user 

function, activating all IOBs.  
• The termination of the global Set/Reset initialization of 

all CLB and IOB storage elements. 

The DONE pin can also be wire-ANDed with DONE pins of
other FPGAs or with other external signals, and can then
be used as input to bit Q3 of the start-up register. This is
called “Start-up Timing Synchronous to Done In” and is
selected by either CCLK_SYNC or UCLK_SYNC.

When DONE is not used as an input, the operation is called
“Start-up Timing Not Synchronous to DONE In,” and is
selected by either CCLK_NOSYNC or UCLK_NOSYNC. 

As a configuration option, the start-up control register
beyond Q0 can be clocked either by subsequent CCLK
pulses or from an on-chip user net called STARTUP.CLK.
These signals can be accessed by placing the STARTUP
library symbol. 

Start-up from CCLK 

If CCLK is used to drive the start-up, Q0 through Q3 pro-
vide the timing. Heavy lines in Figure 25 show the default
timing, which is compatible with XC2000 and XC3000
devices using early DONE and late Reset. The thin lines
indicate all other possible timing options.

Start-up from a User Clock (STARTUP.CLK) 

When, instead of CCLK, a user-supplied start-up clock is
selected, Q1 is used to bridge the unknown phase relation-

ship between CCLK and the user clock. This arbitration
causes an unavoidable one-cycle uncertainty in the timing
of the rest of the start-up sequence.

DONE Goes High to Signal End of Configuration

In all configuration modes except Express mode,
XC5200-Series devices read the expected length count
from the bitstream and store it in an internal register.  The
length count varies according to the number of devices and
the composition of the daisy chain.  Each device also
counts the number of CCLKs during configuration.

Two conditions have to be met in order for the DONE pin to
go high:

• the chip's internal memory must be full, and
• the configuration length count must be met, exactly. 

This is important because the counter that determines
when the length count is met begins with the very first
CCLK, not the first one after the preamble.

Therefore, if a stray bit is inserted before the preamble, or
the data source is not ready at the time of the first CCLK,
the internal counter that holds the number of CCLKs will be
one ahead of the actual number of data bits read.  At the
end of configuration, the configuration memory will be full,
but the number of bits in the internal counter will not match
the expected length count.

As a consequence, a Master mode device will continue to
send out CCLKs until the internal counter turns over to
zero, and then reaches the correct length count a second
time.  This will take several seconds  [224 ∗ CCLK period]
— which is sometimes interpreted as the device not config-
uring at all.  

If it is not possible to have the data ready at the time of the
first CCLK, the problem can be avoided by increasing the
number in the length count by the appropriate value.

In Express mode, there is no length count.  The DONE pin
for each device goes High when the device has received its
quota of configuration data.  Wiring the DONE pins of sev-
eral devices together delays start-up of all devices until all
are fully configured.

Note that DONE is an open-drain output and does not go
High unless an internal pull-up is activated or an external
pull-up is attached.  The internal pull-up is activated as the
default by the bitstream generation software.

Release of User I/O After DONE Goes High

By default, the user I/O are released one CCLK cycle after
the DONE pin goes High.  If CCLK is not clocked after
DONE goes High, the outputs remain in their initial state —
3-stated, with a 20 kΩ - 100 kΩ pull-up.  The delay from
November 5, 1998 (Version 5.2) 7-111
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Asynchronous Peripheral Mode

Write to FPGA

Asynchronous Peripheral mode uses the trailing edge of
the logic AND condition of WS and CS0 being Low and RS
and CS1 being High to accept byte-wide data from a micro-
processor bus.  In the lead FPGA, this data is loaded into a
double-buffered UART-like parallel-to-serial converter and
is serially shifted into the internal logic.  

