

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Not For New Designs
Core Processor	8051
Core Size	8-Bit
Speed	25MHz
Connectivity	CANbus, EBI/EMI, SMBus (2-Wire/I ² C), SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, Temp Sensor, WDT
Number of I/O	32
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	4.25K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 3.6V
Data Converters	A/D 8x8b, 13x12b; D/A 2x10b, 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/c8051f041-gq

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.4. Programmable Digital I/O and Crossbar

The standard 8051 Ports (0, 1, 2, and 3) are available on the MCUs. The C8051F040/2/4/6 have 4 additional 8-bit ports (4, 5, 6, and 7) for a total of 64 general-purpose I/O Ports. The Ports behave like the standard 8051 with a few enhancements.

Each port pin can be configured as either a push-pull or open-drain output. Also, the "weak pullups" which are normally fixed on an 8051 can be globally disabled, providing additional power saving capabilities for low-power applications.

Perhaps the most unique enhancement is the Digital Crossbar. This is essentially a large digital switching network that allows mapping of internal digital system resources to Port I/O pins on P0, P1, P2, and P3 (See Figure 1.9). Unlike microcontrollers with standard multiplexed digital I/O ports, all combinations of functions are supported with all package options offered.

The on-chip counter/timers, serial buses, HW interrupts, ADC Start of Conversion input, comparator outputs, and other digital signals in the controller can be configured to appear on the Port I/O pins specified in the Crossbar Control registers. This allows the user to select the exact mix of general purpose Port I/O and digital resources needed for the particular application.

Figure 1.9. Digital Crossbar Diagram

1.5. Programmable Counter Array

The C8051F04x MCU family includes an on-board Programmable Counter/Timer Array (PCA) in addition to the five 16-bit general purpose counter/timers. The PCA consists of a dedicated 16-bit counter/timer time base with six programmable capture/compare modules. The timebase is clocked from one of six sources: the system clock divided by 12, the system clock divided by 4, Timer 0 overflow, an External Clock Input (ECI pin), the system clock, or the external oscillator source divided by 8.

Each capture/compare module can be configured to operate in one of six modes: Edge-Triggered Capture, Software Timer, High Speed Output, Frequency Output, 8-Bit Pulse Width Modulator, or 16-Bit Pulse Width Modulator. The PCA Capture/Compare Module I/O and External Clock Input are routed to the MCU Port I/ O via the Digital Crossbar.

Figure 1.10. PCA Block Diagram

SFR Definition 5.6. ADC0CN: ADC0 Control

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value			
AD0EN	AD0TM	AD0INT	AD0BUSY	AD0CM1	AD0CM0	AD0WINT	AD0LJST	00000000			
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	Bit Addressable			
		SFR Address SFR Page	: 0xE8 : 0								
Bit7:	AD0EN: AD 0: ADC0 Di	C0 Enable	e Bit. IC0 is in low	-power shu	tdown.						
Bit6:	1: ADC0 Er AD0TM: AE	nabled. AD DC Track M e ADC is e	C0 is active lode Bit nabled_tracl	and ready	for data con	versions.	ion is in pro	cess			
Bit5:	1: Tracking AD0INT: AE This flag m	Defined by DC0 Conve ust be clea	AD0CM1-0 rsion Comp red by softw) bits lete Interrup vare.	ot Flag.						
Bit4:	0: ADC0 ha 1: ADC0 ha AD0BUSY: Read:	as not comp as complete ADC0 Bus	oleted a data ed a data co y Bit.	a conversio nversion.	n since the I	ast time this	flag was cle	eared.			
	0: ADC0 Co to logic 1 of 1: ADC0 Co Write:	onversion i n the falling onversion i	s complete o g edge of AE s in progress	or a convers 00BUSY. s.	sion is not c	urrently in pr	ogress. AD()INT is set			
	0: No Effec 1: Initiates	t. ADC0 Con	version if AE	00CM1-0 =	00b						
Bit3-2:	AD0CM1-0	: ADC0 Sta : 0:	art of Conve	sion Mode	Select.						
	00: ADC0 c	conversion	initiated on	every write	of '1' to ADC	BUSY.					
	10: ADC0 c	conversion	initiated on	rising edge	of external (CNVSTR0.					
	11: ADC0 c If AD0TM =	onversion	initiated on o	overflow of	Timer 2.						
	00: Trackin	g starts wit	h the write c	of '1' to ADO	BUSY and I	asts for 3 SA	AR clocks, fo	blowed by			
	01: Trackin	g started b	y the overflo	w of Timer	3 and last fo	or 3 SAR clo	cks, followe	d by con-			
	10: ADC0 t	racks only	when CNVS	TR0 input i	s logic low;	conversion s	tarts on risi	ng			
	11: Tracking	g started b	y the overflo	w of Timer	2 and last fo	or 3 SAR cloo	cks, followe	d by con-			
Bit1:	ADOWINT:	ADC0 Win	dow Compa	re Interrupt	Flag.						
D:+0-	0: ADC0 Window Comparison Data match has not occurred since this flag was last cleared. 1: ADC0 Window Comparison Data match has occurred.										
DILU.	0: Data in A 1: Data in A	ADC0Left ADC0H:AD ADC0H:AD	COL register	s are right- s are left-ju	justified. Istified.						

