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Understanding Embedded - FPGAs (Field
Programmable Gate Array)

Embedded - FPGAs, or Field Programmable Gate Arrays,
are advanced integrated circuits that offer unparalleled
flexibility and performance for digital systems. Unlike
traditional fixed-function logic devices, FPGAs can be
programmed and reprogrammed to execute a wide array
of logical operations, enabling customized functionality
tailored to specific applications. This reprogrammability
allows developers to iterate designs quickly and implement
complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them
indispensable in numerous fields. In telecommunications,
FPGAs are used for high-speed data processing and
network infrastructure. In the automotive industry, they
support advanced driver-assistance systems (ADAS) and
infotainment solutions. Consumer electronics benefit from
FPGAs in devices requiring high performance and
adaptability, such as smart TVs and gaming consoles.
Industrial automation relies on FPGAs for real-time control
and processing in machinery and robotics. Additionally,
FPGAs play a crucial role in aerospace and defense, where
their reliability and ability to handle complex algorithms
are essential.

Common Subcategories of Embedded -
FPGAs

Within the realm of Embedded - FPGAs, several
subcategories address different needs and applications.
General-purpose FPGAs are the most widely used, offering
a balance of performance and flexibility for a broad range
of applications. High-performance FPGAs are designed for
applications requiring exceptional speed and
computational power, such as data centers and high-
frequency trading systems. Low-power FPGAs cater to
battery-operated and portable devices where energy
efficiency is paramount. Lastly, automotive-grade FPGAs
meet the stringent standards of the automotive industry,
ensuring reliability and performance in vehicle systems.

Types of Embedded - FPGAs

Embedded - FPGAs can be classified into several types
based on their architecture and specific capabilities. SRAM-
based FPGAs are prevalent due to their high speed and
ability to support complex designs, making them suitable
for performance-critical applications. Flash-based FPGAs
offer non-volatile storage, retaining their configuration
without power and enabling faster start-up times. Antifuse-
based FPGAs provide a permanent, one-time
programmable solution, ensuring robust security and
reliability for critical systems. Each type of FPGA brings
distinct advantages, making the choice dependent on the
specific needs of the application.
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XC3000 family: XC5200 devices support an additional pro-
gramming mode: Peripheral Synchronous.

XC3000 family: The XC5200 family does not support
Power-down, but offers a Global 3-state input that does not
reset any flip-flops.

XC3000 family: The XC5200 family does not provide an
on-chip crystal oscillator amplifier, but it does provide an
internal oscillator from which a variety of frequencies up to
12 MHz are available.

Architectural Overview
Figure 1 presents a simplified, conceptual overview of the
XC5200 architecture. Similar to conventional FPGAs, the
XC5200 family consists of programmable IOBs, program-
mable logic blocks, and programmable interconnect. Unlike
other FPGAs, however, the logic and local routing
resources of the XC5200 family are combined in flexible
VersaBlocks (Figure 2). General-purpose routing connects
to the VersaBlock through the General Routing Matrix
(GRM).

VersaBlock: Abundant Local Routing Plus 
Versatile Logic
The basic logic element in each VersaBlock structure is the
Logic Cell, shown in Figure 3. Each LC contains a 4-input
function generator (F), a storage device (FD), and control
logic. There are five independent inputs and three outputs
to each LC. The independence of the inputs and outputs
allows the software to maximize the resource utilization
within each LC. Each Logic Cell also contains a direct
feedthrough path that does not sacrifice the use of either
the function generator or the register; this feature is a first
for FPGAs. The storage device is configurable as either a D
flip-flop or a latch. The control logic consists of carry logic
for fast implementation of arithmetic functions, which can
also be configured as a cascade chain allowing decode of
very wide input functions. 

 

Figure 1:   XC5200 Architectural Overview

Figure 2:   VersaBlock

Figure 3:   XC5200 Logic Cell (Four LCs per CLB)
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tomized RPMs, freeing the designer from the need to
become an expert on architectures.

Cascade Function
Each CY_MUX can be connected to the CY_MUX in the
adjacent LC to provide cascadable decode logic. Figure 7
illustrates how the 4-input function generators can be con-
figured to take advantage of these four cascaded
CY_MUXes. Note that AND and OR cascading are specific
cases of a general decode. In AND cascading all bits are
decoded equal to logic one, while in OR cascading all bits
are decoded equal to logic zero. The flexibility of the LUT
achieves this result. The XC5200 library contains gate
macros designed to take advantage of this function.

CLB Flip-Flops and Latches
The CLB can pass the combinatorial output(s) to the inter-
connect network, but can also store the combinatorial

results or other incoming data in flip-flops, and connect
their outputs to the interconnect network as well. The CLB
storage elements can also be configured as latches.

Data Inputs and Outputs 

The source of a storage element data input is programma-
ble.  It is driven by the function F, or by the Direct In (DI)
block input. The flip-flops or latches drive the Q CLB out-
puts. 

Four fast feed-through paths from DI to DO are available,
as shown in Figure 4. This bypass is sometimes used by
the automated router to repower internal signals. In addi-
tion to the storage element (Q) and direct (DO) outputs,
there is a combinatorial output (X) that is always sourced
by the Lookup Table.

The four edge-triggered D-type flip-flops or level-sensitive
latches have common clock (CK) and clock enable (CE)
inputs. Any of the clock inputs can also be permanently
enabled. Storage element functionality is described in
Table 3. 

Clock Input 

The flip-flops can be triggered on either the rising or falling
clock edge. The clock pin is shared by all four storage ele-
ments with individual polarity control. Any inverter placed
on the clock input is automatically absorbed into the CLB.

Clock Enable 

The clock enable signal (CE) is active High.  The CE pin is
shared by the four storage elements.  If left unconnected
for any, the clock enable for that storage element defaults
to the active state.  CE is not invertible within the CLB. 

