E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Not For New Designs
Core Processor	8051
Core Size	8-Bit
Speed	25MHz
Connectivity	CANbus, EBI/EMI, SMBus (2-Wire/I ² C), SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, Temp Sensor, WDT
Number of I/O	64
Program Memory Size	64KB (64K × 8)
Program Memory Type	FLASH
EEPROM Size	
RAM Size	4.25K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 3.6V
Data Converters	A/D 8x8b, 13x12b; D/A 2x10b, 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/c8051f040-gqr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

List of Registers

SFR	Definition 5	5.1. AMX0CF: AMUX0 Configuration	19
		5.2. AMX0SL: AMUX0 Channel Select	
SFR	Definition 5	5.3. AMX0PRT: Port 3 Pin Selection	51
SFR	Definition 5	5.4. HVA0CN: High Voltage Difference Amplifier Control	53
		5.5. ADC0CF: ADC0 Configuration Register	
		5.6. ADC0CN: ADC0 Control	
SFR	Definition 5	5.7. ADC0H: ADC0 Data Word MSB	60
SFR	Definition 5	5.8. ADC0L: ADC0 Data Word LSB	60
SFR	Definition 5	5.9. ADC0GTH: ADC0 Greater-Than Data High Byte	62
SFR	Definition 5	5.10. ADC0GTL: ADC0 Greater-Than Data Low Byte	62
SFR	Definition 5	5.11. ADC0LTH: ADC0 Less-Than Data High Byte	62
		5.12. ADC0LTL: ADC0 Less-Than Data Low Byte	
		6.1. AMX0CF: AMUX0 Configuration	
SFR	Definition 6	6.2. AMX0SL: AMUX0 Channel Select	71
		6.3. AMX0PRT: Port 3 Pin Selection	
SFR	Definition 6	6.4. HVA0CN: High Voltage Difference Amplifier Control	75
SFR	Definition 6	S.5. ADC0CF: ADC0 Configuration 8	30
		δ.6. ADC0CN: ADC0 Control 8	
		6.7. ADC0H: ADC0 Data Word MSB	
		S.8. ADC0L: ADC0 Data Word LSB 8	
		S.9. ADC0GTH: ADC0 Greater-Than Data High Byte 6	
		6.10. ADC0GTL: ADC0 Greater-Than Data Low Byte	
		6.11. ADC0LTH: ADC0 Less-Than Data High Byte	
		6.12. ADC0LTL: ADC0 Less-Than Data Low Byte 8	
		7.1. AMX2CF: AMUX2 Configuration	
		7.2. AMX2SL: AMUX2 Channel Select	
		7.3. ADC2CF: ADC2 Configuration	
		7.4. ADC2CN: ADC2 Control	
		7.5. ADC2: ADC2 Data Word	
		7.6. ADC2GT: ADC2 Greater-Than Data	
		7.7. ADC2LT: ADC2 Less-Than Data	
		3.1. DAC0H: DAC0 High Byte	
		3.2. DAC0L: DAC0 Low Byte	
		3.3. DAC0CN: DAC0 Control	
		3.4. DAC1H: DAC1 High Byte	
		3.5. DAC1L: DAC1 Low Byte	
		3.6. DAC1CN: DAC1 Control1	
		0.1. REF0CN: Reference Control1	
		10.1. REF0CN: Reference Control1	
SFR	Definition 1	11.1. CPTnCN: Comparator 0, 1, and 2 Control	24
		11.2. CPTnMD: Comparator Mode Selection	
		12.1. SFR Page Control Register: SFRPGCN	
SFR	Definition 1	12.2. SFR Page Register: SFRPAGE	12

1.10. Comparators and DACs

Each C8051F040/1/2/3 MCU has two 12-bit DACs, and all C8051F04x devices have three comparators on chip. The MCU data and control interface to each comparator and DAC is via the Special Function Registers. The MCU can place any DAC or comparator in low power shutdown mode.

The comparators have software programmable hysteresis and response time. Each comparator can generate an interrupt on its rising edge, falling edge, or both; these interrupts are capable of waking up the MCU from sleep mode. The comparators' output state can also be polled in software. The comparator outputs can be programmed to appear on the Port I/O pins via the Crossbar.

The DACs are voltage output mode and include a flexible output scheduling mechanism. This scheduling mechanism allows DAC output updates to be forced by a software write or a Timer 2, 3, or 4 overflow. The DAC voltage reference is supplied via the dedicated VREFD input pin on C8051F040/2 devices or via the internal voltage reference on C8051F041/3 devices. The DACs are especially useful as references for the comparators or offsets for the differential inputs of the ADC.

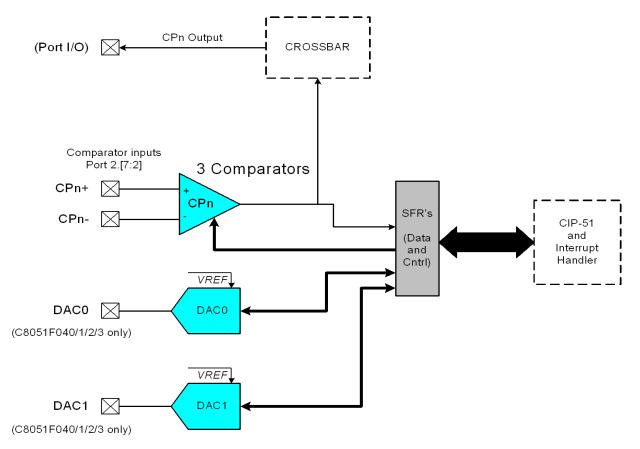
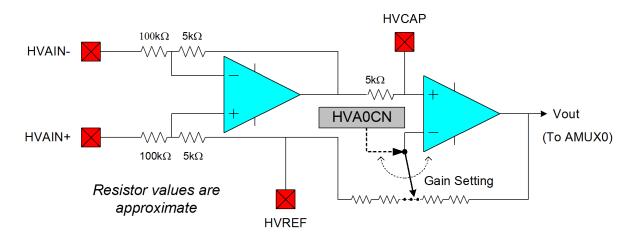