SFR Definition 6.6. ADC0CN: ADC0 Control

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value			
AD0EN	AD0TM	AD0INT	AD0BUSY	AD0CM1	AD0CM0	AD0WINT	AD0LJST	00000000			
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	Bit Addressable			
	SFR Addre SFR Pa										
Bit7:	AD0EN: AD 0: ADC0 Di	C0 Enable sabled. AD	e Bit.)C0 is in low	-power shu	tdown.						
Bit6:	AD0TM: AD 0: When the	DC Track M e ADC is e	lode Bit nabled, tracl	king is cont	inuous unle	versions. ss a conversi	ion is in pro	cess			
Bit5:	1: Tracking AD0INT: AE This flag m 0: ADC0 ha	Defined by DC0 Conve ust be clea as not com	y AD0CM1-0 ersion Compl red by softwored by softwored a data) bits lete Interruj vare. a conversio pversion	ot Flag. n since the l	last time this	flag was cle	eared.			
Bit4:	AD0BUSY: Read:	ADC0 Bus	s complete o	nversion.	sion is not c	urrently in pr	oaress AD()INT is set			
	to logic 1 of 1: ADC0 Co Write: 0: No Effec	n the falling onversion i .t.	g edge of AE s in progress	00BUSY. s.							
Bit3-2:	1: Initiates / AD0CM1-0 If AD0TM = 00: ADC0 c 01: ADC0 c	ADC0 Con : ADC0 Sta : 0: conversion conversion	version if AE art of Conver initiated on o initiated on o	00CM1-0 = rsion Mode every write overflow of	00b Select. of '1' to AD(Timer 3.)BUSY.					
	10: ADC0 c 11: ADC0 c If AD0TM =	conversion conversion = 1:	initiated on i initiated on o	rising edge overflow of	of external (Timer 2.	CNVSTR0.					
	00: Trackin conversion	g starts wit	h the write c	of '1' to ADO	BUSY and I	lasts for 3 SA	AR clocks, fo	ollowed by			
	01: Trackin version.	g started b	y the overflo	w of Timer	3 and last fo	or 3 SAR clo	cks, followe	d by con-			
	10: ADC0 ti CNVSTR0	racks only edge.	when CNVS	TR0 input i	s logic low;	conversion s	tarts on risi	ng			
	11: Tracking	g started b	y the overflo	w of Timer	2 and last fo	or 3 SAR cloo	cks, followe	d by con-			
Bit1:	ADOWINT: A	ADC0 Wind st be clear	dow Compared by software	re Interrupt ire.	Flag.	rad aince this	flog woo lo	at algorid			
Bit0:	 1: ADC0 Window Comparison Data match has not occurred since this hag was last cleared 1: ADC0 Window Comparison Data match has occurred. AD0LJST: ADC0 Left Justify Select. 0: Data in ADC0H: ADC0L registers are right-justified. 1: Data in ADC0H: ADC0L registers are left-justified. 										