Clear 

An asynchronous storage element input (CLR) can be used
to reset all four flip-flops or latches in the CLB. This input

Figure 7:   XC5200 CY_MUX Used for Decoder Cascade 
Logic

F4

F3

F2

F1

F4
F3
F2
F1

F4

F3

F2

F1

F4

F3

F2

F1

A15

A14

A13

A12

A11

A10

A9

A8

A7

A6

A5

A4

A3

A2

A1

A0

AND

AND

F=0

DI

DI

DI

DI

FD

FD

FD

cascade out

out
DO

D

X

LC3

DO

DO

DO

D Q

LC2

X

CI
cascade in

CY_MUX

CY_MUX

CY_MUX

CY_MUX

CY_MUX

FD

X

LC1

Initialization of
carry chain (One Logic Cell)

LC0CKCE CLR

D

D

Q

Q

X

Q

CO

AND

AND

X5708

Table 3: CLB Storage Element Functionality 
(active rising edge is shown) 

  Mode  CK   CE  CLR    D   Q
Power-Up or 

GR
X X X X 0

Flip-Flop

X X 1 X 0

__/   1* 0* D D

0 X 0* X Q

Latch
1 1* 0* X Q

0 1* 0* D D

Both X 0 0* X Q
Legend:

X
__/   
0*
1*

Don’t care
Rising edge
Input is Low or unconnected (default value)
Input is High or unconnected (default value)
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can also be independently disabled for any flip-flop. CLR is
active High.  It is not invertible within the CLB.

Global Reset 

A separate Global Reset line clears each storage element
during power-up, reconfiguration, or when a dedicated
Reset net is driven active. This global net (GR) does not
compete with other routing resources; it uses a dedicated
distribution network.

GR can be driven from any user-programmable pin as a
global reset input. To use this global net, place an input pad
and input buffer in the schematic or HDL code, driving the
GR pin of the STARTUP symbol. (See Figure 9.) A specific
pin location can be assigned to this input using a LOC
attribute or property, just as with any other user-program-
mable pad. An inverter can optionally be inserted after the
input buffer to invert the sense of the Global Reset signal.
Alternatively, GR can be driven from any internal node.

Using FPGA Flip-Flops and Latches
The abundance of flip-flops in the XC5200 Series invites
pipelined designs. This is a powerful way of increasing per-
formance by breaking the function into smaller subfunc-
tions and executing them in parallel, passing on the results
through pipeline flip-flops. This method should be seriously
considered wherever throughput is more important than
latency. 

To include a CLB flip-flop, place the appropriate library
symbol.  For example, FDCE is a D-type flip-flop with clock
enable and asynchronous clear.  The corresponding latch
symbol is called LDCE.

In XC5200-Series devices, the flip-flops can be used as
registers or shift registers without blocking the function
generators from performing a different, perhaps unrelated
task. This ability increases the functional capacity of the
devices. 

The CLB setup time is specified between the function gen-
erator inputs and the clock input CK.  Therefore, the speci-
fied CLB flip-flop setup time includes the delay through the
function generator.

Three-State Buffers
The XC5200 family has four dedicated Three-State Buffers
(TBUFs, or BUFTs in the schematic library) per CLB (see
Figure 9). The four buffers are individually configurable
through four configuration bits to operate as simple
non-inverting buffers or in 3-state mode. When in 3-state
mode the CLB output enable (TS) control signal drives the
enable to all four buffers. Each TBUF can drive up to two
horizontal and/or two vertical Longlines. These 3-state buff-
ers can be used to implement multiplexed or bidirectional
buses on the horizontal or vertical longlines, saving logic
resources.

The 3-state buffer enable is an active-High 3-state (i.e. an
active-Low enable), as shown in Table 4.

Another 3-state buffer with similar access is located near
each I/O block along the right and left edges of the array.

The longlines driven by the 3-state buffers have a weak
keeper at each end.  This circuit prevents undefined float-
ing levels.  However, it is overridden by any driver. To
ensure the longline goes high when no buffers are on, add
an additional BUFT to drive the output High during all of the
previously undefined states.

Figure 10 shows how to use the 3-state buffers to imple-
ment a multiplexer. The selection is accomplished by the
buffer 3-state signal.

PAD

IBUF

GR
GTS

CLK DONEIN
Q1Q4

Q2
Q3

STARTUP

X9009

Figure 8:   Schematic Symbols for Global Reset

Table 4: Three-State Buffer Functionality

IN T OUT
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Figure 9:   XC5200 3-State Buffers
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to Vcc.  The configurable pull-down resistor is an n-channel
transistor that pulls to Ground.  

The value of these resistors is 20 kΩ − 100 kΩ.  This high
value makes them unsuitable as wired-AND pull-up resis-
tors.

The pull-up resistors for most user-programmable IOBs are
active during the configuration process. See Table 13 on
page 124 for a list of pins with pull-ups active before and
during configuration.

After configuration, voltage levels of unused pads, bonded
or unbonded, must be valid logic levels, to reduce noise
sensitivity and avoid excess current. Therefore, by default,
unused pads are configured with the internal pull-up resis-
tor active. Alternatively, they can be individually configured
with the pull-down resistor, or as a driven output, or to be
driven by an external source. To activate the internal
pull-up, attach the PULLUP library component to the net
attached to the pad. To activate the internal pull-down,
attach the PULLDOWN library component to the net
attached to the pad.

JTAG Support

Embedded logic attached to the IOBs contains test struc-
tures compatible with IEEE Standard 1149.1 for boundary
scan testing, simplifying board-level testing. More informa-
tion is provided in “Boundary Scan” on page 98.

Oscillator
XC5200 devices include an internal oscillator. This oscilla-
tor is used to clock the power-on time-out, clear configura-
tion memory, and source CCLK in Master configuration
modes. The oscillator runs at a nominal 12 MHz frequency
that varies with process, Vcc, and temperature. The output
CCLK frequency is selectable as 1 MHz (default), 6 MHz,
or 12 MHz. 

The XC5200 oscillator divides the internal 12-MHz clock or
a user clock. The user then has the choice of dividing by 4,
16, 64, or 256 for the “OSC1” output and dividing by 2, 8,
32, 128, 1024, 4096, 16384, or 65536 for the “OSC2” out-
put. The division is specified via a “DIVIDEn_BY=x”
attribute on the symbol, where n=1 for OSC1, or n=2 for
OSC2. These frequencies can vary by as much as -50% or
+ 50%.

The OSC5 macro is used where an internal oscillator is
required. The CK_DIV macro is applicable when a user
clock input is specified (see Figure 13).

VersaBlock Routing
The General Routing Matrix (GRM) connects to the
Versa-Block via 24 bidirectional ports (M0-M23). Excluding
direct connections, global nets, and 3-statable Longlines,
all  VersaBlock inputs and outputs connect to the GRM via
these 24 ports. Four 3-statable unidirectional signals
(TQ0-TQ3) drive out of the VersaBlock directly onto the
horizontal and vertical Longlines. Two horizontal global
nets and two vertical global nets connect directly to every
CLB clock pin; they can connect to other CLB inputs via the
GRM. Each CLB also has four unidirectional direct con-
nects to each of its four neighboring CLBs. These direct
connects can also feed directly back to the CLB (see
Figure 14).