The lead FPGA presents the preamble data (and all data
that overflows the lead device) on its DOUT pin.  The
RDY/BUSY output from the lead FPGA acts as a hand-
shake signal to the microprocessor.  RDY/BUSY goes Low
when a byte has been received, and goes High again when
the byte-wide input buffer has transferred its information
into the shift register, and the buffer is ready to receive new
data.  A new write may be started immediately, as soon as
the RDY/BUSY output has gone Low, acknowledging
receipt of the previous data.  Write may not be terminated
until RDY/BUSY is High again for one CCLK period.  Note
that RDY/BUSY is pulled High with a high-impedance
pull-up prior to INIT going High.

The length of the BUSY signal depends on the activity in
the UART.  If the shift register was empty when the new
byte was received, the BUSY signal lasts for only two
CCLK periods.  If the shift register was still full when the
new byte was received, the BUSY signal can be as long as
nine CCLK periods.

Note that after the last byte has been entered, only seven
of its bits are shifted out.  CCLK remains High with DOUT
equal to bit 6 (the next-to-last bit) of the last byte entered.

The READY/BUSY handshake can be ignored if the delay
from any one Write to the end of the next Write is guaran-
teed to be longer than 10 CCLK periods.

Status Read 

The logic AND condition of the CS0, CS1 and RS inputs
puts the device status on the Data bus.  

• D7 High indicates Ready 
• D7 Low indicates Busy 
• D0 through D6 go unconditionally High 

It is mandatory that the whole start-up sequence be started
and completed by one byte-wide input. Otherwise, the pins
used as Write Strobe or Chip Enable might become active
outputs and interfere with the final byte transfer. If this
transfer does not occur, the start-up sequence is not com-
pleted all the way to the finish (point F in Figure 25 on page
109). 

In this case, at worst, the internal reset is not released. At
best, Readback and Boundary Scan are inhibited.  The
length-count value, as generated by the software, ensures
that these problems never occur.  

Although RDY/BUSY is brought out as a separate signal,
microprocessors can more easily read this information on
one of the data lines.  For this purpose, D7 represents the
RDY/BUSY status when RS is Low, WS is High, and the
two chip select lines are both active.

Asynchronous Peripheral mode is selected by a <101> on
the mode pins (M2, M1, M0).
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Figure 35:    Asynchronous Peripheral Mode Circuit Diagram 
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XC5200 Switching Characteristics

Definition of Terms
In the following tables, some specifications may be designated as Advance or Preliminary. These terms are defined as
follows:

Advance:       Initial estimates based on simulation and/or extrapolation from other speed grades, devices, or device 
                       families. Use as estimates, not for production.
Preliminary: Based on preliminary characterization. Further changes are not expected.
Unmarked:    Specifications not identified as either Advance or Preliminary are to be considered Final.1

XC5200 Operating Conditions

XC5200 DC Characteristics Over Operating Conditions

XC5200 Absolute Maximum Ratings

1. Notwithstanding the definition of the above terms, all specifications are subject to change without notice.

Symbol Description Min Max Units

VCC Supply voltage relative to GND Commercial: 0°C to 85°C junction 4.75 5.25 V
Supply voltage relative to GND Industrial: -40°C to 100°C junction 4.5 5.5 V

VIHT High-level input voltage — TTL configuration 2.0 VCC V
VILT Low-level input voltage — TTL configuration 0 0.8 V
VIHC High-level input voltage — CMOS configuration 70% 100% VCC

VILC Low-level input voltage — CMOS configuration 0 20% VCC

TIN Input signal transition time 250 ns

Symbol Description Min Max Units

VOH High-level output voltage @ IOH = -8.0 mA, VCC min 3.86 V
VOL Low-level output voltage @ IOL = 8.0 mA, VCC max 0.4 V
ICCO Quiescent FPGA supply current (Note 1) 15 mA
IIL Leakage current -10 +10 µA
CIN Input capacitance (sample tested) 15 pF
IRIN Pad pull-up (when selected) @ VIN = 0V (sample tested) 0.02 0.30 mA
Note: 1. With no output current loads, all package pins at Vcc or GND, either TTL or CMOS inputs, and the FPGA configured with a 

tie option.

