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Embedded - FPGAs, or Field Programmable Gate Arrays,
are advanced integrated circuits that offer unparalleled
flexibility and performance for digital systems. Unlike
traditional fixed-function logic devices, FPGAs can be
programmed and reprogrammed to execute a wide array
of logical operations, enabling customized functionality
tailored to specific applications. This reprogrammability
allows developers to iterate designs quickly and implement
complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them
indispensable in numerous fields. In telecommunications,
FPGAs are used for high-speed data processing and
network infrastructure. In the automotive industry, they
support advanced driver-assistance systems (ADAS) and
infotainment solutions. Consumer electronics benefit from
FPGAs in devices requiring high performance and
adaptability, such as smart TVs and gaming consoles.
Industrial automation relies on FPGAs for real-time control
and processing in machinery and robotics. Additionally,
FPGAs play a crucial role in aerospace and defense, where
their reliability and ability to handle complex algorithms
are essential.

Common Subcategories of Embedded -
FPGAs

Within the realm of Embedded - FPGAs, several
subcategories address different needs and applications.
General-purpose FPGAs are the most widely used, offering
a balance of performance and flexibility for a broad range
of applications. High-performance FPGAs are designed for
applications requiring exceptional speed and
computational power, such as data centers and high-
frequency trading systems. Low-power FPGAs cater to
battery-operated and portable devices where energy
efficiency is paramount. Lastly, automotive-grade FPGAs
meet the stringent standards of the automotive industry,
ensuring reliability and performance in vehicle systems.

Types of Embedded - FPGAs

Embedded - FPGAs can be classified into several types
based on their architecture and specific capabilities. SRAM-
based FPGAs are prevalent due to their high speed and
ability to support complex designs, making them suitable
for performance-critical applications. Flash-based FPGAs
offer non-volatile storage, retaining their configuration
without power and enabling faster start-up times. Antifuse-
based FPGAs provide a permanent, one-time
programmable solution, ensuring robust security and
reliability for critical systems. Each type of FPGA brings
distinct advantages, making the choice dependent on the
specific needs of the application.
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The XC5200 CLB consists of four LCs, as shown in
Figure 4. Each CLB has 20 independent inputs and 12
independent outputs. The top and bottom pairs of LCs can
be configured to implement 5-input functions. The chal-
lenge of FPGA implementation software has always been
to maximize the usage of logic resources. The XC5200
family addresses this issue by surrounding each CLB with
two types of local interconnect — the Local Interconnect
Matrix (LIM) and direct connects. These two interconnect
resources, combined with the CLB, form the VersaBlock,
represented in Figure 2.

The LIM provides 100% connectivity of the inputs and out-
puts of each LC in a given CLB. The benefit of the LIM is
that no general routing resources are required to connect
feedback paths within a CLB. The LIM connects to the
GRM via 24 bidirectional nodes.

The direct connects allow immediate connections to neigh-
boring CLBs, once again without using any of the general
interconnect. These two layers of local routing resource
improve the granularity of the architecture, effectively mak-
ing the XC5200 family a “sea of logic cells.” Each
Versa-Block has four 3-state buffers that share a common
enable line and directly drive horizontal and vertical Lon-
glines, creating robust on-chip bussing capability. The
VersaBlock allows fast, local implementation of logic func-
tions, effectively implementing user designs in a hierarchi-
cal fashion. These resources also minimize local routing
congestion and improve the efficiency of the general inter-
connect, which is used for connecting larger groups of
logic. It is this combination of both fine-grain and
coarse-grain architecture attributes that maximize logic uti-
lization in the XC5200 family. This symmetrical structure
takes full advantage of the third metal layer, freeing the
placement software to pack user logic optimally with mini-
mal routing restrictions.

VersaRing I/O Interface
The interface between the IOBs and core logic has been
redesigned in the XC5200 family. The IOBs are completely
decoupled from the core logic. The XC5200 IOBs contain
dedicated boundary-scan logic for added board-level test-
ability, but do not include input or output registers. This
approach allows a maximum number of IOBs to be placed
around the device, improving the I/O-to-gate ratio and
decreasing the cost per I/O. A “freeway” of interconnect
cells surrounding the device forms the VersaRing, which
provides connections from the IOBs to the internal logic.
These incremental routing resources provide abundant
connections from each IOB to the nearest VersaBlock, in
addition to Longline connections surrounding the device.
The VersaRing eliminates the historic trade-off between
high logic utilization and pin placement flexibility. These
incremental edge resources give users increased flexibility
in preassigning (i.e., locking) I/O pins before completing
their logic designs. This ability accelerates time-to-market,
since PCBs and other system components can be manu-
factured concurrent with the logic design.

General Routing Matrix
The GRM is functionally similar to the switch matrices
found in other architectures, but it is novel in its tight cou-
pling to the logic resources contained in the VersaBlocks.
Advanced simulation tools were used during the develop-
ment of the XC5200 architecture to determine the optimal
level of routing resources required. The XC5200 family
contains six levels of interconnect hierarchy — a series ofFigure 4:   Configurable Logic Block
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single-length lines, double-length lines, and Longlines all
routed through the GRM. The direct connects, LIM, and
logic-cell feedthrough are contained within each
Versa-Block. Throughout the XC5200 interconnect, an effi-
cient multiplexing scheme, in combination with three layer
metal (TLM), was used to improve the overall efficiency of
silicon usage.

Performance Overview
The XC5200 family has been benchmarked with many
designs running synchronous clock rates beyond 66 MHz.
The performance of any design depends on the circuit to be
implemented, and the delay through the combinatorial and
sequential logic elements, plus the delay in the intercon-
nect routing. A rough estimate of timing can be made by
assuming 3-6 ns per logic level, which includes direct-con-
nect routing delays, depending on speed grade. More
accurate estimations can be made using the information in
the Switching Characteristic Guideline section.

Taking Advantage of Reconfiguration
FPGA devices can be reconfigured to change logic function
while resident in the system. This capability gives the sys-
tem designer a new degree of freedom not available with
any other type of logic.

Hardware can be changed as easily as software. Design
updates or modifications are easy, and can be made to
products already in the field. An FPGA can even be recon-
figured dynamically to perform different functions at differ-
ent times.

Reconfigurable logic can be used to implement system
self-diagnostics, create systems capable of being reconfig-
ured for different environments or operations, or implement
multi-purpose hardware for a given application. As an
added benefit, using reconfigurable FPGA devices simpli-
fies hardware design and debugging and shortens product
time-to-market.

Detailed Functional Description

Configurable Logic Blocks (CLBs)
Figure 4 shows the logic in the XC5200 CLB, which con-
sists of four Logic Cells (LC[3:0]). Each Logic Cell consists
of an independent 4-input Lookup Table (LUT), and a
D-Type flip-flop or latch with common clock, clock enable,
and clear, but individually selectable clock polarity. Addi-
tional logic features provided in the CLB are:

• An independent 5-input LUT by combining two 4-input 
LUTs.