In addition, each CLB has 16 direct inputs, four direct con-
nections from each of the neighboring CLBs. These direct
connections provide high-speed local routing that
bypasses the GRM.

Local Interconnect Matrix
The Local Interconnect Matrix (LIM) is built from input and
output multiplexers. The 13 CLB outputs (12 LC outputs
plus a Vcc/GND signal) connect to the eight VersaBlock
outputs via the output multiplexers, which consist of eight
fully populated 13-to-1 multiplexers. Of the eight
VersaBlock outputs, four signals drive each neighboring

CLB directly, and provide a direct feedback path to the input
multiplexers. The four remaining multiplexer outputs can
drive the GRM through four TBUFs (TQ0-TQ3). All eight
multiplexer outputs can connect to the GRM through the
bidirectional M0-M23 signals. All eight signals also connect
to the input multiplexers and are potential inputs to that
CLB.

OSCS

CK_DIV

OSC1

OSC1

OSC2

OSC2

5200_14

Figure 13:   XC5200 Oscillator Macros
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CLB inputs have several possible sources: the 24 signals
from the GRM, 16 direct connections from neighboring
VersaBlocks, four signals from global, low-skew buffers,
and the four signals from the CLB output multiplexers.
Unlike the output multiplexers, the input multiplexers are
not fully populated; i.e., only a subset of the available sig-
nals can be connected to a given CLB input. The flexibility
of LUT input swapping and LUT mapping compensates for
this limitation. For example, if a 2-input NAND gate is
required, it can be mapped into any of the four LUTs, and
use any two of the four inputs to the LUT.

Direct Connects
The unidirectional direct-connect segments are connected
to the logic input/output pins through the CLB input and out-
put multiplexer arrays, and thus bypass the general routing
matrix altogether. These lines increase the routing channel
utilization, while simultaneously reducing the delay
incurred in speed-critical connections.

The direct connects also provide a high-speed path from
the edge CLBs to the VersaRing input/output buffers, and
thus reduce pin-to-pin set-up time, clock-to-out, and combi-
national propagation delay. Direct connects from the input
buffers to the CLB DI pin (direct flip-flop input) are only
available on the left and right edges of the device. CLB
look-up table inputs and combinatorial/registered outputs
have direct connects to input/output buffers on all four
sides.

The direct connects are ideal for developing customized
RPM cells. Using direct connects improves the macro per-
formance, and leaves the other routing channels intact for
improved routing. Direct connects can also route through a
CLB using one of the four cell-feedthrough paths.

General Routing Matrix
The General Routing Matrix, shown in Figure 15, provides
flexible bidirectional connections to the Local Interconnect

Figure 14:   VersaBlock Details
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Configuration 
Configuration is the process of loading design-specific pro-
gramming data into one or more FPGAs to define the func-
tional operation of the internal blocks and their
interconnections. This is somewhat like loading the com-
mand registers of a programmable peripheral chip.
XC5200-Series devices use several hundred bits of config-
uration data per CLB and its associated interconnects.
Each configuration bit defines the state of a static memory
cell that controls either a function look-up table bit, a multi-
plexer input, or an interconnect pass transistor. The devel-
opment system translates the design into a netlist file. It
automatically partitions, places and routes the logic and
generates the configuration data in PROM format. 

Special Purpose Pins 
Three configuration mode pins (M2, M1, M0) are sampled
prior to configuration to determine the configuration mode.
After configuration, these pins can be used as auxiliary I/O
connections. The development system does not use these
resources unless they are explicitly specified in the design
entry.  This is done by placing a special pad symbol called
MD2, MD1, or MD0 instead of the input or output pad sym-
bol.

In XC5200-Series devices, the mode pins have weak
pull-up resistors during configuration.   With all three mode
pins High, Slave Serial mode is selected, which is the most
popular configuration mode.  Therefore, for the most com-
mon configuration mode, the mode pins can be left uncon-
nected.  (Note, however, that the internal pull-up resistor
value can be as high as 100 kΩ.)  After configuration, these
pins can individually have weak pull-up or pull-down resis-
tors, as specified in the design.  A pull-down resistor value
of 3.3kΩ is recommended.

These pins are located in the lower left chip corner and are
near the readback nets.  This location allows convenient
routing if compatibility with the XC2000 and XC3000 family
conventions of M0/RT, M1/RD is desired. 

Configuration Modes 
XC5200 devices have seven configuration modes. These
modes are selected by a 3-bit input code applied to the M2,

M1, and M0 inputs.  There are three self-loading Master
modes, two Peripheral modes, and a Serial Slave mode, 

Note :*Peripheral Synchronous can be considered byte-wide
Slave Parallel

which is used primarily for daisy-chained devices. The sev-
enth mode, called Express mode, is an additional slave
mode that allows high-speed parallel configuration. The
coding for mode selection is shown in Table 10.

Note that the smallest package, VQ64, only supports the
Master Serial, Slave Serial, and Express modes.A detailed
description of each configuration mode, with timing infor-
mation, is included later in this data sheet. During configu-
ration, some of the I/O pins are used temporarily for the
configuration process.   All pins used during configuration
are shown in Table 13 on page 124.

Master Modes

The three Master modes use an internal oscillator to gener-
ate a Configuration Clock (CCLK) for driving potential slave
devices.  They also generate address and timing for exter-
nal PROM(s) containing the configuration data.  

Master Parallel (Up or Down) modes generate the CCLK
signal and PROM addresses and receive byte parallel
data.  The data is internally serialized into the FPGA
data-frame format. The up and down selection generates
starting addresses at either zero or 3FFFF, for compatibility
with different microprocessor addressing conventions. The

Unrestricted User-Programmable I/O Pins

I/O
Weak 
Pull-up

I/O
These pins can be configured to be input and/or output after configuration is completed.  
Before configuration is completed, these pins have an internal high-value pull-up resis-
tor (20 kΩ - 100 kΩ) that defines the logic level as High.  

Table 9: Pin Descriptions (Continued)

Pin Name

I/O 
During 
Config.