Figure 1.14. Comparator and DAC Diagram


5.2. High-Voltage Difference Amplifier

The High Voltage Difference Amplifier (HVDA) can be used to measure high differential voltages up to 60 V peak-to-peak, reject high common-mode voltages up to ±60 V, and condition the signal voltage range to be suitable for input to ADC0. The input signal to the HVDA may be below AGND to –60 volts, and as high as +60 volts, making the device suitable for both single and dual supply applications. The HVDA provides a common-mode signal for the ADC via the High Voltage Reference Input (HVREF), allowing measurement of signals outside the specified ADC input range using on-chip circuitry. The HVDA has a gain of 0.05 V/V to 14 V/V. The first stage 20:1 difference amplifier has a gain of 0.05 V/V when the output amplifier is used as a unity gain buffer. When the output amplifier is set to a gain of 280 (selected using the HVGAIN bits in the High Voltage Control Register), an overall gain of 14 can be attained.

The HVDA uses four available external pins: +HVAIN, –HVAIN, HVCAP, and HVREF. HVAIN+ and HVAINserve as the differential inputs to the HVDA. HVREF should be used to provide a common mode reference for input to ADC0, and to prevent the output of the HVDA circuit from saturating. The output from the HVDA circuit as calculated by Equation 5.1 must remain within the "Output Voltage Range" specification listed in Table 5.3. The ideal value for HVREF in most applications is equal to 1/2 the supply voltage for the device. When the ADC is configured for differential measurement, the HVREF signal is applied to the AINinput of the ADC, thereby removing HVREF from the measurement. HVCAP facilitates the use of a capacitor for noise filtering in conjunction with R7 (see Figure 5.3 for R7 and other approximate resistor values). Alternatively, the HVCAP could also be used to access amplification of the first stage of the HVDA at an external pin. (See Table 5.3 on page 68 for electrical specifications of the HVDA.)

$$V_{OUT} = [(HVAIN+) - (HVAIN-)] \cdot Gain + HVREF$$

Note: The output voltage of the HVDA is selected as an input to the AIN+ input of ADC0 via its analog multiplexer (AMUX0). HVDA output voltages outside the ADC's input range will result in saturation of the ADC input. Allow for adequate settle/tracking time for proper voltage measurements.

Equation 5.1. Calculating HVDA Output Voltage to AIN+

Figure 5.3. High Voltage Difference Amplifier Functional Diagram

C8051F040/1/2/3/4/5/6/7

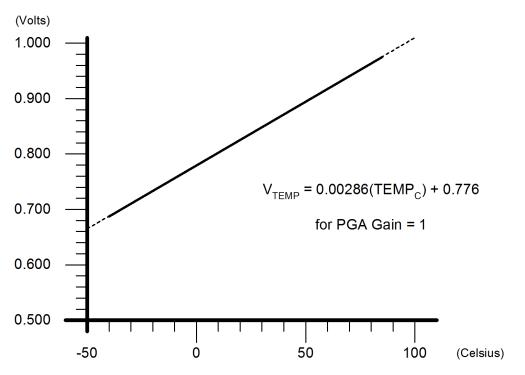


Figure 5.6. Temperature Sensor Transfer Function

SFR Definition 5.6. ADC0CN: ADC0 Control

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Valu
AD0EN	AD0TM	AD0INT	AD0BUSY	AD0CM1	AD0CM0	AD0WINT	AD0LJST	
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	Bit Addressab
							SFR Address	
							SFR Page	e: 0
Bit7:	AD0EN: AD	DC0 Enable	e Bit.					
	0: ADC0 D	isabled. AD	C0 is in low	-power shu	tdown.			
			C0 is active	and ready	for data con	versions.		
Bit6:	ADOTM: AD			kina in nant			ion io in nu	
			y AD0CM1-0	-	inuous unie:	ss a convers	ion is in pro	ocess
Bit5:			rsion Comp		ot Flag.			
			red by softw		it ingi			
	0: ADCO ha	as not com	oleted a data	a conversio	n since the	last time this	flag was cl	eared.
		•	ed a data co	nversion.				
Bit4:	AD0BUSY:	ADC0 Bus	sy Bit.					
	Read:	onversion i	s complete (or a conver	sion is not c	urrently in pr	oares AD	
			g edge of AE				Ugress. AD	01111 15 50
			s in progres					
	Write:							
	0: No Effect							
			version if AD					
Bit3-2:	If AD0CM1-0		art of Convei	rsion iviode	Select.			
			initiated on	everv write	of '1' to AD(BUSY.		
			initiated on					
			initiated on			CNVSTR0.		
			initiated on o	overflow of	Timer 2.			
	If ADOTM =		h tha write a			lasta far 2 C	ND alaaka f	
	conversion		in the write c		BUSY and	lasts for 3 SA	AR CIOCKS, I	
			v the overflo	w of Timer	3 and last fo	or 3 SAR clo	cks. followe	ed by con-
	version.	5	,					,
	10: ADC0 t	racks only	when CNVS	TR0 input	s logic low;	conversion s	starts on ris	ing
	CNVSTR0			<i>.</i> –				
		g started b	y the overflo	w of Timer	2 and last fo	or 3 SAR clo	cks, followe	ed by con-
Bit1:			dow Compa	re Interrunt	Flag			
51(1.			ed by softwa		r lag.			
					is not occur	red since this	s flag was la	ast cleared
	1: ADC0 W	/indow Con	nparison Dat	ta match ha			-	
Bit0:			Justify Selec					
	(). Data in /		COL register	o oro right				
			COL register	s are right-				

Table 5.2. 12-Bit ADC0 Electrical Characteristics

 V_{DD} = 3.0 V, AV+ = 3.0 V, VREF = 2.40 V (REFBE = 0), PGA Gain = 1, -40 to +85 °C unless otherwise specified.