Symbol Description Units

VCC Supply voltage relative to GND -0.5 to +7.0 V
VIN Input voltage with respect to GND -0.5 to VCC +0.5 V
VTS Voltage applied to 3-state output -0.5 to VCC +0.5 V
TSTG Storage temperature (ambient) -65 to +150 °C
TSOL Maximum soldering temperature (10 s @ 1/16 in. = 1.5 mm) +260 °C
TJ Junction temperature in plastic packages +125 °C

Junction temperature in ceramic packages +150 °C
Note: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress 

ratings only, and functional operation of the device at these or any other conditions beyond those listed under Recommended 
Operating Conditions is not implied. Exposure to Absolute Maximum Ratings conditions for extended periods of time may 
affect device reliability.
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XC5200 CLB Switching Characteristic Guidelines
Testing of the switching parameters is modeled after testing methods specified by MIL-M-38510/605. All devices are 100%
functionally tested. Since many internal timing parameters cannot be measured directly, they are derived from benchmark
timing patterns. The following guidelines reflect worst-case values over the recommended operating conditions. For more
detailed, more precise, and more up-to-date timing information, use the values provided by the timing calculator and used
in the simulator.

Speed Grade -6 -5 -4 -3

Description Symbol
Min
(ns)

Max
(ns)

Min
(ns)

Max
(ns)

Min
(ns)

Max
(ns)

Min
(ns)

Max
(ns)

Combinatorial Delays
F inputs to X output TILO 5.6 4.6 3.8 3.0
F inputs via transparent latch to Q TITO 8.0 6.6 5.4 4.3
DI inputs to DO output (Logic-Cell 
Feedthrough)

TIDO 4.3 3.5 2.8 2.4

F inputs via F5_MUX to DO output TIMO 7.2 5.8 5.0 4.3
Carry Delays

Incremental delay per bit TCY 0.7 0.6 0.5 0.5
Carry-in overhead from DI TCYDI 1.8 1.6 1.5 1.4
Carry-in overhead from F TCYL 3.7 3.2 2.9 2.4
Carry-out overhead to DO TCYO 4.0 3.2 2.5 2.1

Sequential Delays
Clock (CK) to out (Q) (Flip-Flop) TCKO 5.8 4.9 4.0 4.0
Gate (Latch enable) going active to out (Q) TGO 9.2 7.4 5.9 5.5

Set-up Time Before Clock (CK)
F inputs TICK 2.3 1.8 1.4 1.3
F inputs via F5_MUX TMICK 3.8 3.0 2.5 2.4
DI input TDICK 0.8 0.5 0.4 0.4
CE input TEICK 1.6 1.2 0.9 0.9

Hold Times After Clock (CK)
F inputs TCKI 0 0 0 0
F inputs via F5_MUX TCKMI 0 0 0 0
DI input TCKDI 0 0 0 0
CE input TCKEI 0 0 0 0

Clock Widths
Clock High Time TCH 6.0 6.0 6.0 6.0
Clock Low Time TCL 6.0 6.0 6.0 6.0
Toggle Frequency (MHz) (Note 3) FTOG 83 83 83 83

Reset Delays
Width (High) TCLRW 6.0 6.0 6.0 6.0
Delay from CLR to Q (Flip-Flop) TCLR 7.7 6.3 5.1 4.0
Delay from CLR to Q (Latch) TCLRL 6.5 5.2 4.2 3.0

Global Reset Delays
Width (High) TGCLRW 6.0 6.0 6.0 6.0
Delay from internal GR to Q TGCLR 14.7 12.1 9.1 8.0

Note: 1. The CLB K to Q output delay (TCKO) of any CLB, plus the shortest possible interconnect delay, is always longer than the 
Data In hold-time requirement (TCKDI) of any CLB on the same die.