• High-speed carry propagate logic.
• High-speed pattern decoding.
• High-speed direct connection to flip-flop D-inputs.
• Individual selection of either a transparent, 

level-sensitive latch or a D flip-flop.
• Four 3-state buffers with a shared Output Enable.

5-Input Functions
Figure 5 illustrates how the outputs from the LUTs from
LC0 and LC1 can be combined with a 2:1 multiplexer
(F5_MUX) to provide a 5-input function. The outputs from
the LUTs of LC2 and LC3 can be similarly combined.

Figure 5:   Two LUTs in Parallel Combined to Create a 
5-input Function
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Carry Function
The XC5200 family supports a carry-logic feature that
enhances the performance of arithmetic functions such as
counters, adders, etc. A carry multiplexer (CY_MUX) sym-
bol is used to indicate the XC5200 carry logic. This symbol
represents the dedicated 2:1 multiplexer in each LC that
performs the one-bit high-speed carry propagate per logic
cell (four bits per CLB).

While the carry propagate is performed inside the LC, an
adjacent LC must be used to complete the arithmetic func-
tion. Figure 6 represents an example of an adder function.
The carry propagate is performed on the CLB shown,

which also generates the half-sum for the four-bit adder. An
adjacent CLB is responsible for XORing the half-sum with
the corresponding carry-out. Thus an adder or counter
requires two LCs per bit. Notice that the carry chain
requires an initialization stage, which the XC5200 family
accomplishes using the carry initialize (CY_INIT) macro
and one additional LC. The carry chain can propagate ver-
tically up a column of CLBs.

The XC5200 library contains a set of Relationally-Placed
Macros (RPMs) and arithmetic functions designed to take
advantage of the dedicated carry logic. Using and modify-
ing these macros makes it much easier to implement cus-

Figure 6:   XC5200 CY_MUX Used for Adder Carry Propagate
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tomized RPMs, freeing the designer from the need to
become an expert on architectures.

Cascade Function
Each CY_MUX can be connected to the CY_MUX in the
adjacent LC to provide cascadable decode logic. Figure 7
illustrates how the 4-input function generators can be con-
figured to take advantage of these four cascaded
CY_MUXes. Note that AND and OR cascading are specific
cases of a general decode. In AND cascading all bits are
decoded equal to logic one, while in OR cascading all bits
are decoded equal to logic zero. The flexibility of the LUT
achieves this result. The XC5200 library contains gate
macros designed to take advantage of this function.

CLB Flip-Flops and Latches
The CLB can pass the combinatorial output(s) to the inter-
connect network, but can also store the combinatorial

results or other incoming data in flip-flops, and connect
their outputs to the interconnect network as well. The CLB
storage elements can also be configured as latches.

Data Inputs and Outputs 

The source of a storage element data input is programma-
ble.  It is driven by the function F, or by the Direct In (DI)
block input. The flip-flops or latches drive the Q CLB out-
puts. 

Four fast feed-through paths from DI to DO are available,
as shown in Figure 4. This bypass is sometimes used by
the automated router to repower internal signals. In addi-
tion to the storage element (Q) and direct (DO) outputs,
there is a combinatorial output (X) that is always sourced
by the Lookup Table.

The four edge-triggered D-type flip-flops or level-sensitive
latches have common clock (CK) and clock enable (CE)
inputs. Any of the clock inputs can also be permanently
enabled. Storage element functionality is described in
Table 3. 

Clock Input 

The flip-flops can be triggered on either the rising or falling
clock edge. The clock pin is shared by all four storage ele-
ments with individual polarity control. Any inverter placed
on the clock input is automatically absorbed into the CLB.

Clock Enable 

The clock enable signal (CE) is active High.  The CE pin is
shared by the four storage elements.  If left unconnected
for any, the clock enable for that storage element defaults
to the active state.  CE is not invertible within the CLB. 

Clear 

An asynchronous storage element input (CLR) can be used
to reset all four flip-flops or latches in the CLB. This input

Figure 7:   XC5200 CY_MUX Used for Decoder Cascade 
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Table 3: CLB Storage Element Functionality 
(active rising edge is shown) 

  Mode  CK   CE  CLR    D   Q
Power-Up or 

GR
X X X X 0

Flip-Flop

X X 1 X 0

__/   1* 0* D D

0 X 0* X Q

Latch
1 1* 0* X Q

0 1* 0* D D

Both X 0 0* X Q
Legend:

X
__/   
0*
1*

Don’t care
Rising edge
Input is Low or unconnected (default value)
Input is High or unconnected (default value)
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can also be independently disabled for any flip-flop. CLR is
active High.  It is not invertible within the CLB.

Global Reset 

A separate Global Reset line clears each storage element
during power-up, reconfiguration, or when a dedicated
Reset net is driven active. This global net (GR) does not
compete with other routing resources; it uses a dedicated
distribution network.

GR can be driven from any user-programmable pin as a
global reset input. To use this global net, place an input pad
and input buffer in the schematic or HDL code, driving the
GR pin of the STARTUP symbol. (See Figure 9.) A specific
pin location can be assigned to this input using a LOC
attribute or property, just as with any other user-program-
mable pad. An inverter can optionally be inserted after the
input buffer to invert the sense of the Global Reset signal.
Alternatively, GR can be driven from any internal node.

Using FPGA Flip-Flops and Latches
The abundance of flip-flops in the XC5200 Series invites
pipelined designs. This is a powerful way of increasing per-
formance by breaking the function into smaller subfunc-
tions and executing them in parallel, passing on the results
through pipeline flip-flops. This method should be seriously
considered wherever throughput is more important than
latency. 

To include a CLB flip-flop, place the appropriate library
symbol.  For example, FDCE is a D-type flip-flop with clock
enable and asynchronous clear.  The corresponding latch
symbol is called LDCE.

In XC5200-Series devices, the flip-flops can be used as
registers or shift registers without blocking the function
generators from performing a different, perhaps unrelated
task. This ability increases the functional capacity of the
devices. 

The CLB setup time is specified between the function gen-
erator inputs and the clock input CK.  Therefore, the speci-
fied CLB flip-flop setup time includes the delay through the
function generator.

Three-State Buffers
The XC5200 family has four dedicated Three-State Buffers
(TBUFs, or BUFTs in the schematic library) per CLB (see
Figure 9). The four buffers are individually configurable
through four configuration bits to operate as simple
non-inverting buffers or in 3-state mode. When in 3-state
mode the CLB output enable (TS) control signal drives the
enable to all four buffers. Each TBUF can drive up to two
horizontal and/or two vertical Longlines. These 3-state buff-
ers can be used to implement multiplexed or bidirectional
buses on the horizontal or vertical longlines, saving logic
resources.