Parameter	Conditions	Min	Тур	Мах	Units
DC Accuracy	1	1	1		
Resolution			12		bits
Integral Nonlinearity			_	±1	LSB
Differential Nonlinearity	Guaranteed Monotonic	—		±1	LSB
Offset Error	Note 1		0.5±3	_	LSB
Full Scale Error	Differential mode; See Note 1		0.4±3	_	LSB
Offset Temperature Coefficient			±0.25	_	ppm/°C
Dynamic Performance (10 kHz s	sine-wave input, 0 to 1 dB belo	w Full S	cale, 10	0 ksps)	
Signal-to-Noise Plus Distortion		66	_	—	dB
Total Harmonic Distortion	Up to the 5 th harmonic	_	-75	_	dB
Spurious-Free Dynamic Range		- 1	80	_	dB
Conversion Rate					
Maximum SAR Clock Frequency		—		2.5	MHz
Conversion Time in SAR Clocks		16		_	clocks
Track/Hold Acquisition Time		1.5		—	μs
Throughput Rate		-		100	ksps
Analog Inputs					
Input Voltage Range	Single-ended operation	0	—	VREF	V
Common-mode Voltage Range	Differential operation	AGND	—	AV+	V
Input Capacitance			10	—	pF
Temperature Sensor		1			
Nonlinearity	Notes 1, 2	—	±1	—	°C
Absolute Accuracy	Notes 1, 2		±3	—	°C
Gain	Notes 1, 2	_	2.86 ±0.034	_	mV/°C
Offset	Notes 1, 2 (Temp = 0 °C)	_	0.776 ±0.009	_	V
Power Specifications					
Power Supply Current (AV+ sup- plied to ADC)	Operating Mode, 100 ksps	_	450	900	μA
Power Supply Rejection			±0.3		mV/V
Notes: 1. Represents one standard devi 2. Includes ADC offset, gain, and		1	1	ı	

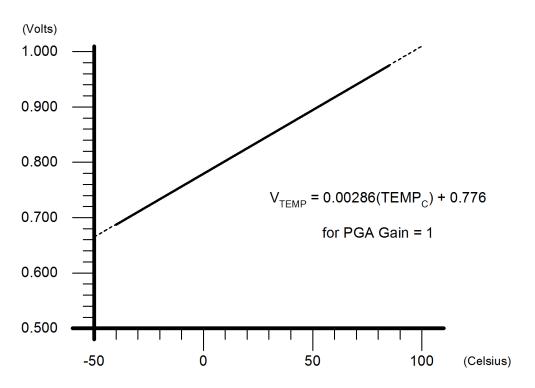


Figure 6.6. Temperature Sensor Transfer Function

SFR Definition 6.6. ADC0CN: ADC0 Control

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value
AD0EN	AD0TM	AD0INT	AD0BUSY	AD0CM1	AD0CM0	AD0WINT	AD0LJST	00000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0 SFR Address	
							SFR Page	9: 0
Bit7:	AD0EN: AD	DC0 Enable	e Bit.					
			C0 is in low					
DitC	1: ADC0 Ei AD0TM: AE		C0 is active	and ready	for data con	versions.		
Bit6:				kina is cont	inuous unle	ss a convers	ion is in nro	ncess
			y AD0CM1-0					0000
Bit5:	•		rsion Comp		pt Flag.			
			red by softw					
					n since the	last time this	flag was cl	eared.
Bit4:		•	ed a data co	nversion.				
DIL4.	AD0BUSY: Read:	ADC0 Bus	бу Біі.					
		onversion i	s complete	or a conver	sion is not c	urrently in pr	ogress. AD	0INT is set
	to logic 1 o	n the falling	g edge of AE	OBUSY.			U U	
		onversion i	s in progres	S.				
	Write:							
	0: No Effect		version if AE	00CM1_0 =	00b			
Bit3-2:			art of Conve					
	If AD0TM =							
			initiated on			BUSY.		
			initiated on					
			initiated on initiated on			CNVSTR0.		
	If ADOTM =				TITTEL Z.			
	00: Trackin	g starts wit	h the write o	of '1' to ADO	BUSY and	lasts for 3 SA	AR clocks, f	ollowed by
			y the overflo	w of Timer	3 and last fo	or 3 SAR clo	cks, followe	ed by con-
	version. 10: ADC0 t	racks only	when CNVS	STR0 input	is logic low;	conversion s	starts on ris	ing
	CNVSTR0	•						
	11: Trackin version.	g started b	y the overflo	w of Timer	2 and last fo	or 3 SAR clo	cks, followe	d by con-
Bit1:			dow Compa ed by softwa	•	Flag.			
			•		as not occur	red since this	s flag was la	ast cleared
			nparison Da					
Bit0:	AD0LJST: A	ADC0 Left	Justify Seleo	ct.				
			COL register					
	1: Data in A	ADCUH:AD	C0L register	's are left-ju	istified.			

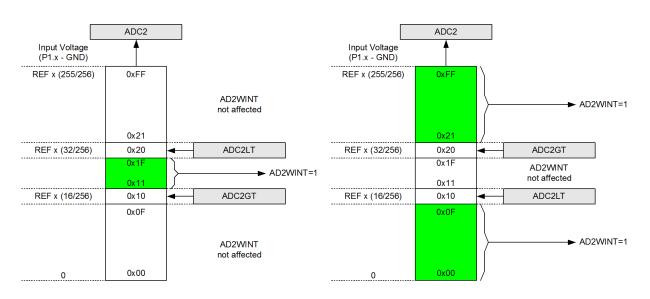


Figure 7.5. ADC Window Compare Examples, Single-Ended Mode

12.3. Interrupt Handler

The CIP-51 includes an extended interrupt system supporting a total of 20 interrupt sources with two priority levels. The allocation of interrupt sources between on-chip peripherals and external inputs pins varies according to the specific version of the device. Each interrupt source has one or more associated interruptpending flag(s) located in an SFR. When a peripheral or external source meets a valid interrupt condition, the associated interrupt-pending flag is set to logic 1.