2. Timing is based upon the XC5215 device. For other devices, see Timing Calculator.
3. Maximum flip-flop toggle rate for export control purposes.
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XC5200 Guaranteed Input and Output Parameters (Pin-to-Pin)
All values listed below are tested directly, and guaranteed over the operating conditions. The same parameters can also be
derived indirectly from the Global Buffer specifications. The delay calculator uses this indirect method, and may
overestimate because of worst-case assumptions. When there is a discrepancy between these two methods, the values
listed below should be used, and the derived values should be considered conservative overestimates.

Speed Grade -6 -5 -4 -3

Description Symbol Device
Max
(ns)

Max
(ns)

Max
(ns)

Max
(ns)

Global Clock to Output Pad (fast) TICKOF

(Max)

XC5202 16.9 15.1 10.9 9.8
XC5204 17.1 15.3 11.3 9.9
XC5206 17.2 15.4 11.9 10.8
XC5210 17.2 15.4 12.8 11.2
XC5215 19.0 17.0 12.8 11.7

Global Clock to Output Pad (slew-limited) TICKO

(Max)

XC5202 21.4 18.7 12.6 11.5
XC5204 21.6 18.9 13.3 11.9
XC5206 21.7 19.0 13.6 12.5
XC5210 21.7 19.0 15.0 12.9
XC5215 24.3 21.2 15.0 13.1

Input Set-up Time (no delay) to CLB Flip-Flop TPSUF

(Min)

XC5202 2.5 2.0 1.9 1.9
XC5204 2.3 1.9 1.9 1.9
XC5206 2.2 1.9 1.9 1.9
XC5210 2.2 1.9 1.9 1.8
XC5215 2.0 1.8 1.7 1.7

Input Hold Time (no delay) to CLB Flip-Flop TPHF

(Min)

XC5202 3.8 3.8 3.5 3.5
XC5204 3.9 3.9 3.8 3.6
XC5206 4.4 4.4 4.4 4.3
XC5210 5.1 5.1 4.9 4.8
XC5215 5.8 5.8 5.7 5.6

Input Set-up Time (with delay) to CLB Flip-Flop DI Input TPSU XC5202 7.3 6.6 6.6 6.6
XC5204 7.3 6.6 6.6 6.6
XC5206 7.2 6.5 6.4 6.3
XC5210 7.2 6.5 6.0 6.0
XC5215 6.8 5.7 5.7 5.7

Input Set-up Time (with delay) to CLB Flip-Flop F Input TPSUL

(Min)

XC5202 8.8 7.7 7.5 7.5
XC5204 8.6 7.5 7.5 7.5
XC5206 8.5 7.4 7.4 7.4
XC5210 8.5 7.4 7.4 7.3
XC5215 8.5 7.4 7.4 7.2

Input Hold Time (with delay) to CLB Flip-Flop TPH

(Min)

XC52xx 0 0 0 0

Note: 1. These measurements assume that the CLB flip-flop uses a direct interconnect to or from the IOB. The INREG/ OUTREG 
properties, or XACT-Performance, can be used to assure that direct connects are used. tPSU applies only to the CLB input 
DI that bypasses the look-up table, which only offers direct connects to IOBs on the left and right edges of the die. tPSUL 
applies to the CLB inputs F that feed the look-up table, which offers direct connect to IOBs on all four edges, as do the CLB 
Q outputs.

2. When testing outputs (fast or slew-limited), half of the outputs on one side of the device are switching.
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XC5200 Boundary Scan (JTAG) Switching Characteristic Guidelines
The following guidelines reflect worst-case values over the recommended operating conditions.  They are expressed in units
of nanoseconds and apply to all XC5200 devices unless otherwise noted.          