I/O 
After 

Config. Pin Description

Table 10: Configuration Modes

Mode M2 M1 M0 CCLK Data
Master Serial 0 0 0 output Bit-Serial

Slave Serial 1 1 1 input Bit-Serial

Master 
Parallel Up

1 0 0 output Byte-Wide, 
increment 

from 00000 

Master 
Parallel Down

1 1 0 output Byte-Wide, 
decrement 
from 3FFFF 

Peripheral 
Synchronous*

0 1 1 input Byte-Wide

Peripheral 
Asynchronous

1 0 1 output Byte-Wide

Express 0 1 0 input Byte-Wide

Reserved 0 0 1 — —
7-104 November 5, 1998 (Version 5.2)
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Master Serial mode generates CCLK and receives the con-
figuration data in serial form from a Xilinx serial-configura-
tion PROM. 

CCLK speed is selectable as 1 MHz (default), 6 MHz, or 12
MHz. Configuration always starts at the default slow fre-
quency, then can switch to the higher frequency during the
first frame.  Frequency tolerance is -50% to +50%.

Peripheral Modes

The two Peripheral modes accept byte-wide data from a
bus.  A RDY/BUSY status is available as a handshake sig-
nal.  In Asynchronous Peripheral mode, the internal oscilla-
tor generates a CCLK burst signal that serializes the
byte-wide data.  CCLK can also drive slave devices.  In the
synchronous mode, an externally supplied clock input to
CCLK serializes the data.

Slave Serial Mode

In Slave Serial mode, the FPGA receives serial configura-
tion data on the rising edge of CCLK and, after loading its
configuration, passes additional data out, resynchronized
on the next falling edge of CCLK.  

Multiple slave devices with identical configurations can be
wired with parallel DIN inputs.  In this way, multiple devices
can be configured simultaneously.  

Serial Daisy Chain

Multiple devices with different configurations can be con-
nected together in a “daisy chain,” and a single combined
bitstream used to configure the chain of slave devices.  

To configure a daisy chain of devices, wire the CCLK pins
of all devices in parallel, as shown in Figure 28 on page
114. Connect the DOUT of each device to the DIN of the
next. The lead or master FPGA and following slaves each
passes resynchronized configuration data coming from a
single source. The header data, including the length count,
is passed through and is captured by each FPGA when it
recognizes the 0010 preamble. Following the length-count
data, each FPGA outputs a High on DOUT until it has
received its required number of data frames. 

After an FPGA has received its configuration data, it
passes on any additional frame start bits and configuration
data on DOUT. When the total number of configuration
clocks applied after memory initialization equals the value
of the 24-bit length count, the FPGAs begin the start-up
sequence and become operational together. FPGA I/O are
normally released two CCLK cycles after the last configura-
tion bit is received. Figure 25 on page 109 shows the
start-up timing for an XC5200-Series device.

The daisy-chained bitstream is not simply a concatenation
of the individual bitstreams. The PROM file formatter must
be used to combine the bitstreams for a daisy-chained con-
figuration.

Multi-Family Daisy Chain

All Xilinx FPGAs of the XC2000, XC3000, XC4000, and
XC5200 Series use a compatible bitstream format and can,
therefore, be connected in a daisy chain in an arbitrary
sequence. There is, however, one limitation. If the chain
contains XC5200-Series devices, the master normally can-
not be an XC2000 or XC3000 device. 

The reason for this rule is shown in Figure 25 on page 109.
Since all devices in the chain store the same length count
value and generate or receive one common sequence of
CCLK pulses, they all recognize length-count match on the
same CCLK edge, as indicated on the left edge of
Figure 25. The master device then generates additional
CCLK pulses until it reaches its finish point F. The different
families generate or require different numbers of additional
CCLK pulses until they reach F. Not reaching F means that
the device does not really finish its configuration, although
DONE may have gone High, the outputs became active,
and the internal reset was released. For the
XC5200-Series device, not reaching F means that read-
back cannot be initiated and most boundary scan instruc-
tions cannot be used. 

The user has some control over the relative timing of these
events and can, therefore, make sure that they occur at the
proper time and the finish point F is reached.  Timing is con-
trolled using options in the bitstream generation software.

XC5200 devices always have the same number of CCLKs
in the power up delay, independent of the configuration
mode, unlike the XC3000/XC4000 Series devices. To guar-
antee all devices in a daisy chain have finished the
power-up delay, tie the INIT pins together, as shown in
Figure 27.

XC3000 Master with an XC5200-Series Slave

Some designers want to use an XC3000 lead device in
peripheral mode and have the I/O pins of the
XC5200-Series devices all available for user I/O. Figure 22
provides a solution for that case. 

This solution requires one CLB, one IOB and pin, and an
internal oscillator with a frequency of up to 5 MHz as a
clock source.  The XC3000 master device must be config-
ured with late Internal Reset, which is the default option.

One CLB and one IOB in the lead XC3000-family device
are used to generate the additional CCLK pulse required by
the XC5200-Series devices.  When the lead device
removes the internal RESET signal, the 2-bit shift register
responds to its clock input and generates an active Low
output signal for the duration of the subsequent clock
period.  An external connection between this output and
CCLK thus creates the extra CCLK pulse.
November 5, 1998 (Version 5.2) 7-105
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Configuration Timing
The seven configuration modes are discussed in detail in
this section.  Timing specifications are included.

Slave Serial Mode
In Slave Serial mode, an external signal drives the CCLK
input of the FPGA.  The serial configuration bitstream must
be available at the DIN input of the lead FPGA a short
setup time before each rising CCLK edge. 

The lead FPGA then presents the preamble data—and all
data that overflows the lead device—on its DOUT pin.

There is an internal delay of 0.5 CCLK periods, which
means that DOUT changes on the falling CCLK edge, and
the next FPGA in the daisy chain accepts data on the sub-
sequent rising CCLK edge. 

Figure 28 shows a full master/slave system. An
XC5200-Series device in Slave Serial mode should be con-
nected as shown in the third device from the left. 

Slave Serial mode is selected by a <111> on the mode pins
(M2, M1, M0).   Slave Serial  is the default mode if the mode
pins are left unconnected, as they have weak pull-up resis-
tors during configuration.