If interrupts are enabled for the source, an interrupt request is generated when the interrupt-pending flag is set. As soon as execution of the current instruction is complete, the CPU generates an LCALL to a predetermined address to begin execution of an interrupt service routine (ISR). Each ISR must end with an RETI instruction, which returns program execution to the next instruction that would have been executed if the interrupt request had not occurred. If interrupts are not enabled, the interrupt-pending flag is ignored by the hardware and program execution continues as normal. The interrupt-pending flag is set to logic 1 regard-less of the interrupt's enable/disable state.

Each interrupt source can be individually enabled or disabled through the use of an associated interrupt enable bit in an SFR (IE-EIE2). However, interrupts must first be globally enabled by setting the EA bit (IE.7) to logic 1 before the individual interrupt enables are recognized. Setting the EA bit to logic 0 disables all interrupt sources regardless of the individual interrupt-enable settings.

Note: Any instruction that clears the EA bit should be immediately followed by an instruction that has two or more opcode bytes. For example:

// in 'C': EA = 0; // clear EA bit EA = 0; // ... followed by another 2-byte opcode ; in assembly: CLR EA ; clear EA bit CLR EA ; ... followed by another 2-byte opcode

If an interrupt is posted during the execution phase of a "CLR EA" opcode (or any instruction which clears the EA bit), and the instruction is followed by a single-cycle instruction, the interrupt may be taken. However, a read of the EA bit will return a '0' inside the interrupt service routine. When the "CLR EA" opcode is followed by a multi-cycle instruction, the interrupt will not be taken.

Some interrupt-pending flags are automatically cleared by the hardware when the CPU vectors to the ISR. However, most are not cleared by the hardware and must be cleared by software before returning from the ISR. If an interrupt-pending flag remains set after the CPU completes the return-from-interrupt (RETI) instruction, a new interrupt request will be generated immediately and the CPU will re-enter the ISR after the completion of the next instruction.

12.3.1. MCU Interrupt Sources and Vectors

The MCUs support 20 interrupt sources. Software can simulate an interrupt event by setting any interruptpending flag to logic 1. If interrupts are enabled for the flag, an interrupt request will be generated and the CPU will vector to the ISR address associated with the interrupt-pending flag. MCU interrupt sources, associated vector addresses, priority order and control bits are summarized in Table 12.4. Refer to the datasheet section associated with a particular on-chip peripheral for information regarding valid interrupt conditions for the peripheral and the behavior of its interrupt-pending flag(s).

12.3.2. External Interrupts

The external interrupt sources (/INT0 and /INT1) are configurable as active-low level-sensitive or activelow edge-sensitive inputs depending on the setting of bits IT0 (TCON.0) and IT1 (TCON.2). IE0 (TCON.1) and IE1 (TCON.3) serve as the interrupt-pending flag for the /INT0 and /INT1 external interrupts, respectively. If an /INT0 or /INT1 external interrupt is configured as edge-sensitive, the corresponding interruptpending flag is automatically cleared by the hardware when the CPU vectors to the ISR. When configured as level sensitive, the interrupt-pending flag follows the state of the external interrupt's input pin. The external interrupt source must hold the input active until the interrupt request is recognized. It must then deactivate the interrupt request before execution of the ISR completes or another interrupt request will be generated.

Interrupt Source	Interrupt Vector	Priority Order	Pending Flag	Bit addressable?	Cleared by HW?	SFRPAGE (SFRPGEN = 1)	Enable Flag	Priority Control
Reset	0x0000	Тор	None	N/A	N/A	0	Always Enabled	Always Highest
External Interrupt 0 (/INT0)	0x0003	0	IE0 (TCON.1)	Y	Y	0	EX0 (IE.0)	PX0 (IP.0)
Timer 0 Overflow	0x000B	1	TF0 (TCON.5)	Y	Y	0	ET0 (IE.1)	PT0 (IP.1)
External Interrupt 1 (/INT1)	0x0013	2	IE1 (TCON.3)	Y	Y	0	EX1 (IE.2)	PX1 (IP.2)
Timer 1 Overflow	0x001B	3	TF1 (TCON.7)	Y	Y	0	ET1 (IE.3)	PT1 (IP.3)
UART0	0x0023	4	RI0 (SCON0.0) TI0 (SCON0.1)	Y		0	ES0 (IE.4)	PS0 (IP.4)
Timer 2	0x002B	5	TF2 (TMR2CN.7)	Y		0	ET2 (IE.5)	PT2 (IP.5)
Serial Peripheral Interface	0x0033	6	SPIF (SPI0CN.7) WCOL (SPI0CN.6) MODF (SPI0CN.5) RXOVRN (SPI0CN.4)	Y		0	ESPI0 (EIE1.0)	PSPI0 (EIP1.0)
SMBus Interface	0x003B	7	SI (SMB0CN.3)	Y		0	ESMB0 (EIE1.1)	PSMB0 (EIP1.1)
ADC0 Window Comparator	0x0043	8	AD0WINT (ADC0CN.2)	Y		0	EWADC0 (EIE1.2)	PWADC0 (EIP1.2)
Programmable Counter Array	0x004B	9	CF (PCA0CN.7) CCFn (PCA0CN.n)	Y		0	EPCA0 (EIE1.3)	PPCA0 (EIP1.3)
Comparator 0	0x0053	10	CP0FIF/CP0RIF (CPT0CN.4/.5)			1	CP0IE (EIE1.4)	PCP0 (EIP1.4)

Table 12.4. Interrupt Summary

14.4. External Crystal Example

If a crystal or ceramic resonator is used as an external oscillator source for the MCU, the circuit should be configured as shown in Figure 14.1, Option 1. The External Oscillator Frequency Control value (XFCN) should be chosen from the Crystal column of the table in SFR Definition 14.4 (OSCXCN register). For example, an 11.0592 MHz crystal requires an XFCN setting of 111b.