                          Speed Grade -6 -5 -4 -3
Description Symbol Min Max Min Max Min Max Min Max

Setup and Hold
Input (TDI) to clock (TCK) 
      setup time
Input (TDI) to clock (TCK) 
      hold time
Input (TMS) to clock (TCK) 
      setup time
Input (TMS) to clock (TCK) 
      hold time

TTDITCK

TTCKTDI

TTMSTCK

TTCKTMS

30.0

0

15.0

0

30.0

0

15.0

0

30.0

0

15.0

0

30.0

0

15.0

0

Propagation Delay
Clock (TCK) to Pad (TDO) TTCKPO 30.0 30.0 30.0 30.0

Clock
Clock (TCK) High
Clock (TCK) Low 

TTCKH
TTCKL

30.0
30.0

30.0
30.0

30.0
30.0

30.0
30.0

FMAX (MHz) FMAX 10.0 10.0 10.0 10.0

Note 1: Input pad setup and hold times are specified with respect to the internal clock.
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Additional No Connect (N.C.) Connections for PQ160 Package 

Notes: Boundary Scan Bit 0 = TDO.T
Boundary Scan Bit 1 = TDO.O
Boundary Scan Bit 1056 = BSCAN.UPD

99. I/O 68 72 69 97 T5 107 486

100. I/O - - - 98 R6 108 492

101. I/O - - - 99 T4 109 495

GND - - - 100 P6 110 -

102. I/O (D1) 69 73 70 101 T3 113 498

103. I/O 
(RCLK-BUSY/RDY)

70 74 71 102 P5 114 504

104. I/O - - - 103 R4 115 507

105. I/O - - - 104 R3 116 510

106. I/O (D0, DIN) 71 75 72 105 P4 117 516

107. I/O (DOUT) 72 76 73 106 T2 118 519

CCLK 73 77 74 107 R2 119 -

VCC 74 78 75 108 P3 120 -

108. I/O (TDO) 75 79 76 109 T1 121 0

GND 76 80 77 110 N3 122 -

109. I/O (A0, WS) 77 81 78 111 R1 123 9

110. GCK4 (A1, I/O) 78 82 79 112 P2 124 15

111. I/O - - - 113 N2 125 18

112. I/O - - - 114 M3 126 21

113. I/O (A2, CS1) 79 83 80 115 P1 127 27

114. I/O (A3) 80 84 81 116 N1 128 30

115. I/O - - - 117 M2 129 33

116. I/O - - - - M1 130 39

GND - - - 118 L3 131 -

117. I/O - - - 119 L2 132 42

118. I/O - - - 120 L1 133 45

119. I/O (A4) 81 85 82 121 K3 134 51

120. I/O (A5) 82 86 83 122 K2 135 54

121. I/O - 87 84 123 K1 137 57

122. I/O - 88 85 124 J1 138 63

123. I/O (A6) 83 89 86 125 J2 139 66

124. I/O (A7) 84 90 87 126 J3 140 69

GND 1 91 88 127 H2 141 -

PQ160
8 30 89 111 136

9 31 90 112

Pin Description PC84 PQ100 VQ100 TQ144 PG156 PQ160 Boundary Scan Order
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Additional No Connect (N.C.) Connections for PQ208 and TQ176 Packages

Notes: Boundary Scan Bit 0 = TDO.T
Boundary Scan Bit 1 = TDO.O
Boundary Scan Bit 1056 = BSCAN.UPD

Pin Locations for XC5210 Devices
The following table may contain pinout information for unsupported device/package combinations. Please see the
availability charts elsewhere in the XC5200 Series data sheet for availability information.