A. ADC Timing for External Trigger Source

Figure 7.2. ADC2 Track and Conversion Example Timing

8. DACs, 12-Bit Voltage Mode (C8051F040/1/2/3 Only)

Each C8051F040/1/2/3 devices include two on-chip 12-bit voltage-mode Digital-to-Analog Converters (DACs). Each DAC has an output swing of 0 V to (VREF – 1 LSB) for a corresponding input code range of 0x000 to 0xFFF. The DACs may be enabled/disabled via their corresponding control registers, DAC0CN and DAC1CN. While disabled, the DAC output is maintained in a high-impedance state, and the DAC supply current falls to 1 µA or less. The voltage reference for each DAC is supplied at the VREFD pin (C8051F040/2 devices) or the VREF pin (C8051F041/3 devices). Note that the VREF pin on C8051F041/3 devices may be driven by the internal voltage reference or an external source. If the internal voltage reference is used it must be enabled in order for the DAC outputs to be valid. See Section "9. Voltage Reference (C8051F040/2/4/6)" on page 113 or Section "10. Voltage Reference (C8051F041/3/5/7)" on page 117 for more information on configuring the voltage reference for the DACs.

Figure 8.1. DAC Functional Block Diagram

SFR Definition 8.1. DAC0H: DAC0 High Byte

SFR Definition 8.2. DAC0L: DAC0 Low Byte

C8051F040/1/2/3/4/5/6/7

Figure 11.2. Comparator Hysteresis Plot

The hysteresis of the Comparator is software-programmable via its Comparator Control register (CPTnCN). The user can program both the amount of hysteresis voltage (referred to the input voltage) and the positive and negative-going symmetry of this hysteresis around the threshold voltage.

The Comparator hysteresis is programmed using Bits3-0 in the Comparator Control Register CPTnCN (shown in SFR Definition 11.1). The amount of negative hysteresis voltage is determined by the settings of the CPnHYN bits. As shown in Table 11.1, settings of approximately 20, 10 or 5 mV of negative hysteresis can be programmed, or negative hysteresis can be disabled. In a similar way, the amount of positive hysteresis is determined by the setting the CPnHYP bits.

Comparator interrupts can be generated on either rising-edge and falling-edge output transitions. (For Interrupt enable and priority control, see **Section "12.3. Interrupt Handler" on page 153**). The rising and/ or falling -edge interrupts are enabled using the comparator's Rising/Falling Edge Interrupt Enable Bits (CPnRIE and CPnFIE) in their respective Comparator Mode Selection Register (CPTnMD), shown in SFR Definition 11.2. These bits allow the user to control which edge (or both) will cause a comparator interrupt. However, the comparator interrupt must also be enabled in the Extended Interrupt Enable Register (EIE1). The CPnFIF flag is set to logic 1 upon a Comparator falling-edge interrupt, and the CPnRIF flag is set to logic 1 upon the Comparator can be obtained at any time by reading the CPnOUT bit. A Comparator is enabled by setting its respective CPnEN bit to logic 1, and is disabled by clearing this bit to logic 0.Upon enabling a comparator, the output of the comparator is not immediately valid. Before using a comparator as an interrupt or reset source, software should wait for a minimum of the specified "Power-up time" as specified in Table 11.1, "Comparator Electrical Characteristics," on page 126.

SFR Definition 12.1. SFR Page Control Register: SFRPGCN

SFR Definition 12.2. SFR Page Register: SFRPAGE

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value
								00000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
Bit7 Bits7-0:	Bit6 SFR page co Stack: SFRF The SFRPAG Page Stack. SFR Page S Write: Sets the SFF SFRPAGE S Read: Returns the the value tha	Bit5 Dontext is ret PAGE is the GE, SFRST. Only interro tack. (See R Page con FR to have Value of the at will go to	Bit4 ained upon first entry, 3 ACK, and S upts and ref Section 12. tained in the this SFR p e SFR page the SFR Page	Bit3 interrupts/rr SFRNEXT i FRLAST by turns from ir 2.6.2 and S e second by age value u contained i age register	Bit2 eturn from i s the secon vtes may be nterrupt ser Section 12.2 vte of the SI ipon a retur n the secor upon a retu	Bit1 d, and SFR used alter vice routine 2.6.3 for fur FR Stack. T n from inter ad byte of th	Bit0 SFR Address SFR Page a 3 byte SI RLAST is thi the context is push and ther information ther information ther spread the spread rupt.	e: 0x85 E: All Pages FR Page rd entry. in the SFR pop the ation.) se the