When the crystal oscillator is enabled, the oscillator amplitude detection circuit requires a settle time to achieve proper bias. Introducing a delay of at least 1 ms between enabling the oscillator and checking the XTLVLD bit will prevent a premature switch to the external oscillator as the system clock. Switching to the external oscillator before the crystal oscillator has stabilized can result in unpredictable behavior. The recommended procedure is:

- Step 1. Enable the external oscillator in crystal oscillator mode.
- Step 2. Wait at least 1 ms.
- Step 3. Poll for XTLVLD => '1'.
- Step 4. Switch the system clock to the external oscillator.

Note: Tuning-fork crystals may require additional settling time before XTLVLD returns a valid result.

The capacitors shown in the external crystal configuration provide the load capacitance required by the crystal for correct oscillation. These capacitors are "in series" as seen by the crystal and "in parallel" with the stray capacitance of the XTAL1 and XTAL2 pins.

Note: The load capacitance depends upon the crystal and the manufacturer. Please refer to the crystal data sheet when completing these calculations.

For example, a tuning-fork crystal of 32.768 kHz with a recommended load capacitance of 12.5 pF should use the configuration shown in Figure 14.1, Option 1. The total value of the capacitors and the stray capacitance of the XTAL pins should equal 25 pF. With a stray capacitance of 3 pF per pin, the 22 pF capacitors yield an equivalent capacitance of 12.5 pF across the crystal, as shown in Figure 14.2.

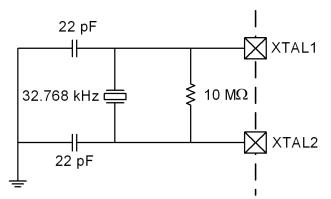


Figure 14.2. 32.768 kHz External Crystal Example

Important Note on External Crystals: Crystal oscillator circuits are quite sensitive to PCB layout. The crystal should be placed as close as possible to the XTAL pins on the device. The traces should be as short as possible and shielded with ground plane from any other traces which could introduce noise or interference.

SFR Definition 15.3. PSCTL: Program Store Read/Write Control

R/W	D/M/				R/W	R/W	R/W	Reset Value
K/W	R/W	R/W	R/W	R/W	SFLE	PSEE	PSWE	
-	-	-	-	-		-	-	00000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address:
							SFR Address SFR Page	• • • • • •
							or itt age	
Bits7-3:	UNUSED. R	ead = 0000	00b, Write =	don't care.				
Bit2:	SFLE: Scrat							
	When this bi							-
	Scratchpad							
	range 0x00-		d not be atte	empted. Re	ads/Writes	out of this r	ange will yie	eld unde-
	0: Flash acc	-	or coffwara	diracted to	the Progra	m/Data Ela	sh soctor	
	1: Flash acc				•			
Bit1:	PSEE: Prog				110 120 by	to oblationp		
	Setting this t				sh program	memorv to	be erased	provided
	the PSWE b							
	instruction w	ill erase the	e entire pag	e that conta	ins the loca	ation addres	ssed by the	MOVX
	instruction. 7	The value of	f the data b	yte written o	loes not ma	atter. Note:	The Flash	page con-
	taining the	Read Lock	Byte and N	Nrite/Erase	e Lock Byte	es cannot b	be erased b	y soft-
	ware.							
	0: Flash prog		2					
D:10.	1: Flash prog							
Bit0:	PSWE: Prog				ha Elach ar	ogrom mon	non / uning t	
	Setting this the write instruct				•	-	nory using t	
	0: Write to F						target Exter	nal RAM
	1: Write to F	• •	•			•	-	
							5	j.

16.4. Multiplexed and Non-multiplexed Selection

The External Memory Interface is capable of acting in a Multiplexed mode or a Non-multiplexed mode, depending on the state of the EMD2 (EMI0CF.4) bit.

16.4.1. Multiplexed Configuration

In Multiplexed mode, the Data Bus and the lower 8-bits of the Address Bus share the same Port pins: AD[7:0]. In this mode, an external latch (74HC373 or equivalent logic gate) is used to hold the lower 8-bits of the RAM address. The external latch is controlled by the ALE (Address Latch Enable) signal, which is driven by the External Memory Interface logic. An example of a Multiplexed Configuration is shown in Figure 16.1.

In Multiplexed mode, the external MOVX operation can be broken into two phases delineated by the state of the ALE signal. During the first phase, ALE is high and the lower 8-bits of the Address Bus are presented to AD[7:0]. During this phase, the address latch is configured such that the 'Q' outputs reflect the states of the 'D' inputs. When ALE falls, signaling the beginning of the second phase, the address latch outputs remain fixed and are no longer dependent on the latch inputs. Later in the second phase, the Data Bus controls the state of the AD[7:0] port at the time /RD or /WR is asserted.

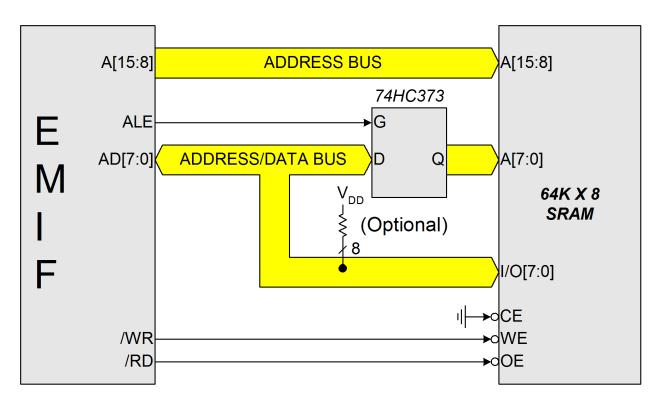


Figure 16.1. Multiplexed Configuration Example

19.4. SMBus Special Function Registers

The SMBus0 serial interface is accessed and controlled through five SFRs: SMB0CN Control Register, SMB0CR Clock Rate Register, SMB0ADR Address Register, SMB0DAT Data Register and SMB0STA Status Register. The five special function registers related to the operation of the SMBus0 interface are described in the following sections.