The 3-state buffer enable is an active-High 3-state (i.e. an
active-Low enable), as shown in Table 4.

Another 3-state buffer with similar access is located near
each I/O block along the right and left edges of the array.

The longlines driven by the 3-state buffers have a weak
keeper at each end.  This circuit prevents undefined float-
ing levels.  However, it is overridden by any driver. To
ensure the longline goes high when no buffers are on, add
an additional BUFT to drive the output High during all of the
previously undefined states.

Figure 10 shows how to use the 3-state buffers to imple-
ment a multiplexer. The selection is accomplished by the
buffer 3-state signal.
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Figure 8:   Schematic Symbols for Global Reset

Table 4: Three-State Buffer Functionality

IN T OUT
X 1 Z

IN 0 IN

CLB

TS

LC3

LC2

LC1

LC0

CLB

Horizontal
Longlines

X9030

Figure 9:   XC5200 3-State Buffers
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XC5200-Series devices can also be configured through the
boundary scan logic. See XAPP 017 for more information.

Data Registers
The primary data register is the boundary scan register.
For each IOB pin in the FPGA, bonded or not, it includes
three bits for In, Out and 3-State Control.  Non-IOB pins
have appropriate partial bit population for In or Out only.
PROGRAM, CCLK and DONE are not included in the
boundary scan register.  Each EXTEST CAPTURE-DR
state captures all In, Out, and 3-State pins.  

The data register also includes the following non-pin bits:
TDO.T, and TDO.O, which are always bits 0 and 1 of the
data register, respectively, and BSCANT.UPD, which is
always the last bit of the data register.  These three bound-
ary scan bits are special-purpose Xilinx test signals.

The other standard data register is the single flip-flop
BYPASS register. It synchronizes data being passed
through the FPGA to the next downstream boundary scan
device.

The FPGA provides two additional data registers that can
be specified using the BSCAN macro.  The FPGA provides
two user pins (BSCAN.SEL1 and BSCAN.SEL2) which are
the decodes of two user instructions, USER1 and USER2.
For these instructions, two corresponding pins
(BSCAN.TDO1 and BSCAN.TDO2) allow user scan data to
be shifted out on TDO.  The data register clock
(BSCAN.DRCK) is available for control of test logic which
the user may wish to implement with CLBs.  The NAND of
TCK and RUN-TEST-IDLE is also provided (BSCAN.IDLE).

Instruction Set
The XC5200-Series boundary scan instruction set also
includes instructions to configure the device and read back
the configuration data. The instruction set is coded as
shown in Table 7.

Table 7: Boundary Scan Instructions

Bit Sequence 
The bit sequence within each IOB is: 3-State, Out, In. The
data-register cells for the TAP pins TMS, TCK, and TDI
have an OR-gate that permanently disables the output
buffer if boundary-scan operation is selected. Conse-
quently, it is impossible for the outputs in IOBs used by TAP
inputs to conflict with TAP operation. TAP data is taken
directly from the pin, and cannot be overwritten by injected
boundary-scan data.

The primary global clock inputs (PGCK1-PGCK4) are
taken directly from the pins, and cannot be overwritten with
boundary-scan data. However, if necessary, it is possible to
drive the clock input from boundary scan. The external
clock source is 3-stated, and the clock net is driven with
boundary scan data through the output driver in the
clock-pad IOB. If the clock-pad IOBs are used for non-clock
signals, the data may be overwritten normally.

Pull-up and pull-down resistors remain active during
boundary scan. Before and during configuration, all pins
are pulled up. After configuration, the choice of internal
pull-up or pull-down resistor must be taken into account
when designing test vectors to detect open-circuit PC
traces.

From a cavity-up view of the chip (as shown in XDE or
Epic), starting in the upper right chip corner, the boundary
scan data-register bits are ordered as shown in Table 8.
The device-specific pinout tables for the XC5200 Series
include the boundary scan locations for each IOB pin.

Table 8: Boundary Scan Bit Sequence

BSDL (Boundary Scan Description Language) files for
XC5200-Series devices are available on the Xilinx web site
in the File Download area.

Including Boundary Scan
If boundary scan is only to be used during configuration, no
special elements need be included in the schematic or HDL
code.  In this case, the special boundary scan pins TDI,
TMS, TCK and TDO can be used for user functions after
configuration.

To indicate that boundary scan remain enabled after config-
uration, include the BSCAN library symbol and connect pad
symbols to the TDI, TMS, TCK and TDO pins, as shown in
Figure 20.

Instruction   I2       
I1      I0

Test 
Selected

TDO Source
I/O Data
Source

0 0 0 EXTEST DR DR

0 0 1 SAMPLE/PR
ELOAD

DR Pin/Logic

0 1 0 USER 1 BSCAN.
TDO1

User Logic

0 1 1 USER 2 BSCAN.
TDO2

User Logic

1 0 0 READBACK Readback 
Data

Pin/Logic

1 0 1 CONFIGURE DOUT Disabled

1 1 0 Reserved — —

1 1 1 BYPASS Bypass 
Register

—

Bit Position I/O Pad Location
Bit 0 (TDO) Top-edge I/O pads (right to left)

Bit 1 ...

... Left-edge I/O pads (top to bottom)

... Bottom-edge I/O pads (left to right)

... Right-edge I/O pads (bottom to top)

Bit N (TDI) BSCANT.UPD
7-100 November 5, 1998 (Version 5.2)



R

XC5200 Series Field Programmable Gate Arrays

Product Obsolete or Under Obsolescence
Configuration 
Configuration is the process of loading design-specific pro-
gramming data into one or more FPGAs to define the func-
tional operation of the internal blocks and their
interconnections. This is somewhat like loading the com-
mand registers of a programmable peripheral chip.
XC5200-Series devices use several hundred bits of config-
uration data per CLB and its associated interconnects.
Each configuration bit defines the state of a static memory
cell that controls either a function look-up table bit, a multi-
plexer input, or an interconnect pass transistor. The devel-
opment system translates the design into a netlist file. It
automatically partitions, places and routes the logic and
generates the configuration data in PROM format. 

Special Purpose Pins 
Three configuration mode pins (M2, M1, M0) are sampled
prior to configuration to determine the configuration mode.
After configuration, these pins can be used as auxiliary I/O
connections. The development system does not use these
resources unless they are explicitly specified in the design
entry.  This is done by placing a special pad symbol called
MD2, MD1, or MD0 instead of the input or output pad sym-
bol.

In XC5200-Series devices, the mode pins have weak
pull-up resistors during configuration.   With all three mode
pins High, Slave Serial mode is selected, which is the most
popular configuration mode.  Therefore, for the most com-
mon configuration mode, the mode pins can be left uncon-
nected.  (Note, however, that the internal pull-up resistor
value can be as high as 100 kΩ.)  After configuration, these
pins can individually have weak pull-up or pull-down resis-
tors, as specified in the design.  A pull-down resistor value
of 3.3kΩ is recommended.