Note: Configuration must be delayed until the INIT pins of all daisy-chained FPGAs are High.
Figure 29:   Slave Serial Mode Programming Switching Characteristics

XC5200
MASTER
SERIAL

Spartan,
XC4000E/EX,

XC5200
SLAVE

XC3100A
SLAVE

XC1700E

PROGRAM

NOTE:
M2, M1, M0 can be shorted
to Ground if not used as I/O

NOTE:
M2, M1, M0 can be shorted
to VCC if not used as I/O

M2
M0 M1

DOUT

CCLK CLK

VCC

+5 V

DATA

CE CEO

VPP

RESET/OE DONE

DIN

LDC
INIT INITDONE

PROGRAM PROGRAM
D/P INIT
RESET

CCLK

DIN

CCLK

DINDOUT DOUT

M2
M0 M1 M1 PWRDNM0

M2

(Low Reset Option Used)

4.7 KΩ

3.3 KΩ
3.3 KΩ3.3 KΩ 3.3 KΩ3.3 KΩ3.3 KΩ

VCC

X9003_01

N/C

N/C

Figure 28:   Master/Slave Serial Mode Circuit Diagram 

4 TCCH

Bit n Bit n + 1

Bit nBit n - 1

3 TCCO

5 TCCL2 TCCD1 TDCC

DIN

CCLK

DOUT
(Output)

X5379

Description Symbol Min Max Units

CCLK

DIN setup 1 TDCC 20 ns

DIN hold 2 TCCD 0 ns

DIN to DOUT 3 TCCO 30 ns

High time 4 TCCH 45 ns

Low time 5 TCCL 45 ns

Frequency FCC 10 MHz
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Note: If not driven by the preceding DOUT, CS1 must remain high until the device is fully configured.

Figure 38:   Express Mode Programming Switching Characteristics

X5087

BYTE
0

CCLK

FPGA Filled

1

2

3
INIT

TDC

TCD

TIC

D0-D7

Serial Data Out
(DOUT)

RDY/BUSY

CS1

BYTE
1

BYTE
2

BYTE
3

Internal INIT

Description Symbol Min Max Units

CCLK

INIT (High) Setup time required 1 TIC 5 µs

DIN Setup time required 2 TDC 30 ns

DIN hold time required 3 TCD 0 ns

CCLK High time TCCH 30 ns

CCLK Low time TCCL 30 ns

CCLK frequency FCC 10 MHz
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Configuration Switching Characteristics 

VALID

PROGRAM

INIT

Vcc

PIT

PORT

ICCKT CCLKT

CCLK OUTPUT or INPUT

M0, M1, M2 DONE RESPONSE

<300 ns

<300 ns

>300 ns

RE-PROGRAM

X1532

(Required)

I /O

Master Modes

Description Symbol Min Max Units

Power-On-Reset TPOR 2 15 ms
Program Latency TPI 6 70 µs per CLB column
CCLK (output) Delay

period (slow)
period (fast)

TICCK
TCCLK
TCCLK

40
640
100

375
3000
375

µs
ns
ns

Slave and Peripheral Modes

Description Symbol Min Max Units

Power-On-Reset TPOR 2 15 ms

Program Latency TPI 6 70 µs per CLB column

CCLK (input) Delay (required)
period (required)

TICCK
TCCLK

5
100

µs
ns

Note: At power-up, VCC must rise from 2.0 to VCC min in less than 15 ms, otherwise delay configuration using PROGRAM until 
VCC is valid.
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XC5200 Program Readback Switching Characteristic Guidelines
Testing of the switching parameters is modeled after testing methods specified by MIL-M-38510/605.  All devices are 100%
functionally tested.  Internal timing parameters are not measured directly.  They are derived from benchmark timing patterns
that are taken at device introduction, prior to any process improvements. 

The following guidelines reflect worst-case values over the recommended operating conditions.

Note 1: Timing parameters apply to all speed grades.

Note 2: rdbk.TRIG is High prior to Finished, Finished will trigger the first Readback

Description Symbol Min Max Units
rdbk.TRIG rdbk.TRIG setup to initiate and abort Readback

rdbk.TRIG hold to initiate and abort Readback
1
2

TRTRC
TRCRT

200
50

-
-

ns
ns

rdclk.1 rdbk.DATA delay
rdbk.RIP delay
High time
Low time

7
6
5
4

TRCRD
TRCRR
TRCH
TRCL

-
-

250
250

250
250
500
500

ns
ns
ns
ns

RTRCT
RCRTT

2

RCLT4

RCRRT
6

RCHT 5

RCRDT
7

DUMMY DUMMYrdbk.DATA

rdbk.RIP

rdclk.I

rdbk.TRIG

Finished
Internal Net

VALID

RTLT
3

X1790

VALID

1
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XC5200 CLB Switching Characteristic Guidelines
Testing of the switching parameters is modeled after testing methods specified by MIL-M-38510/605. All devices are 100%
functionally tested. Since many internal timing parameters cannot be measured directly, they are derived from benchmark
timing patterns. The following guidelines reflect worst-case values over the recommended operating conditions. For more
detailed, more precise, and more up-to-date timing information, use the values provided by the timing calculator and used
in the simulator.

Speed Grade -6 -5 -4 -3

Description Symbol
Min
(ns)

Max
(ns)

Min
(ns)

Max
(ns)

Min
(ns)

Max
(ns)

Min
(ns)

Max
(ns)

Combinatorial Delays
F inputs to X output TILO 5.6 4.6 3.8 3.0
F inputs via transparent latch to Q TITO 8.0 6.6 5.4 4.3
DI inputs to DO output (Logic-Cell 
Feedthrough)

TIDO 4.3 3.5 2.8 2.4

F inputs via F5_MUX to DO output TIMO 7.2 5.8 5.0 4.3
Carry Delays

Incremental delay per bit TCY 0.7 0.6 0.5 0.5
Carry-in overhead from DI TCYDI 1.8 1.6 1.5 1.4
Carry-in overhead from F TCYL 3.7 3.2 2.9 2.4
Carry-out overhead to DO TCYO 4.0 3.2 2.5 2.1

Sequential Delays
Clock (CK) to out (Q) (Flip-Flop) TCKO 5.8 4.9 4.0 4.0
Gate (Latch enable) going active to out (Q) TGO 9.2 7.4 5.9 5.5

Set-up Time Before Clock (CK)
F inputs TICK 2.3 1.8 1.4 1.3
F inputs via F5_MUX TMICK 3.8 3.0 2.5 2.4
DI input TDICK 0.8 0.5 0.4 0.4
CE input TEICK 1.6 1.2 0.9 0.9

Hold Times After Clock (CK)
F inputs TCKI 0 0 0 0
F inputs via F5_MUX TCKMI 0 0 0 0
DI input TCKDI 0 0 0 0
CE input TCKEI 0 0 0 0

Clock Widths
Clock High Time TCH 6.0 6.0 6.0 6.0
Clock Low Time TCL 6.0 6.0 6.0 6.0
Toggle Frequency (MHz) (Note 3) FTOG 83 83 83 83

Reset Delays
Width (High) TCLRW 6.0 6.0 6.0 6.0
Delay from CLR to Q (Flip-Flop) TCLR 7.7 6.3 5.1 4.0
Delay from CLR to Q (Latch) TCLRL 6.5 5.2 4.2 3.0

Global Reset Delays
Width (High) TGCLRW 6.0 6.0 6.0 6.0
Delay from internal GR to Q TGCLR 14.7 12.1 9.1 8.0

Note: 1. The CLB K to Q output delay (TCKO) of any CLB, plus the shortest possible interconnect delay, is always longer than the 
Data In hold-time requirement (TCKDI) of any CLB on the same die.