19.4.1. Control Register

The SMBus0 Control register SMB0CN is used to configure and control the SMBus0 interface. All of the bits in the register can be read or written by software. Two of the control bits are also affected by the SMBus0 hardware. The Serial Interrupt flag (SI, SMB0CN.3) is set to logic 1 by the hardware when a valid serial interrupt condition occurs. It can only be cleared by software. The Stop flag (STO, SMB0CN.4) is set to logic 1 by software. It is cleared to logic 0 by hardware when a STOP condition is detected on the bus.

Setting the ENSMB flag to logic 1 enables the SMBus0 interface. Clearing the ENSMB flag to logic 0 disables the SMBus0 interface and removes it from the bus. Momentarily clearing the ENSMB flag and then resetting it to logic 1 will reset SMBus0 communication. However, ENSMB should not be used to temporarily remove a device from the bus since the bus state information will be lost. Instead, the Assert Acknowledge (AA) flag should be used to temporarily remove the device from the bus (see description of AA flag below).

Setting the Start flag (STA, SMB0CN.5) to logic 1 will put SMBus0 in a master mode. If the bus is free, SMBus0 will generate a START condition. If the bus is not free, SMBus0 waits for a STOP condition to free the bus and then generates a START condition after a 5 µs delay per the SMB0CR value (In accordance with the SMBus protocol, the SMBus0 interface also considers the bus free if the bus is idle for 50 µs and no STOP condition was recognized). If STA is set to logic 1 while SMBus0 is in master mode and one or more bytes have been transferred, a repeated START condition will be generated.

When the Stop flag (STO, SMB0CN.4) is set to logic 1 while the SMBus0 interface is in master mode, the interface generates a STOP condition. In a slave mode, the STO flag may be used to recover from an error condition. In this case, a STOP condition is not generated on the bus, but the SMBus hardware behaves as if a STOP condition has been received and enters the "not addressed" slave receiver mode. Note that this simulated STOP will not cause the bus to appear free to SMBus0. The bus will remain occupied until a STOP appears on the bus or a Bus Free Timeout occurs. Hardware automatically clears the STO flag to logic 0 when a STOP condition is detected on the bus.

The Serial Interrupt flag (SI, SMB0CN.3) is set to logic 1 by hardware when the SMBus0 interface enters any one of the 28 possible states except the Idle state. If interrupts are enabled for the SMBus0 interface, an interrupt request is generated when the SI flag is set. The SI flag must be cleared by software.

Important Note: If SI is set to logic 1 while the SCL line is low, the clock-low period of the serial clock will be stretched and the serial transfer is suspended until SI is cleared to logic 0. A high level on SCL is not affected by the setting of the SI flag.

The Assert Acknowledge flag (AA, SMB0CN.2) is used to set the level of the SDA line during the acknowledge clock cycle on the SCL line. Setting the AA flag to logic 1 will cause an ACK (low level on SDA) to be sent during the acknowledge cycle if the device has been addressed. Setting the AA flag to logic 0 will cause a NACK (high level on SDA) to be sent during acknowledge cycle. After the transmission of a byte in slave mode, the slave can be temporarily removed from the bus by clearing the AA flag. The slave's own address and general call address will be ignored. To resume operation on the bus, the AA flag must be reset to logic 1 to allow the slave's address to be recognized.

Mode	Status Code	SMBus State	Typical Action
Ъъ	0x08	START condition transmitted.	Load SMB0DAT with Slave Address + R/W. Clear STA.
MT	0x10	Repeated START condition transmitted.	Load SMB0DAT with Slave Address + R/W. Clear STA.
	0x18	Slave Address + W transmitted. ACK received.	Load SMB0DAT with data to be transmit- ted.
mitter	0x20	Slave Address + W transmitted. NACK received.	Acknowledge poll to retry. Set STO + STA.
Master Transmitter	0x28	Data byte transmitted. ACK received.	 Load SMB0DAT with next byte, OR Set STO, OR Clear STO then set STA for repeated START.
Mas	0x30	Data byte transmitted. NACK received.	1) Retry transfer OR 2) Set STO.
	0x38	Arbitration Lost.	Save current data.
eiver	0x40	Slave Address + R transmitted. ACK received.	If only receiving one byte, clear AA (send NACK after received byte). Wait for received data.
r Rec	0x48	Slave Address + R transmitted. NACK received.	Acknowledge poll to retry. Set STO + STA.
Master Receiver	0x50	Data byte received. ACK transmitted.	Read SMB0DAT. Wait for next byte. If next byte is last byte, clear AA.
	0x58	Data byte received. NACK transmitted.	Set STO.

Table 19.1. SMB0STA Status Codes and States

Frequency: 22.1184 MHz Target Baud Rate (bps) Baud Rate % Error Oscillator Divide Factor Timer Clock Source Factor SCA1-SCA0 (pre-scale select)* T1N	1* Timer 1
Baud Rate (bps) % Error Factor Divide Source Factor Source (pre-scale select)*	Timer 1
	Reload Value (hex)
230400 0.00% 96 SYSCLK XX 1	0xD0
115200 0.00% 192 SYSCLK XX 1	0xA0
57600 0.00% 384 SYSCLK XX 1	0x40
28800 0.00% 768 SYSCLK / 12 00 0	0xE0
14400 0.00% 1536 SYSCLK / 12 00 0	0xC0
9600 0.00% 2304 SYSCLK / 12 00 0	0xA0
2400 0.00% 9216 SYSCLK / 48 10 0	0xA0
1200 0.00% 18432 SYSCLK / 48 10 0	0x40
230400 0.00% 96 EXTCLK / 8 11 0	0xFA
115200 0.00% 192 EXTCLK / 8 11 0	0xF4
57600 0.00% 384 EXTCLK / 8 11 0	0xE8
28800 0.00% 768 EXTCLK / 8 11 0	0xD0
14400 0.00% 1536 EXTCLK / 8 11 0	0xA0
9600 0.00% 2304 EXTCLK / 8 11 0	0x70

Table 22.3. Timer Settings for Standard Baud Rates Using an External22.1184 MHz Oscillator

X = Don't care

*Note: SCA1-SCA0 and T1M bit definitions can be found in Section 23.1.