These pins are located in the lower left chip corner and are
near the readback nets.  This location allows convenient
routing if compatibility with the XC2000 and XC3000 family
conventions of M0/RT, M1/RD is desired. 

Configuration Modes 
XC5200 devices have seven configuration modes. These
modes are selected by a 3-bit input code applied to the M2,

M1, and M0 inputs.  There are three self-loading Master
modes, two Peripheral modes, and a Serial Slave mode, 

Note :*Peripheral Synchronous can be considered byte-wide
Slave Parallel

which is used primarily for daisy-chained devices. The sev-
enth mode, called Express mode, is an additional slave
mode that allows high-speed parallel configuration. The
coding for mode selection is shown in Table 10.

Note that the smallest package, VQ64, only supports the
Master Serial, Slave Serial, and Express modes.A detailed
description of each configuration mode, with timing infor-
mation, is included later in this data sheet. During configu-
ration, some of the I/O pins are used temporarily for the
configuration process.   All pins used during configuration
are shown in Table 13 on page 124.

Master Modes

The three Master modes use an internal oscillator to gener-
ate a Configuration Clock (CCLK) for driving potential slave
devices.  They also generate address and timing for exter-
nal PROM(s) containing the configuration data.  

Master Parallel (Up or Down) modes generate the CCLK
signal and PROM addresses and receive byte parallel
data.  The data is internally serialized into the FPGA
data-frame format. The up and down selection generates
starting addresses at either zero or 3FFFF, for compatibility
with different microprocessor addressing conventions. The

Unrestricted User-Programmable I/O Pins

I/O
Weak 
Pull-up

I/O
These pins can be configured to be input and/or output after configuration is completed.  
Before configuration is completed, these pins have an internal high-value pull-up resis-
tor (20 kΩ - 100 kΩ) that defines the logic level as High.  

Table 9: Pin Descriptions (Continued)

Pin Name

I/O 
During 
Config.

I/O 
After 

Config. Pin Description

Table 10: Configuration Modes

Mode M2 M1 M0 CCLK Data
Master Serial 0 0 0 output Bit-Serial

Slave Serial 1 1 1 input Bit-Serial

Master 
Parallel Up

1 0 0 output Byte-Wide, 
increment 

from 00000 

Master 
Parallel Down

1 1 0 output Byte-Wide, 
decrement 
from 3FFFF 

Peripheral 
Synchronous*

0 1 1 input Byte-Wide

Peripheral 
Asynchronous

1 0 1 output Byte-Wide

Express 0 1 0 input Byte-Wide

Reserved 0 0 1 — —
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Express Mode

Express mode is similar to Slave Serial mode, except the
data is presented in parallel format, and is clocked into the
target device a byte at a time rather than a bit at a time. The
data is loaded in parallel into eight different columns: it is
not internally serialized. Eight bits of configuration data are
loaded with every CCLK cycle, therefore this configuration
mode runs at eight times the data rate of the other six
modes. In this mode the XC5200 family is capable of sup-
porting a CCLK frequency of 10 MHz, which is equivalent to
an 80 MHz serial rate, because eight bits of configuration
data are being loaded per CCLK cycle. An XC5210 in the
Express mode, for instance, can be configured in about 2
ms. The Express mode does not support CRC error check-
ing, but does support constant-field error checking. A
length count is not used in Express mode.

In the Express configuration mode, an external signal
drives the CCLK input(s). The first byte of parallel configu-
ration data must be available at the D inputs of the FPGA
devices a short set-up time before the second rising CCLK
edge. Subsequent data bytes are clocked in on each con-
secutive rising CCLK edge. See Figure 38 on page 123.

Bitstream generation currently generates a bitstream suffi-
cient to program in all configuration modes except Express.
Extra CCLK cycles are necessary to complete the configu-
ration, since in this mode data is read at a rate of eight bits
per CCLK cycle instead of one bit per cycle. Normally the
entire start-up sequence requires a number of bits that is
equal to the number of CCLK cycles needed. An additional
five CCLKs (equivalent to 40 extra bits) will guarantee com-
pletion of configuration, regardless of the start-up options
chosen.

Multiple slave devices with identical configurations can be
wired with parallel D0-D7 inputs.  In this way, multiple
devices can be configured simultaneously.

Pseudo Daisy Chain

Multiple devices with different configurations can be con-
nected together in a pseudo daisy chain, provided that all of
the devices are in Express mode. A single combined bit-
stream is used to configure the chain of Express mode
devices, but the input data bus must drive D0-D7 of each
device. Tie High the CS1 pin of the first device to be config-
ured, or leave it floating in the XC5200 since it has an inter-
nal pull-up. Connect the DOUT pin of each FPGA to the
CS1 pin of the next device in the chain. The D0-D7 inputs
are wired to each device in parallel. The DONE pins are
wired together, with one or more internal DONE pull-ups
activated. Alternatively, a 4.7 kΩ external resistor can be
used, if desired. (See Figure 37 on page 122.) CCLK pins
are tied together.

The requirement that all DONE pins in a daisy chain be
wired together applies only to Express mode, and only if all
devices in the chain are to become active simultaneously.
All devices in Express mode are synchronized to the DONE
pin.  User I/O for each device become active after the
DONE pin for that device goes High.  (The exact timing is
determined by options to the bitstream generation soft-
ware.)  Since the DONE pin is open-drain and does not
drive a High value, tying the DONE pins of all devices
together prevents all devices in the chain from going High
until the last device in the chain has completed its configu-
ration cycle.

The status pin DOUT is pulled LOW two internal-oscillator
cycles (nominally 1 MHz) after INIT is recognized as High,
and remains Low until the device’s configuration memory is
full. Then DOUT is pulled High to signal the next device in
the chain to accept the configuration data on the D7-D0
bus. All devices receive and recognize the six bytes of pre-
amble and length count, irrespective of the level on CS1;
but subsequent frame data is accepted only when CS1 is
High and the device’s configuration memory is not already
full.

Setting CCLK Frequency
For Master modes, CCLK can be generated in one of three
frequencies. In the default slow mode, the frequency is
nominally 1 MHz. In fast CCLK mode, the frequency is
nominally 12 MHz. In medium CCLK mode, the frequency
is nominally 6 MHz. The frequency range is -50% to +50%.
The frequency is selected by an option when running the
bitstream generation software. If an XC5200-Series Master
is driving an XC3000- or XC2000-family slave, slow CCLK
mode must be used. Slow mode is the default.

Output
Connected
to CCLK

OE/T

0
1
1
0
0
..

0
0
1
1
1
..