2. Timing is based upon the XC5215 device. For other devices, see Timing Calculator.
3. Maximum flip-flop toggle rate for export control purposes.
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XC5200 Boundary Scan (JTAG) Switching Characteristic Guidelines
The following guidelines reflect worst-case values over the recommended operating conditions.  They are expressed in units
of nanoseconds and apply to all XC5200 devices unless otherwise noted.          

                          Speed Grade -6 -5 -4 -3
Description Symbol Min Max Min Max Min Max Min Max

Setup and Hold
Input (TDI) to clock (TCK) 
      setup time
Input (TDI) to clock (TCK) 
      hold time
Input (TMS) to clock (TCK) 
      setup time
Input (TMS) to clock (TCK) 
      hold time

TTDITCK

TTCKTDI

TTMSTCK

TTCKTMS

30.0

0

15.0

0

30.0

0

15.0

0

30.0

0

15.0

0

30.0

0

15.0

0

Propagation Delay
Clock (TCK) to Pad (TDO) TTCKPO 30.0 30.0 30.0 30.0

Clock
Clock (TCK) High
Clock (TCK) Low 

TTCKH
TTCKL

30.0
30.0

30.0
30.0

30.0
30.0

30.0
30.0

FMAX (MHz) FMAX 10.0 10.0 10.0 10.0

Note 1: Input pad setup and hold times are specified with respect to the internal clock.
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Device-Specific Pinout Tables
Device-specific tables include all packages for each XC5200-Series device. They follow the pad locations around the die,
and include boundary scan register locations.

Pin Locations for XC5202 Devices
The following table may contain pinout information for unsupported device/package combinations. Please see the
availability charts elsewhere in the XC5200 Series data sheet for availability information.

Pin Description VQ64* PC84 PQ100 VQ100 TQ144 PG156 Boundary Scan Order
VCC - 2 92 89 128 H3 -