SFR Definition 23.8. TMRnCN: Timer n Control

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	_ Reset Valu
TFn	EXFn	-	-	EXENn	TRn	C/Tn	CP/RLn	0000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	Bit Addressabl
SFR Addre	ess: TMR2CN:0xC	8:TMR3CN:0	xC8:TMR4CN	1:0xC8				Addressabi
	ige: TMR2CN: pag							
Bit7:	TFn: Timer n	Overflow/U	Inderflow F	lag.				
	Set by hardwa	are when e	ither the T	imer overflow	/s from 0xF	FFF to 0x0	0000, under	flows from
	the value place							
	0x0000 to 0xF							
	causes the CI			•		utine. This	bit is not au	tomatically
	cleared by ha			•	oftware.			
Bit6:	EXFn: Timer 2			-				
	Set by hardwa							
	TnEX input pi		•			•		•
	causes the CI			•		utine. This	bit is not au	itomaticall
	cleared by ha	roware and	a must be o	cleared by so	mware.			
Bit5-4: Bit3:	Reserved.	r n Evtorna	l Enchlo					
ອແວ.	EXENn: Time Enables high-			ToEV to triac	or conturo	o roloado	and control	the diree
	tion of the tim							
	counts up or c							
	a digital input.					1, THEA 31		iniguieu a
	0: Transitions		X pin are	ianored.				
	1: Transitions				eload. or co	ontrol the d	lirection of t	imer coun
	(up or down) a		P	,	,			
	Capture Mode		Transition	on TnEX pin	causes RC	CAPnH:RC	APnL to cap	oture timer
	value.							
	Auto-Reload N	Mode:						
	DCEN	N = 0: '1'-to	-'0' transiti	on causes re	eload of tim	er and sets	s the EXFn	Flag.
			-	el controls dir	ection of ti	mer (up or	down).	
Bit2:	TRn: Timer n		-					
	This bit enable		s the respe	ctive Timer.				
	0: Timer disat		. ,					
	1: Timer enab			iting.				
Bit1:	C/Tn: Counter			ad by alask	defined by	TnN11.TnN1	0	
	0: Timer Func				Jenned by		0	
	(TMRnCF.4:T 1: Counter Fu			ented by high	-to-low tra	nsitions on	external in	out nin
BitO:	CP/RLn: Capt			ented by high			external in	put pin.
	This bit select			functions in a	antura ar a	uto-reload	mode	
				UNCHORS IN C	adiure or a			
	0: Timer is in /				apture or a			

24.3. Register Descriptions for PCA0

Following are detailed descriptions of the special function registers related to the operation of PCA0.