Reset

X5223
etc

Active Low Output
Active High Output

Figure 22:   CCLK Generation for XC3000 Master 
Driving an XC5200-Series Slave

Table 11: XC5200 Bitstream Format

Data Type Value Occurrences

Fill Byte 11111111 Once per bit-
streamPreamble 11110010

Length Counter COUNT(23:0)
Fill Byte 11111111
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XC4000E/EX
XC5200/

UCLK_SYNC

XC4000E/EX
XC5200/

UCLK_NOSYNC

XC4000E/EX
XC5200/

CCLK_SYNC

XC4000E/EX
XC5200/

CCLK_NOSYNC

XC3000

XC2000

CCLK

GSR Active

UCLK Period

DONE IN

DONE IN

Di    Di+1           Di+2

Di       Di+1           Di+2

U2              U3               U4

U2              U3               U4

U2              U3               U4C1

Synchronization
Uncertainty

Di      Di+1 

Di          Di+1 

DONE

I/O

GSR Active

DONE

I/O

GSR Active

DONE

C1 C2

C1 U2

C3 C4

C2 C3 C4

C2 C3 C4

I/O

GSR Active

DONE

I/O

DONE

Global Reset

I/O

DONE

Global Reset

I/O

F = Finished, no more
configuration clocks needed
Daisy-chain lead device
must have latest F

Heavy lines describe
default timing

CCLK Period
Length Count Match

F

F

F

F

F

F

X6700

C1, C2 or C3

Figure 25:   Start-up Timing
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DONE High to active user I/O is controlled by an option to
the bitstream generation software.

Release of Global Reset After DONE Goes High

By default, Global Reset (GR) is released two CCLK cycles
after the DONE pin goes High.  If CCLK is not clocked twice
after DONE goes High, all flip-flops are held in their initial
reset state.  The delay from DONE High to GR inactive is
controlled by an option to the bitstream generation soft-
ware.

Configuration Complete After DONE Goes High

Three full CCLK cycles are required after the DONE pin
goes High, as shown in Figure 25 on page 109. If CCLK is
not clocked three times after DONE goes High, readback
cannot be initiated and most boundary scan instructions
cannot be used.

Configuration Through the Boundary Scan 
Pins
XC5200-Series devices can be configured through the
boundary scan pins.

For detailed information, refer to the Xilinx application note
XAPP017, “Boundary Scan in XC4000 and XC5200
Devices.”

Readback
The user can read back the content of configuration mem-
ory and the level of certain internal nodes without interfer-
ing with the normal operation of the device.  

Readback not only reports the downloaded configuration
bits, but can also include the present state of the device,
represented by the content of all flip-flops and latches in
CLBs.

DONE

*

*

*

*

* *

Q S

R

1

0

0

1

1

0

1

0

1

0

0

1

GR ENABLE
GR INVERT
STARTUP.GR

STARTUP.GTS
GTS INVERT
GTS ENABLE

CONTROLLED BY STARTUP SYMBOL
IN THE USER SCHEMATIC (SEE
LIBRARIES GUIDE)

GLOBAL RESET OF
ALL CLB FLIP-FLOPS/LATCHES 

IOBs OPERATIONAL PER CONFIGURATION

GLOBAL 3-STATE OF ALL IOBs

Q2

Q3 Q1/Q4
DONE
IN

STARTUP

Q0 Q1 Q2 Q3 Q4

M

M

" FINISHED "
ENABLES BOUNDARY
SCAN, READBACK AND
CONTROLS THE OSCILLATOR

K

S Q

K

D Q

K

D Q

K

D Q

K

D Q
FULL

LENGTH COUNT

CLEAR MEMORY

CCLK

STARTUP.CLK
USER NET

CONFIGURATION BIT OPTIONS SELECTED BY USER
X9002

Figure 26:   Start-up Logic
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XC5200 Global Buffer Switching Characteristic Guidelines
Testing of the switching parameters is modeled after testing methods specified by MIL-M-38510/605. All devices are 100%
functionally tested. Since many internal timing parameters cannot be measured directly, they are derived from benchmark
timing patterns. The following guidelines reflect worst-case values over the recommended operating conditions. For more
detailed, more precise, and more up-to-date timing information, use the values provided by the timing calculator and used
in the simulator.

XC5200 Longline Switching Characteristic Guidelines
Testing of the switching parameters is modeled after testing methods specified by MIL-M-38510/605. All devices are 100%
functionally tested. Since many internal timing parameters cannot be measured directly, they are derived from benchmark
timing patterns. The following guidelines reflect worst-case values over the recommended operating conditions. For more
detailed, more precise, and more up-to-date timing information, use the values provided by the timing calculator and used
in the simulator.

Speed Grade -6 -5 -4 -3

Description Symbol Device
Max
(ns)

Max
(ns)

Max
(ns)

Max
(ns)

Global Signal Distribution
From pad through global buffer, to any clock (CK)

TBUFG XC5202 9.1 8.5 8.0 6.9
XC5204 9.3 8.7 8.2 7.6
XC5206 9.4 8.8 8.3 7.7
XC5210 9.4 8.8 8.5 7.7
XC5215 10.5 9.9 9.8 9.6

Speed Grade -6 -5 -4 -3

Description Symbol Device
Max
(ns)

Max
(ns)

Max
(ns)

Max
(ns)

TBUF driving a Longline

I to Longline, while TS is Low; i.e., buffer is constantly ac-
tive

TIO XC5202 6.0 3.8 3.0 2.0
XC5204 6.4 4.1 3.2 2.3
XC5206 6.6 4.2 3.3 2.7
XC5210 6.6 4.2 3.3 2.9
XC5215 7.3 4.6 3.8 3.2

TS going Low to Longline going from floating High or Low 
to active Low or High

TON XC5202 7.8 5.6 4.7 4.0
XC5204 8.3 5.9 4.9 4.3
XC5206 8.4 6.0 5.0 4.4
XC5210 8.4 6.0 5.0 4.4
XC5215 8.9 6.3 5.3 4.5

TS going High to TBUF going inactive, not driving 
Longline

TOFF XC52xx 3.0 2.8 2.6 2.4

Note: 1. Die-size-dependent parameters are based upon XC5215 characterization. Production specifications will vary with array 
size.

TS
I O

TBUF
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XC5200 CLB Switching Characteristic Guidelines
Testing of the switching parameters is modeled after testing methods specified by MIL-M-38510/605. All devices are 100%
functionally tested. Since many internal timing parameters cannot be measured directly, they are derived from benchmark
timing patterns. The following guidelines reflect worst-case values over the recommended operating conditions. For more
detailed, more precise, and more up-to-date timing information, use the values provided by the timing calculator and used
in the simulator.