1. I/O (A8) 57 3 93 90 129 H1 51

2. I/O (A9) 58 4 94 91 130 G1 54

3. I/O - - 95 92 131 G2 57

4. I/O - - 96 93 132 G3 63

5. I/O (A10) - 5 97 94 133 F1 66

6. I/O (A11) 59 6 98 95 134 F2 69

GND - - - - 137 F3 -

7. I/O (A12) 60 7 99 96 138 E3 78

8. I/O (A13) 61 8 100 97 139 C1 81

9. I/O (A14) 62 9 1 98 142 B1 90

10. I/O (A15) 63 10 2 99 143 B2 93

VCC 64 11 3 100 144 C3 -

GND - 12 4 1 1 C4 -

11. GCK1 (A16, I/O) 1 13 5 2 2 B3 102

12. I/O (A17) 2 14 6 3 3 A1 105

13. I/O (TDI) 3 15 7 4 6 B4 111

14. I/O (TCK) 4 16 8 5 7 A3 114

GND - - - - 8 C6 -

15. I/O (TMS) 5 17 9 6 11 A5 117

16. I/O 6 18 10 7 12 C7 123

17. I/O - - - - 13 B7 126

18. I/O - - 11 8 14 A6 129

19. I/O - 19 12 9 15 A7 135

20. I/O 7 20 13 10 16 A8 138

GND 8 21 14 11 17 C8 -

VCC 9 22 15 12 18 B8 -

21. I/O - 23 16 13 19 C9 141

22. I/O 10 24 17 14 20 B9 147

23. I/O - 18 15 21 A9 150

24. I/O - - - 22 B10 153

25. I/O - 25 19 16 23 C10 159

26. I/O 11 26 20 17 24 A10 162

GND - - - 27 C11 -

27. I/O 12 27 21 18 28 B12 165

28. I/O - 22 19 29 A13 171

29. I/O 13 28 23 20 32 B13 174

30. I/O 14 29 24 21 33 B14 177

31. M1 (I/O) 15 30 25 22 34 A15 186

GND - 31 26 23 35 C13 -

32. M0 (I/O) 16 32 27 24 36 A16 189

VCC - 33 28 25 37 C14 -

33. M2 (I/O) 17 34 29 26 38 B15 192

34. GCK2 (I/O) 18 35 30 27 39 B16 195
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57. I/O - - - 47 E16 53 306

58. I/O 38 34 31 48 F16 54 312

59. I/O 39 35 32 49 G14 55 315

60. I/O - 36 33 50 G15 56 318

61. I/O - 37 34 51 G16 57 324

62. I/O 40 38 35 52 H16 58 327

63. I/O (ERR, INIT) 41 39 36 53 H15 59 330

VCC 42 40 37 54 H14 60 -

GND 43 41 38 55 J14 61 -

64. I/O 44 42 39 56 J15 62 336

65. I/O 45 43 40 57 J16 63 339

66. I/O - 44 41 58 K16 64 348

67. I/O - 45 42 59 K15 65 351

68. I/O 46 46 43 60 K14 66 354

69. I/O 47 47 44 61 L16 67 360

70. I/O - - - 62 M16 68 363

71. I/O - - - 63 L15 69 366

GND - - - 64 L14 70 -

72. I/O - - - - N16 71 372

73. I/O - - - - M15 72 375

74. I/O 48 48 45 65 P16 73 378

75. I/O 49 49 46 66 M14 74 384

76. I/O - - - 67 N15 75 387

77. I/O - - - 68 P15 76 390

78. I/O 50 50 47 69 N14 77 396

79. I/O 51 51 48 70 R16 78 399

GND 52 52 49 71 P14 79 -

DONE 53 53 50 72 R15 80 -

VCC 54 54 51 73 P13 81 -

PROG 55 55 52 74 R14 82 -

80. I/O (D7) 56 56 53 75 T16 83 408

81. GCK3 (I/O) 57 57 54 76 T15 84 411

82. I/O - - - 77 R13 85 420

83. I/O - - - 78 P12 86 423

84. I/O (D6) 58 58 55 79 T14 87 426

85. I/O - 59 56 80 T13 88 432

GND - - - 81 P11 91 -

86. I/O - - - 82 R11 92 435

87. I/O - - - 83 T11 93 438

88. I/O (D5) 59 60 57 84 T10 94 444

89. I/O (CS0) 60 61 58 85 P10 95 447

90. I/O - 62 59 86 R10 96 450

91. I/O - 63 60 87 T9 97 456

92. I/O (D4) 61 64 61 88 R9 98 459

93. I/O 62 65 62 89 P9 99 462

VCC 63 66 63 90 R8 100 -

GND 64 67 64 91 P8 101 -

94. I/O (D3) 65 68 65 92 T8 102 468

95. I/O (RS) 66 69 66 93 T7 103 471

96. I/O - 70 67 94 T6 104 474

97. I/O - - - 95 R7 105 480

98. I/O (D2) 67 71 68 96 P7 106 483

Pin Description PC84 PQ100 VQ100 TQ144 PG156 PQ160 Boundary Scan Order
November 5, 1998 (Version 5.2) 7-137



R

XC5200 Series Field Programmable Gate Arrays

Product Obsolete or Under Obsolescence
Additional No Connect (N.C.) Connections for PQ160 Package 

Notes: Boundary Scan Bit 0 = TDO.T
Boundary Scan Bit 1 = TDO.O
Boundary Scan Bit 1056 = BSCAN.UPD

99. I/O 68 72 69 97 T5 107 486

100. I/O - - - 98 R6 108 492

101. I/O - - - 99 T4 109 495

GND - - - 100 P6 110 -

102. I/O (D1) 69 73 70 101 T3 113 498

103. I/O 
(RCLK-BUSY/RDY)

70 74 71 102 P5 114 504

104. I/O - - - 103 R4 115 507

105. I/O - - - 104 R3 116 510

106. I/O (D0, DIN) 71 75 72 105 P4 117 516

107. I/O (DOUT) 72 76 73 106 T2 118 519

CCLK 73 77 74 107 R2 119 -

VCC 74 78 75 108 P3 120 -

108. I/O (TDO) 75 79 76 109 T1 121 0

GND 76 80 77 110 N3 122 -

109. I/O (A0, WS) 77 81 78 111 R1 123 9

110. GCK4 (A1, I/O) 78 82 79 112 P2 124 15

111. I/O - - - 113 N2 125 18

112. I/O - - - 114 M3 126 21

113. I/O (A2, CS1) 79 83 80 115 P1 127 27

114. I/O (A3) 80 84 81 116 N1 128 30

115. I/O - - - 117 M2 129 33

116. I/O - - - - M1 130 39

GND - - - 118 L3 131 -

117. I/O - - - 119 L2 132 42

118. I/O - - - 120 L1 133 45

119. I/O (A4) 81 85 82 121 K3 134 51

120. I/O (A5) 82 86 83 122 K2 135 54

121. I/O - 87 84 123 K1 137 57

122. I/O - 88 85 124 J1 138 63

123. I/O (A6) 83 89 86 125 J2 139 66

124. I/O (A7) 84 90 87 126 J3 140 69

GND 1 91 88 127 H2 141 -

PQ160
8 30 89 111 136

9 31 90 112

Pin Description PC84 PQ100 VQ100 TQ144 PG156 PQ160 Boundary Scan Order
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87. I/O - - - - 72 80 P17 94 468

88. I/O 48 48 45 65 73 81 N16 95 471

89. I/O 49 49 46 66 74 82 T17 96 480

90. I/O - - - 67 75 83 R17 97 483

91. I/O - - - 68 76 84 P16 98 486

92. I/O 50 50 47 69 77 85 U18 99 492

93. I/O 51 51 48 70 78 86 T16 100 495

GND 52 52 49 71 79 87 R16 101 -

DONE 53 53 50 72 80 88 U17 103 -

VCC 54 54 51 73 81 89 R15 106 -

PROG 55 55 52 74 82 90 V18 108 -

94. I/O (D7) 56 56 53 75 83 91 T15 109 504

95. GCK3 (I/O) 57 57 54 76 84 92 U16 110 507

96. I/O - - - 77 85 93 T14 111 516

97. I/O - - - 78 86 94 U15 112 519

98. I/O (D6) 58 58 55 79 87 95 V17 113 522

99. I/O - 59 56 80 88 96 V16 114 528

100. I/O - - - - 89 97 T13 115 531

101. I/O - - - - 90 98 U14 116 534

GND - - - 81 91 99 T12 119 -

102. I/O - - - 82 92 100 U13 120 540

103. I/O - - - 83 93 101 V13 121 543

104. I/O (D5) 59 60 57 84 94 102 U12 122 552

105. I/O (CS0) 60 61 58 85 95 103 V12 123 555

106. I/O - - - - - 104 T11 124 558

107. I/O - - - - - 105 U11 125 564

108. I/O - 62 59 86 96 106 V11 126 567

109. I/O - 63 60 87 97 107 V10 127 570

110. I/O (D4) 61 64 61 88 98 108 U10 128 576

111. I/O 62 65 62 89 99 109 T10 129 579

VCC 63 66 63 90 100 110 R10 130 -

GND 64 67 64 91 101 111 R9 131 -

112. I/O (D3) 65 68 65 92 102 112 T9 132 588

113. I/O (RS) 66 69 66 93 103 113 U9 133 591

114. I/O - 70 67 94 104 114 V9 134 600

115. I/O - - - 95 105 115 V8 135 603

116. I/O - - - - - 116 U8 136 612

117. I/O - - - - - 117 T8 137 615

118. I/O (D2) 67 71 68 96 106 118 V7 138 618

119. I/O 68 72 69 97 107 119 U7 139 624

120. I/O - - - 98 108 120 V6 140 627

121. I/O - - - 99 109 121 U6 141 630

GND - - - 100 110 122 T7 142 -

122. I/O - - - - 111 123 U5 145 636

123. I/O - - - - 112 124 T6 146 639

124. I/O (D1) 69 73 70 101 113 125 V3 147 642

125. I/O 
(RCLK-BUSY/RD
Y)

70 74 71 102 114 126 V2 148 648

126. I/O - - - 103 115 127 U4 149 651

127. I/O - - - 104 116 128 T5 150 654

128. I/O (D0, DIN) 71 75 72 105 117 129 U3 151 660

129. I/O (DOUT) 72 76 73 106 118 130 T4 152 663

Pin Description PC84 PQ100 VQ100 TQ144 PQ160 TQ176 PG191 PQ208 Boundary Scan Order
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Additional No Connect (N.C.) Connections for PQ208 and TQ176 Packages

Notes: Boundary Scan Bit 0 = TDO.T
Boundary Scan Bit 1 = TDO.O
Boundary Scan Bit 1056 = BSCAN.UPD

Pin Locations for XC5210 Devices
The following table may contain pinout information for unsupported device/package combinations. Please see the
availability charts elsewhere in the XC5200 Series data sheet for availability information.