	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Valu
CF	CR	CCF5	CCF4	CCF3	CCF2	CCF1	CCF0	0000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
							SFR Address SFR Page	
t7:	CF: PCA Co							
	Set by hardw							
	the Counter/ tor to the CF							
	must be clea			ie. This bit	is not auton		areu by har	uware and
it6:	CR: PCA0 C			trol				
	This bit enab				mer.			
	0: PCA0 Cor							
	1: PCA0 Co	unter/Timer	enabled.					
it5:	CCF5: PCA							
	This bit is se							
	enabled, set							outine. This
it4:	bit is not aut					cleared by s	software.	
114.	CCF4: PCA This bit is se		•			re Whan th	o CCE into	rrunt is
	enabled, set				•			•
	bit is not aut							
it3:	CCF3: PCA					, ,		
	This bit is se	t by hardwa	are when a					
	enabled, set				pture occu			
	hit is not out	•	causes the	CPU to veo	pture occur	CF interrup	ot service ro	
		omatically o	causes the cleared by h	CPU to veo ardware ar	pture occur otor to the C d must be o	CF interrup	ot service ro	
it2:	CCF2: PCA	omatically o Module 2	causes the cleared by h Capture/Co	CPU to veo ardware ar mpare Flag	pture occur ctor to the C d must be o l.	CF interrup cleared by s	ot service ro software.	outine. This
it2:	CCF2: PCA This bit is se	omatically o Module 2 It by hardwa	causes the cleared by h Capture/Co are when a	CPU to veo ardware ar mpare Flag match or ca	pture occur ctor to the C d must be o J. pture occur	CCF interrup cleared by s rs. When th	ot service ro software. e CCF inter	outine. This rrupt is
it2:	CCF2: PCA This bit is se enabled, set	omatically of Module 2 It by hardwating this bit	causes the cleared by h Capture/Co are when a causes the	CPU to veo ardware ar mpare Flag match or ca CPU to veo	pture occur ctor to the C Id must be o I. Ipture occur ctor to the C	CCF interrup cleared by s rs. When th CCF interrup	ot service ro software. e CCF inter ot service ro	outine. This rrupt is
	CCF2: PCA This bit is se enabled, set bit is not aut	omatically o 0 Module 2 et by hardwa ting this bit omatically o	causes the cleared by h Capture/Co are when a causes the cleared by h	CPU to veo ardware ar impare Flag match or ca CPU to veo ardware ar	pture occur of to the C ad must be o p pture occur of to the C ad must be o	CCF interrup cleared by s rs. When th CCF interrup	ot service ro software. e CCF inter ot service ro	outine. This
	CCF2: PCA This bit is se enabled, set	omatically of 0 Module 2 ht by hardwa ting this bit omatically of 0 Module 1	causes the cleared by h Capture/Co are when a causes the cleared by h Capture/Co	CPU to veo ardware ar mpare Flag match or ca CPU to veo ardware ar mpare Flag	pture occur of to the C ad must be o pture occur of to the C ad must be o p	CCF interrup cleared by s rs. When th CCF interrup cleared by s	ot service ro software. e CCF inter ot service ro software.	outine. This rrupt is outine. This
	CCF2: PCA0 This bit is see enabled, set bit is not aut CCF1: PCA0	omatically of 0 Module 2 at by hardwa ting this bit omatically of 0 Module 1 at by hardwa	causes the cleared by h Capture/Co are when a causes the cleared by h Capture/Co are when a	CPU to veo ardware ar mpare Flag match or ca CPU to veo ardware ar mpare Flag match or ca	pture occur of to the C of must be of pture occur of to the C of must be of pure occur of the occur of the occur of the occur	CCF interrup cleared by s rs. When th CCF interrup cleared by s rs. When th	ot service ro software. e CCF inter ot service ro software. e CCF inter	outine. This rrupt is outine. This rrupt is
it1:	CCF2: PCA0 This bit is see enabled, set bit is not aut CCF1: PCA0 This bit is see enabled, set bit is not aut	omatically of 0 Module 2 et by hardwa ting this bit omatically of 0 Module 1 et by hardwa ting this bit omatically of	causes the Capture/Co are when a causes the cleared by h Capture/Co are when a causes the cleared by h	CPU to veo ardware ar mpare Flag match or ca CPU to veo ardware ar mpare Flag match or ca CPU to veo ardware ar	pture occur of must be o pupture occur of must be o d must be o pupture occur of the occur of the occur of must be o d must be o	CCF interrup cleared by s rs. When th CCF interrup cleared by s rs. When th CCF interrup	ot service ro software. e CCF inter ot service ro software. e CCF inter ot service ro	outine. This rrupt is outine. This rrupt is
Bit1:	CCF2: PCA0 This bit is see enabled, set bit is not aut CCF1: PCA0 This bit is see enabled, set bit is not aut CCF0: PCA0	omatically of 0 Module 2 et by hardwa ting this bit omatically of 0 Module 1 et by hardwa ting this bit omatically of 0 Module 0	causes the Capture/Co are when a causes the cleared by h Capture/Co are when a causes the cleared by h Capture/Co	CPU to veo ardware ar mpare Flag match or ca CPU to veo ardware ar mpare Flag match or ca CPU to veo ardware ar mpare Flag	pture occur of must be of purpture occur of must be of of must be of pture occur of the occur of the occur of must be of of must be of p.	CCF interrup cleared by s rs. When th CCF interrup cleared by s rs. When th CCF interrup cleared by s	ot service ro software. e CCF inter ot service ro software. e CCF inter ot service ro software.	outine. This outine. This prupt is outine. This
Bit2: Bit1: Bit0:	CCF2: PCA0 This bit is see enabled, set bit is not aut CCF1: PCA0 This bit is see enabled, set bit is not aut CCF0: PCA0 This bit is se	omatically of 0 Module 2 et by hardwa ting this bit omatically of 0 Module 1 et by hardwa ting this bit omatically of 0 Module 0 et by hardwa	causes the Capture/Co are when a causes the cleared by h Capture/Co are when a causes the cleared by h Capture/Co are when a	CPU to veo ardware ar impare Flag match or ca CPU to veo ardware ar impare Flag match or ca CPU to veo ardware ar impare Flag match or ca	pture occur of the C of must be of pture occur of must be of pture occur of must be of of must be of pture occur of must be of pure occur	CCF interrup cleared by s rs. When th CCF interrup cleared by s rs. When th CCF interrup cleared by s rs. When th	ot service ro software. e CCF inter ot service ro software. e CCF inter of service ro software. e CCF inter	outine. This prupt is putine. This putine. This putine. This
it1:	CCF2: PCA0 This bit is see enabled, set bit is not aut CCF1: PCA0 This bit is see enabled, set bit is not aut CCF0: PCA0	omatically of 0 Module 2 et by hardwa ting this bit omatically of 0 Module 1 et by hardwa ting this bit omatically of 0 Module 0 et by hardwa ting this bit	causes the cleared by h Capture/Co are when a causes the cleared by h Capture/Co are when a causes the cleared by h Capture/Co are when a causes the	CPU to veo ardware ar mpare Flag match or ca CPU to veo ardware ar mpare Flag match or ca CPU to veo ardware ar mpare Flag match or ca CPU to veo	pture occur of must be o puture occur of must be o pture occur of must be o puture occur of must be o puture occur of must be o puture occur of to the C	CCF interrup cleared by s rs. When th CCF interrup cleared by s rs. When th CCF interrup cleared by s rs. When th CCF interrup	ot service ro software. e CCF inter ot service ro software. e CCF inter of service ro software. e CCF inter ot service ro	outine. This prupt is putine. This putine. This putine. This

SFR Definition 24.1. PCA0CN: PCA Control

25.3. Debug Support

Each MCU has on-chip JTAG and debug logic that provides non-intrusive, full speed, in-circuit debug support using the production part installed in the end application, via the four pin JTAG I/F. Silicon Labs' debug system supports inspection and modification of memory and registers, breakpoints, and single stepping. No additional target RAM, program memory, or communications channels are required. All the digital and analog peripherals are functional and work correctly (remain synchronized) while debugging. The Watch-dog Timer (WDT) is disabled when the MCU is halted during single stepping or at a breakpoint.

The C8051F040DK is a development kit with all the hardware and software necessary to develop application code and perform in-circuit debug with each MCU in the C8051F04x family. Each kit includes an Integrated Development Environment (IDE) which has a debugger and integrated 8051 assembler. The kit also includes a JTAG interface module referred to as the Serial Adapter. There is also a target application board with a C8051F040 installed. The required cables and wall-mount power supply are also included.