Speed Grade -6 -5 -4 -3

Description Symbol
Min
(ns)

Max
(ns)

Min
(ns)

Max
(ns)

Min
(ns)

Max
(ns)

Min
(ns)

Max
(ns)

Combinatorial Delays
F inputs to X output TILO 5.6 4.6 3.8 3.0
F inputs via transparent latch to Q TITO 8.0 6.6 5.4 4.3
DI inputs to DO output (Logic-Cell 
Feedthrough)

TIDO 4.3 3.5 2.8 2.4

F inputs via F5_MUX to DO output TIMO 7.2 5.8 5.0 4.3
Carry Delays

Incremental delay per bit TCY 0.7 0.6 0.5 0.5
Carry-in overhead from DI TCYDI 1.8 1.6 1.5 1.4
Carry-in overhead from F TCYL 3.7 3.2 2.9 2.4
Carry-out overhead to DO TCYO 4.0 3.2 2.5 2.1

Sequential Delays
Clock (CK) to out (Q) (Flip-Flop) TCKO 5.8 4.9 4.0 4.0
Gate (Latch enable) going active to out (Q) TGO 9.2 7.4 5.9 5.5

Set-up Time Before Clock (CK)
F inputs TICK 2.3 1.8 1.4 1.3
F inputs via F5_MUX TMICK 3.8 3.0 2.5 2.4
DI input TDICK 0.8 0.5 0.4 0.4
CE input TEICK 1.6 1.2 0.9 0.9

Hold Times After Clock (CK)
F inputs TCKI 0 0 0 0
F inputs via F5_MUX TCKMI 0 0 0 0
DI input TCKDI 0 0 0 0
CE input TCKEI 0 0 0 0

Clock Widths
Clock High Time TCH 6.0 6.0 6.0 6.0
Clock Low Time TCL 6.0 6.0 6.0 6.0
Toggle Frequency (MHz) (Note 3) FTOG 83 83 83 83

Reset Delays
Width (High) TCLRW 6.0 6.0 6.0 6.0
Delay from CLR to Q (Flip-Flop) TCLR 7.7 6.3 5.1 4.0
Delay from CLR to Q (Latch) TCLRL 6.5 5.2 4.2 3.0

Global Reset Delays
Width (High) TGCLRW 6.0 6.0 6.0 6.0
Delay from internal GR to Q TGCLR 14.7 12.1 9.1 8.0

Note: 1. The CLB K to Q output delay (TCKO) of any CLB, plus the shortest possible interconnect delay, is always longer than the 
Data In hold-time requirement (TCKDI) of any CLB on the same die.

2. Timing is based upon the XC5215 device. For other devices, see Timing Calculator.
3. Maximum flip-flop toggle rate for export control purposes.
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XC5200 IOB Switching Characteristic Guidelines
Testing of the switching parameters is modeled after testing methods specified by MIL-M-38510/605. All devices are 100%
functionally tested. Since many internal timing parameters cannot be measured directly, they are derived from benchmark
timing patterns. The following guidelines reflect worst-case values over the recommended operating conditions. For more
detailed, more precise, and more up-to-date timing information, use the values provided by the timing calculator and used
in the simulator.

Speed Grade -6 -5 -4 -3

Description Symbol
Max
(ns)

Max
(ns)

Max
(ns)

Max
(ns)

Input
Propagation Delays from CMOS or TTL Levels

Pad to I (no delay) TPI 5.7 5.0 4.8 3.3
Pad to I (with delay) TPID 11.4 10.2 10.2 9.5

Output
Propagation Delays to CMOS or TTL Levels

Output (O) to Pad (fast) TOPF 4.6 4.5 4.5 3.5
Output (O) to Pad (slew-limited) TOPS 9.5 8.4 8.0 5.0
From clock (CK) to output pad (fast), using direct connect between Q 
and output (O)

TOKPOF 10.1 9.3 8.3 7.5

From clock (CK) to output pad (slew-limited), using direct connect be-
tween Q and output (O)

TOKPOS 14.9 13.1 11.8 10.0

3-state to Pad active (fast) TTSONF 5.6 5.2 4.9 4.6
3-state to Pad active (slew-limited) TTSONS 10.4 9.0 8.3 6.0
Internal GTS to Pad active TGTS 17.7 15.9 14.7 13.5

Note: 1. Timing is measured at pin threshold, with 50-pF external capacitance loads. Slew-limited output rise/fall times are 
approximately two times longer than fast output rise/fall times.

2. Unused and unbonded IOBs are configured by default as inputs with internal pull-up resistors.
3. Timing is based upon the XC5215 device. For other devices, see Timing Calculator.
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XC5200 Boundary Scan (JTAG) Switching Characteristic Guidelines
The following guidelines reflect worst-case values over the recommended operating conditions.  They are expressed in units
of nanoseconds and apply to all XC5200 devices unless otherwise noted.          

                          Speed Grade -6 -5 -4 -3
Description Symbol Min Max Min Max Min Max Min Max

Setup and Hold
Input (TDI) to clock (TCK) 
      setup time
Input (TDI) to clock (TCK) 
      hold time
Input (TMS) to clock (TCK) 
      setup time
Input (TMS) to clock (TCK) 
      hold time

TTDITCK

TTCKTDI

TTMSTCK

TTCKTMS

30.0

0

15.0

0

30.0

0

15.0

0

30.0

0

15.0

0

30.0

0

15.0

0

Propagation Delay
Clock (TCK) to Pad (TDO) TTCKPO 30.0 30.0 30.0 30.0

Clock
Clock (TCK) High
Clock (TCK) Low 

TTCKH
TTCKL

30.0
30.0

30.0
30.0

30.0
30.0

30.0
30.0

FMAX (MHz) FMAX 10.0 10.0 10.0 10.0

Note 1: Input pad setup and hold times are specified with respect to the internal clock.
7-132 November 5, 1998 (Version 5.2)



R

XC5200 Series Field Programmable Gate Arrays

7

Product Obsolete or Under Obsolescence
Device-Specific Pinout Tables
Device-specific tables include all packages for each XC5200-Series device. They follow the pad locations around the die,
and include boundary scan register locations.

Pin Locations for XC5202 Devices
The following table may contain pinout information for unsupported device/package combinations. Please see the
availability charts elsewhere in the XC5200 Series data sheet for availability information.