CCLK 73 77 74 107 119 131 V1 153 -

VCC 74 78 75 108 120 132 R4 154 -

130. I/O (TDO) 75 79 76 109 121 133 U2 159 -

GND 76 80 77 110 122 134 R3 160 -

131. I/O (A0, WS) 77 81 78 111 123 135 T3 161 9

132. GCK4 (A1, I/O) 78 82 79 112 124 136 U1 162 15

133. I/O - - - 113 125 137 P3 163 18

134. I/O - - - 114 126 138 R2 164 21

135. I/O (A2, CS1) 79 83 80 115 127 139 T2 165 27

136. I/O (A3) 80 84 81 116 128 140 N3 166 30

137. I/O - - - 117 129 141 P2 167 33

138. I/O - - - - 130 142 T1 168 42

GND - - - 118 131 143 M3 171 -

139. I/O - - - 119 132 144 P1 172 45

140. I/O - - - 120 133 145 N1 173 51

141. I/O (A4) 81 85 82 121 134 146 M2 174 54

142. I/O (A5) 82 86 83 122 135 147 M1 175 57

143. I/O - - - - - 148 L3 176 63

144. I/O - - - - 136 149 L2 177 66

145. I/O - 87 84 123 137 150 L1 178 69

146. I/O - 88 85 124 138 151 K1 179 75

147. I/O (A6) 83 89 86 125 139 152 K2 180 78

148. I/O (A7) 84 90 87 126 140 153 K3 181 81

GND 1 91 88 127 141 154 K4 182 -

PQ208 TQ176
195 1 39 65 104 143 158 167

196 3 51 66 105 144 169

206 12 52 91 107 155 170

207 13 53 92 117 156

208 38 54 102 118 157

Pin Description PC84 PQ100 VQ100 TQ144 PQ160 TQ176 PG191 PQ208 Boundary Scan Order

Pin Description PC84 TQ144 PQ160 TQ176 PQ208 PG223 BG225 PQ240 Boundary Scan
Order

VCC 2 128 142 155 183 J4 VCC* 212 -

1. I/O (A8) 3 129 143 156 184 J3 E8 213 111

2. I/O (A9) 4 130 144 157 185 J2 B7 214 114

3. I/O - 131 145 158 186 J1 A7 215 117

4. I/O - 132 146 159 187 H1 C7 216 123

5. I/O - - - 160 188 H2 D7 217 126

6. I/O - - - 161 189 H3 E7 218 129
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146. I/O - - - R17 - AD6 750

147. I/O - - - T18 - AC7 756

148. I/O 73 95 113 U19 R13 AF4 759

149. I/O 74 96 114 V19 N12 AF3 768

150. I/O 75 97 115 R16 P13 AD5 771

151. I/O 76 98 116 T17 K10 AE3 774

152. I/O 77 99 117 U18 R14 AD4 780

153. I/O 78 100 118 X20 N13 AC5 783

GND 79 101 119 W20 GND* GND* -

DONE 80 103 120 V18 P14 AD3 -

VCC 81 106 121 X19 VCC* VCC* -

PROG 82 108 122 U17 M12 AC4 -

154. I/O (D7) 83 109 123 W19 P15 AD2 792

155. GCK3 (I/O) 84 110 124 W18 N14 AC3 795

156. I/O 85 111 125 T15 L11 AB4 804

157. I/O 86 112 126 U16 M13 AD1 807

158. I/O - - 127 V17 N15 AA4 810

159. I/O - - 128 X18 M14 AA3 816

160. I/O - - - U15 - AB2 819

161. I/O - - - T14 - AC1 828

162. I/O (D6) 87 113 129 W17 J10 Y3 831

163. I/O 88 114 130 V16 L12 AA2 834

164. I/O 89 115 131 X17 M15 AA1 840

165. I/O 90 116 132 U14 L13 W4 843

166. I/O - 117 133 V15 L14 W3 846

167. I/O - 118 134 T13 K11 Y2 852

168. I/O - - - W16 - Y1 855

169. I/O - - - W15 - V4 858

GND 91 119 135 X16 GND* GND* -

170. I/O - - 136 U13 L15 V3 864

171. I/O - - 137 V14 K12 W2 867

172. I/O 92 120 138 W14 K13 U4 870

173. I/O 93 121 139 V13 K14 U3 876

VCC - - 140 X15 VCC* VCC* -

174. I/O (D5) 94 122 141 T12 K15 V2 879

175. I/O (CS0) 95 123 142 X14 J12 V1 882

176. I/O - - - X13 - T1 888

177. I/O - - - V12 - R4 891

178. I/O - 124 144 W12 J13 R3 894

179. I/O - 125 145 T11 J14 R2 900

180. I/O 96 126 146 X12 J15 R1 903

181. I/O 97 127 147 U11 J11 P3 906

182. I/O (D4) 98 128 148 V11 H13 P2 912

183. I/O 99 129 149 W11 H14 P1 915

VCC 100 130 150 X10 VCC* VCC* -

GND 101 131 151 X11 GND* GND* -

184. I/O (D3) 102 132 152 W10 H12 N2 924

185. I/O (RS) 103 133 153 V10 H11 N4 927

186. I/O 104 134 154 T10 G14 N3 936

187. I/O 105 135 155 U10 G15 M1 939

188. I/O - 136 156 X9 G13 M2 942

189. I/O - 137 157 W9 G12 M3 948

Pin Description PQ160 HQ208 HQ240 PG299 BG225 BG352 Boundary Scan Order
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Product Obsolete or Under Obsolescence
Revisions
Version Description

12/97 Rev 5.0 added -3, -4 specification

7/98 Rev 5.1 added Spartan family to comparison, removed HQ304

11/98 Rev 5.2 All specifications made final.
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