CCLK 73 77 74 107 119 131 V1 153 -

VCC 74 78 75 108 120 132 R4 154 -

130. I/O (TDO) 75 79 76 109 121 133 U2 159 -

GND 76 80 77 110 122 134 R3 160 -

131. I/O (A0, WS) 77 81 78 111 123 135 T3 161 9

132. GCK4 (A1, I/O) 78 82 79 112 124 136 U1 162 15

133. I/O - - - 113 125 137 P3 163 18

134. I/O - - - 114 126 138 R2 164 21

135. I/O (A2, CS1) 79 83 80 115 127 139 T2 165 27

136. I/O (A3) 80 84 81 116 128 140 N3 166 30

137. I/O - - - 117 129 141 P2 167 33

138. I/O - - - - 130 142 T1 168 42

GND - - - 118 131 143 M3 171 -

139. I/O - - - 119 132 144 P1 172 45

140. I/O - - - 120 133 145 N1 173 51

141. I/O (A4) 81 85 82 121 134 146 M2 174 54

142. I/O (A5) 82 86 83 122 135 147 M1 175 57

143. I/O - - - - - 148 L3 176 63

144. I/O - - - - 136 149 L2 177 66

145. I/O - 87 84 123 137 150 L1 178 69

146. I/O - 88 85 124 138 151 K1 179 75

147. I/O (A6) 83 89 86 125 139 152 K2 180 78

148. I/O (A7) 84 90 87 126 140 153 K3 181 81

GND 1 91 88 127 141 154 K4 182 -

PQ208 TQ176
195 1 39 65 104 143 158 167

196 3 51 66 105 144 169

206 12 52 91 107 155 170

207 13 53 92 117 156

208 38 54 102 118 157

Pin Description PC84 PQ100 VQ100 TQ144 PQ160 TQ176 PG191 PQ208 Boundary Scan Order

Pin Description PC84 TQ144 PQ160 TQ176 PQ208 PG223 BG225 PQ240 Boundary Scan
Order

VCC 2 128 142 155 183 J4 VCC* 212 -

1. I/O (A8) 3 129 143 156 184 J3 E8 213 111

2. I/O (A9) 4 130 144 157 185 J2 B7 214 114

3. I/O - 131 145 158 186 J1 A7 215 117

4. I/O - 132 146 159 187 H1 C7 216 123

5. I/O - - - 160 188 H2 D7 217 126

6. I/O - - - 161 189 H3 E7 218 129
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137. I/O - - - - - R11 K12 137 708