Pin Description VQ64* PC84 PQ100 VQ100 TQ144 PG156 Boundary Scan Order
VCC - 2 92 89 128 H3 -

1. I/O (A8) 57 3 93 90 129 H1 51

2. I/O (A9) 58 4 94 91 130 G1 54

3. I/O - - 95 92 131 G2 57

4. I/O - - 96 93 132 G3 63

5. I/O (A10) - 5 97 94 133 F1 66

6. I/O (A11) 59 6 98 95 134 F2 69

GND - - - - 137 F3 -

7. I/O (A12) 60 7 99 96 138 E3 78

8. I/O (A13) 61 8 100 97 139 C1 81

9. I/O (A14) 62 9 1 98 142 B1 90

10. I/O (A15) 63 10 2 99 143 B2 93

VCC 64 11 3 100 144 C3 -

GND - 12 4 1 1 C4 -

11. GCK1 (A16, I/O) 1 13 5 2 2 B3 102

12. I/O (A17) 2 14 6 3 3 A1 105

13. I/O (TDI) 3 15 7 4 6 B4 111

14. I/O (TCK) 4 16 8 5 7 A3 114

GND - - - - 8 C6 -

15. I/O (TMS) 5 17 9 6 11 A5 117

16. I/O 6 18 10 7 12 C7 123

17. I/O - - - - 13 B7 126

18. I/O - - 11 8 14 A6 129

19. I/O - 19 12 9 15 A7 135

20. I/O 7 20 13 10 16 A8 138

GND 8 21 14 11 17 C8 -

VCC 9 22 15 12 18 B8 -

21. I/O - 23 16 13 19 C9 141

22. I/O 10 24 17 14 20 B9 147

23. I/O - 18 15 21 A9 150

24. I/O - - - 22 B10 153

25. I/O - 25 19 16 23 C10 159

26. I/O 11 26 20 17 24 A10 162

GND - - - 27 C11 -

27. I/O 12 27 21 18 28 B12 165

28. I/O - 22 19 29 A13 171

29. I/O 13 28 23 20 32 B13 174

30. I/O 14 29 24 21 33 B14 177

31. M1 (I/O) 15 30 25 22 34 A15 186

GND - 31 26 23 35 C13 -

32. M0 (I/O) 16 32 27 24 36 A16 189

VCC - 33 28 25 37 C14 -

33. M2 (I/O) 17 34 29 26 38 B15 192

34. GCK2 (I/O) 18 35 30 27 39 B16 195
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57. I/O - - - 47 E16 53 306

58. I/O 38 34 31 48 F16 54 312

59. I/O 39 35 32 49 G14 55 315

60. I/O - 36 33 50 G15 56 318

61. I/O - 37 34 51 G16 57 324

62. I/O 40 38 35 52 H16 58 327

63. I/O (ERR, INIT) 41 39 36 53 H15 59 330

VCC 42 40 37 54 H14 60 -

GND 43 41 38 55 J14 61 -

64. I/O 44 42 39 56 J15 62 336

65. I/O 45 43 40 57 J16 63 339

66. I/O - 44 41 58 K16 64 348

67. I/O - 45 42 59 K15 65 351

68. I/O 46 46 43 60 K14 66 354

69. I/O 47 47 44 61 L16 67 360

70. I/O - - - 62 M16 68 363

71. I/O - - - 63 L15 69 366

GND - - - 64 L14 70 -

72. I/O - - - - N16 71 372

73. I/O - - - - M15 72 375

74. I/O 48 48 45 65 P16 73 378

75. I/O 49 49 46 66 M14 74 384

76. I/O - - - 67 N15 75 387

77. I/O - - - 68 P15 76 390

78. I/O 50 50 47 69 N14 77 396

79. I/O 51 51 48 70 R16 78 399

GND 52 52 49 71 P14 79 -

DONE 53 53 50 72 R15 80 -

VCC 54 54 51 73 P13 81 -

PROG 55 55 52 74 R14 82 -

80. I/O (D7) 56 56 53 75 T16 83 408

81. GCK3 (I/O) 57 57 54 76 T15 84 411

82. I/O - - - 77 R13 85 420

83. I/O - - - 78 P12 86 423

84. I/O (D6) 58 58 55 79 T14 87 426

85. I/O - 59 56 80 T13 88 432

GND - - - 81 P11 91 -

86. I/O - - - 82 R11 92 435

87. I/O - - - 83 T11 93 438

88. I/O (D5) 59 60 57 84 T10 94 444

89. I/O (CS0) 60 61 58 85 P10 95 447

90. I/O - 62 59 86 R10 96 450

91. I/O - 63 60 87 T9 97 456

92. I/O (D4) 61 64 61 88 R9 98 459

93. I/O 62 65 62 89 P9 99 462

VCC 63 66 63 90 R8 100 -

GND 64 67 64 91 P8 101 -

94. I/O (D3) 65 68 65 92 T8 102 468

95. I/O (RS) 66 69 66 93 T7 103 471

96. I/O - 70 67 94 T6 104 474

97. I/O - - - 95 R7 105 480

98. I/O (D2) 67 71 68 96 P7 106 483

Pin Description PC84 PQ100 VQ100 TQ144 PG156 PQ160 Boundary Scan Order
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Additional No Connect (N.C.) Connections for PQ208 and TQ176 Packages

Notes: Boundary Scan Bit 0 = TDO.T
Boundary Scan Bit 1 = TDO.O
Boundary Scan Bit 1056 = BSCAN.UPD

Pin Locations for XC5210 Devices
The following table may contain pinout information for unsupported device/package combinations. Please see the
availability charts elsewhere in the XC5200 Series data sheet for availability information.

CCLK 73 77 74 107 119 131 V1 153 -

VCC 74 78 75 108 120 132 R4 154 -

130. I/O (TDO) 75 79 76 109 121 133 U2 159 -

GND 76 80 77 110 122 134 R3 160 -

131. I/O (A0, WS) 77 81 78 111 123 135 T3 161 9

132. GCK4 (A1, I/O) 78 82 79 112 124 136 U1 162 15

133. I/O - - - 113 125 137 P3 163 18

134. I/O - - - 114 126 138 R2 164 21

135. I/O (A2, CS1) 79 83 80 115 127 139 T2 165 27

136. I/O (A3) 80 84 81 116 128 140 N3 166 30

137. I/O - - - 117 129 141 P2 167 33

138. I/O - - - - 130 142 T1 168 42

GND - - - 118 131 143 M3 171 -

139. I/O - - - 119 132 144 P1 172 45

140. I/O - - - 120 133 145 N1 173 51

141. I/O (A4) 81 85 82 121 134 146 M2 174 54

142. I/O (A5) 82 86 83 122 135 147 M1 175 57

143. I/O - - - - - 148 L3 176 63

144. I/O - - - - 136 149 L2 177 66

145. I/O - 87 84 123 137 150 L1 178 69

146. I/O - 88 85 124 138 151 K1 179 75

147. I/O (A6) 83 89 86 125 139 152 K2 180 78

148. I/O (A7) 84 90 87 126 140 153 K3 181 81

GND 1 91 88 127 141 154 K4 182 -

PQ208 TQ176
195 1 39 65 104 143 158 167

196 3 51 66 105 144 169

206 12 52 91 107 155 170

207 13 53 92 117 156

208 38 54 102 118 157

Pin Description PC84 PQ100 VQ100 TQ144 PQ160 TQ176 PG191 PQ208 Boundary Scan Order

Pin Description PC84 TQ144 PQ160 TQ176 PQ208 PG223 BG225 PQ240 Boundary Scan
Order

VCC 2 128 142 155 183 J4 VCC* 212 -

1. I/O (A8) 3 129 143 156 184 J3 E8 213 111

2. I/O (A9) 4 130 144 157 185 J2 B7 214 114

3. I/O - 131 145 158 186 J1 A7 215 117

4. I/O - 132 146 159 187 H1 C7 216 123

5. I/O - - - 160 188 H2 D7 217 126

6. I/O - - - 161 189 H3 E7 218 129
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100. I/O - - - F17 - AE22 558

101. I/O - - - G16 - AF23 564

102. I/O 49 63 69 D19 K7 AD20 567

103. I/O 50 64 70 E18 M5 AE21 570

104. I/O - 65 71 D20 R4 AF21 576

105. I/O - 66 72 G17 N5 AC19 579

106. I/O - - 73 F18 P5 AD19 582

107. I/O - - 74 H16 L6 AE20 588

108. I/O - - - E19 - AF20 591

109. I/O - - - F19 - AC18 594

GND 51 67 75 E20 GND* GND* -

110. I/O 52 68 76 H17 R5 AD18 600

111. I/O 53 69 77 G18 M6 AE19 603

112. I/O 54 70 78 G19 N6 AC17 606

113. I/O 55 71 79 H18 P6 AD17 612

VCC - - 80 F20 VCC* VCC* -

114. I/O - 72 81 J16 R6 AE17 615

115. I/O - 73 82 G20 M7 AE16 618

116. I/O - - - H20 - AF16 624

117. I/O - - - J18 - AC15 627

118. I/O - - 84 J19 N7 AD15 630

119. I/O - - 85 K16 P7 AE15 636

120. I/O 56 74 86 J20 R7 AF15 639

121. I/O 57 75 87 K17 L7 AD14 642

122. I/O 58 76 88 K18 N8 AE14 648

123. I/O (ERR, INIT) 59 77 89 K19 P8 AF14 651

VCC 60 78 90 L20 VCC* VCC* -

GND 61 79 91 K20 GND* GND* -

124. I/O 62 80 92 L19 L8 AE13 660

125. I/O 63 81 93 L18 P9 AC13 663

126. I/O 64 82 94 L16 R9 AD13 672

127. I/O 65 83 95 L17 N9 AF12 675

128. I/O - 84 96 M20 M9 AE12 678

129. I/O - 85 97 M19 L9 AD12 684

130. I/O - - - N20 - AC12 687

131. I/O - - - M18 - AF11 690

132. I/O - - 99 N19 R10 AE11 696

133. I/O - - 100 P20 P10 AD11 699

VCC - - 101 T20 VCC* VCC* -

134. I/O 66 86 102 N18 N10 AE9 702

135. I/O 67 87 103 P19 K9 AD9 708

136. I/O 68 88 104 N17 R11 AC10 711

137. I/O 69 89 105 R19 P11 AF7 714

GND 70 90 106 R20 GND* GND* -

138. I/O - - - N16 - AE8 720

139. I/O - - - P18 - AD8 723

140. I/O - - 107 U20 M10 AC9 726

141. I/O - - 108 P17 N11 AF6 732

142. I/O - 91 109 T19 R12 AE7 735

143. I/O - 92 110 R18 L10 AD7 738

144. I/O 71 93 111 P16 P12 AE6 744

145. I/O 72 94 112 V20 M11 AE5 747

Pin Description PQ160 HQ208 HQ240 PG299 BG225 BG352 Boundary Scan Order
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XC5200 Series Field Programmable Gate Arrays

Product Obsolete or Under Obsolescence
190. I/O - - - X8 - M4 951

191. I/O - - - V9 - L1 954

192. I/O (D2) 106 138 159 W8 G11 J1 960

193. I/O 107 139 160 X7 F15 K3 963

VCC - - 161 X5 VCC* VCC*

194. I/O 108 140 162 V8 F14 J2 966

195. I/O 109 141 163 W7 F13 J3 972

196. I/O - - 164 U8 G10 K4 975

197. I/O - - 165 W6 E15 G1 978

GND 110 142 166 X6 GND* GND*

198. I/O - - - T8 - H2 984

199. I/O - - - V7 - H3 987

200. I/O - - 167 X4 E14 J4 990

201. I/O - - 168 U7 F12 F1 996

202. I/O - 143 169 W5 E13 G2 999

203. I/O - 144 170 V6 D15 G3 1002

204. I/O 111 145 171 T7 F11 F2 1008

205. I/O 112 146 172 X3 D14 E2 1011

206. I/O (D1) 113 147 173 U6 E12 F3 1014

207. I/O (RCLK-BUSY/RDY) 114 148 174 V5 C15 G4 1020

208. I/O - - - W4 - D2 1023

209. I/O - - - W3 - F4 1032

210. I/O 115 149 175 T6 D13 E3 1035

211. I/O 116 150 176 U5 C14 C2 1038

212. I/O (D0, DIN) 117 151 177 V4 F10 D3 1044

213. I/O (DOUT) 118 152 178 X1 B15 E4 1047

CCLK 119 153 179 V3 C13 C3 -

VCC 120 154 180 W1 VCC* VCC* -

214. I/O (TDO) 121 159 181 U4 A15 D4 0

GND 122 160 182 X2 GND* GND* -

215. I/O (A0, WS) 123 161 183 W2 A14 B3 9

216. GCK4 (A1, I/O) 124 162 184 V2 B13 C4 15

217. I/O 125 163 185 R5 E11 D5 18

218. I/O 126 164 186 T4 C12 A3 21

219. I/O (A2, CS1) 127 165 187 U3 A13 D6 27

220. I/O (A3) 128 166 188 V1 B12 C6 30

221. I/O - - - R4 - B5 33

222. I/O - - - P5 - A4 39

223. I/O - - 189 U2 F9 C7 42

224. I/O - - 190 T3 D11 B6 45

225. I/O 129 167 191 U1 A12 A6 51

226. I/O 130 168 192 P4 C11 D8 54

227. I/O - 169 193 R3 B11 B7 57

228. I/O - 170 194 N5 E10 A7 63

229. I/O - - 195 T2 - D9 66

230. I/O - - - R2 - C9 69

GND 131 171 196 T1 GND* GND* -

231. I/O 132 172 197 N4 A11 B8 75

232. I/O 133 173 198 P3 D10 D10 78

233. I/O - - 199 P2 C10 C10 81

234. I/O - - 200 N3 B10 B9 87

VCC - - 201 R1 VCC* VCC* -
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Product Obsolete or Under Obsolescence
Revisions
Version Description

12/97 Rev 5.0 added -3, -4 specification

7/98 Rev 5.1 added Spartan family to comparison, removed HQ304

11/98 Rev 5.2 All specifications made final.
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