138. I/O - 82 92 100 120 U13 K13 138 711

139. I/O - 83 93 101 121 V13 K14 139 714

VCC - - - - - - VCC* 140 -

140. I/O (D5) 59 84 94 102 122 U12 K15 141 720

141. I/O (CS0) 60 85 95 103 123 V12 J12 142 723

142. I/O - - - 104 124 T11 J13 144 726

143. I/O - - - 105 125 U11 J14 145 732

144. I/O - 86 96 106 126 V11 J15 146 735

145. I/O - 87 97 107 127 V10 J11 147 738

146. I/O (D4) 61 88 98 108 128 U10 H13 148 744

147. I/O 62 89 99 109 129 T10 H14 149 747

VCC 63 90 100 110 130 R10 VCC* 150 -

GND 64 91 101 111 131 R9 GND* 151 -

148. I/O (D3) 65 92 102 112 132 T9 H12 152 756

149. I/O (RS) 66 93 103 113 133 U9 H11 153 759

150. I/O - 94 104 114 134 V9 G14 154 768

151. I/O - 95 105 115 135 V8 G15 155 771

152. I/O - - - 116 136 U8 G13 156 780

153. I/O - - - 117 137 T8 G12 157 783

154. I/O (D2) 67 96 106 118 138 V7 G11 159 786

155. I/O 68 97 107 119 139 U7 F15 160 792

VCC - - - - - - VCC* 161 -

156. I/O - 98 108 120 140 V6 F14 162 795

157. I/O - 99 109 121 141 U6 F13 163 798

158. I/O - - - - - R8 G10 164 804

159. I/O - - - - - R7 E15 165 807

GND - 100 110 122 142 T7 GND* 166 -

160. I/O - - - - - R6 E14 167 810

161. I/O - - - - - R5 F12 168 816

162. I/O - - - - 143 V5 E13 169 819

163. I/O - - - - 144 V4 D15 170 822

164. I/O - - 111 123 145 U5 F11 171 828

165. I/O - - 112 124 146 T6 D14 172 831

166. I/O (D1) 69 101 113 125 147 V3 E12 173 834

167. I/O (RCLK-BUSY/RDY) 70 102 114 126 148 V2 C15 174 840

168. I/O - 103 115 127 149 U4 D13 175 843

169. I/O - 104 116 128 150 T5 C14 176 846

170. I/O (D0, DIN) 71 105 117 129 151 U3 F10 177 855

171. I/O (DOUT) 72 106 118 130 152 T4 B15 178 858

CCLK 73 107 119 131 153 V1 C13 179 -

VCC 74 108 120 132 154 R4 VCC* 180 -

172. I/O (TDO) 75 109 121 133 159 U2 A15 181 -

GND 76 110 122 134 160 R3 GND* 182 -

173. I/O (A0, WS) 77 111 123 135 161 T3 A14 183 9

174. GCK4 (A1, I/O) 78 112 124 136 162 U1 B13 184 15

175. I/O - 113 125 137 163 P3 E11 185 18

176. I/O - 114 126 138 164 R2 C12 186 21

177. I/O (CS1, A2) 79 115 127 139 165 T2 A13 187 27

178. I/O (A3) 80 116 128 140 166 N3 B12 188 30

179. I/O - - - - - P4 F9 189 33

Pin Description PC84 TQ144 PQ160 TQ176 PQ208 PG223 BG225 PQ240 Boundary Scan
Order
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XC5200 Series Field Programmable Gate Arrays

Product Obsolete or Under Obsolescence
8. I/O (A11) 148 191 221 J3 B6 B16 165

9. I/O - - - H2 - C17 171

10. I/O - - - G1 - B18 174

VCC - - 222 E1 VCC* VCC* -

11. I/O - - 223 H3 C6 C18 177

12. I/O - - 224 G2 F7 D17 183

13. I/O 149 192 225 H4 A5 A20 186

14. I/O 150 193 226 F2 B5 B19 189

GND 151 194 227 F1 GND* GND* -

15. I/O - - - H5 - C19 195

16. I/O - - - G3 - D18 198

17. I/O - 195 228 D1 D6 A21 201

18. I/O - 196 229 G4 C5 B20 207

19. I/O 152 197 230 E2 A4 C20 210

20. I/O 153 198 231 F3 E6 B21 213

21. I/O (A12) 154 199 232 G5 B4 B22 219

22. I/O (A13) 155 200 233 C1 D5 C21 222

23. I/O - - - F4 - D20 225

24. I/O - - - E3 - A23 234

25. I/O - - 234 D2 A3 D21 237

26. I/O - - 235 C2 C4 C22 243

27. I/O 156 201 236 F5 B3 B24 246

28. I/O 157 202 237 E4 F6 C23 249

29. I/O (A14) 158 203 238 D3 A2 D22 258

30. I/O (A15) 159 204 239 C3 C3 C24 261

VCC 160 205 240 A2 VCC* VCC* -

GND 1 2 1 B1 GND* GND* -

31. GCK1 (A16, I/O) 2 4 2 D4 D4 D23 270

32. I/O (A17) 3 5 3 B2 B1 C25 273

33. I/O 4 6 4 B3 C2 D24 279

34. I/O 5 7 5 E6 E5 E23 282

35. I/O (TDI) 6 8 6 D5 D3 C26 285

36. I/O (TCK) 7 9 7 C4 C1 E24 294

37. I/O - - - A3 - F24 297

38. I/O - - - D6 - E25 303

39. I/O 8 10 8 E7 D2 D26 306

40. I/O 9 11 9 B4 G6 G24 309

41. I/O - 12 10 C5 E4 F25 315

42. I/O - 13 11 A4 D1 F26 318

43. I/O - - 12 D7 E3 H23 321

44. I/O - - 13 C6 E2 H24 327

45. I/O - - - E8 - G25 330

46. I/O - - - B5 - G26 333

GND 10 14 14 A5 GND* GND* -

47. I/O 11 15 15 B6 F5 J23 339

48. I/O 12 16 16 D8 E1 J24 342

49. I/O (TMS) 13 17 17 C7 F4 H25 345

50. I/O 14 18 18 B7 F3 K23 351

VCC - - 19 A6 VCC* VCC* -

51. I/O - - 20 C8 F2 L24 354

52. I/O - - 21 E9 F1 K25 357

53. I/O - - - B8 - L25 363

Pin Description PQ160 HQ208 HQ240 PG299 BG225 BG352 Boundary Scan Order
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XC5200 Series Field Programmable Gate Arrays

Product Obsolete or Under Obsolescence
190. I/O - - - X8 - M4 951

191. I/O - - - V9 - L1 954

192. I/O (D2) 106 138 159 W8 G11 J1 960

193. I/O 107 139 160 X7 F15 K3 963

VCC - - 161 X5 VCC* VCC*

194. I/O 108 140 162 V8 F14 J2 966

195. I/O 109 141 163 W7 F13 J3 972

196. I/O - - 164 U8 G10 K4 975

197. I/O - - 165 W6 E15 G1 978

GND 110 142 166 X6 GND* GND*

198. I/O - - - T8 - H2 984

199. I/O - - - V7 - H3 987

200. I/O - - 167 X4 E14 J4 990

201. I/O - - 168 U7 F12 F1 996

202. I/O - 143 169 W5 E13 G2 999

203. I/O - 144 170 V6 D15 G3 1002

204. I/O 111 145 171 T7 F11 F2 1008

205. I/O 112 146 172 X3 D14 E2 1011

206. I/O (D1) 113 147 173 U6 E12 F3 1014

207. I/O (RCLK-BUSY/RDY) 114 148 174 V5 C15 G4 1020

208. I/O - - - W4 - D2 1023

209. I/O - - - W3 - F4 1032

210. I/O 115 149 175 T6 D13 E3 1035

211. I/O 116 150 176 U5 C14 C2 1038

212. I/O (D0, DIN) 117 151 177 V4 F10 D3 1044

213. I/O (DOUT) 118 152 178 X1 B15 E4 1047

CCLK 119 153 179 V3 C13 C3 -

VCC 120 154 180 W1 VCC* VCC* -

214. I/O (TDO) 121 159 181 U4 A15 D4 0

GND 122 160 182 X2 GND* GND* -

215. I/O (A0, WS) 123 161 183 W2 A14 B3 9

216. GCK4 (A1, I/O) 124 162 184 V2 B13 C4 15

217. I/O 125 163 185 R5 E11 D5 18

218. I/O 126 164 186 T4 C12 A3 21

219. I/O (A2, CS1) 127 165 187 U3 A13 D6 27

220. I/O (A3) 128 166 188 V1 B12 C6 30

221. I/O - - - R4 - B5 33

222. I/O - - - P5 - A4 39

223. I/O - - 189 U2 F9 C7 42

224. I/O - - 190 T3 D11 B6 45

225. I/O 129 167 191 U1 A12 A6 51

226. I/O 130 168 192 P4 C11 D8 54

227. I/O - 169 193 R3 B11 B7 57

228. I/O - 170 194 N5 E10 A7 63

229. I/O - - 195 T2 - D9 66

230. I/O - - - R2 - C9 69

GND 131 171 196 T1 GND* GND* -

231. I/O 132 172 197 N4 A11 B8 75

232. I/O 133 173 198 P3 D10 D10 78

233. I/O - - 199 P2 C10 C10 81

234. I/O - - 200 N3 B10 B9 87

VCC - - 201 R1 VCC* VCC* -

Pin Description PQ160 HQ208 HQ240 PG299 BG225 BG352 Boundary Scan Order
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XC5200 Series Field Programmable Gate Arrays

7

Product Obsolete or Under Obsolescence
Revisions
Version Description

12/97 Rev 5.0 added -3, -4 specification

7/98 Rev 5.1 added Spartan family to comparison, removed HQ304

11/98 Rev 5.2 All specifications made final.
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