SFR Definition 12.4. SFR Last Register: SFRLAST

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value
								0000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
							SFR Address	s: 0x86
							SFR Page	e: All Pages
Bits7-0:	SFR page of Stack: SFRF entry. The St not cause th routine push Write: Sets the SFF have this SF Read: Returns the	ontext is ret PAGE is the FR stack by e stack to 'f and pop th R Page in th R page val value of the	ained upon first entry, s /tes may be oush' or 'po le SFR Pag ne last entry ue upon a r e SFR page	interrupts/r SFRNEXT i e used alter p'. Only inte e Stack. of the SFR eturn from i	eturn from i s the secon the context errupts and Stack. This nterrupt. n the last e	nterrupts in d, and SFR in the SFR returns fron s will cause ntry of the S	a 3 byte S RLAST is the Page Stac n the interru the SFRNE	FR Page e third k, and will upt service

Table 12.3. Special Function Registers (Continued)

SFRs are listed in alphabetical order. All undefined SFR locations are reserved.

Register	Address	SFR Page	Description	Page No.
PCA0CPH4	0xEE	0	PCA Capture 4 High	page 318
PCA0CPH5	0xE2	0	PCA Capture 5 High	page 318
PCA0CPL0	0xFB	0	PCA Capture 0 Low	page 318
PCA0CPL1	0xFD	0	PCA Capture 1 Low	page 318
PCA0CPL2	0xE9	0	PCA Capture 2 Low	page 318
PCA0CPL3	0xEB	0	PCA Capture 3 Low	page 318
PCA0CPL4	0xED	0	PCA Capture 4 Low	page 318
PCA0CPL5	0xE1	0	PCA Capture 5 Low	page 318
PCA0CPM0	0xDA	0	PCA Module 0 Mode Register	page 316
PCA0CPM1	0xDB	0	PCA Module 1 Mode Register	page 316
PCA0CPM2	0xDC	0	PCA Module 2 Mode Register	page 316
PCA0CPM3	0xDD	0	PCA Module 3 Mode Register	page 316
PCA0CPM4	0xDE	0	PCA Module 4 Mode Register	page 316
PCA0CPM5	0xDF	0	PCA Module 5 Mode Register	page 316
PCA0H	0xFA	0	PCA Counter High	page 317
PCA0L	0xF9	0	PCA Counter Low	page 317
PCA0MD	0xD9	0	PCA Mode	page 315
PCON	0x87	All Pages	Power Control	page 164
PSCTL	0x8F	0	Program Store R/W Control	page 185
PSW	0xD0	All Pages	Program Status Word	page 151
RCAP2H	0xCB	0	Timer/Counter 2 Capture/Reload High	page 303
RCAP2L	0xCA	0	Timer/Counter 2 Capture/Reload Low	page 303
RCAP3H	0xCB	1	Timer/Counter 3 Capture/Reload High	page 303
RCAP3L	0xCA	1	Timer/Counter 3 Capture/Reload Low	page 303
RCAP4H	0xCB	2	Timer/Counter 4 Capture/Reload High	page 303
RCAP4L	0xCA	2	Timer/Counter 4 Capture/Reload Low	page 303
REF0CN	0xD1	0	Programmable Voltage Reference Control	page 114 ⁴ , page 118 ⁵
RSTSRC	0xEF	0	Reset Source Register	page 170
SADDR0	0xA9	0	UART 0 Slave Address	page 276
SADEN0	0xB9	0	UART 0 Slave Address Enable	page 276
SBUF0	0x99	0	UART 0 Data Buffer	page 276
SBUF1	0x99	1	UART 1 Data Buffer	page 283
SCON0	0x98	0	UART 0 Control	page 274
SCON1	0x98	1	UART 1 Control	page 282
SFRPAGE	0x84	All Pages	SFR Page Register	page 142
SFRPGCN	0x96	F	SFR Page Control Register	page 142
SFRNEXT	0x85	All Pages	SFR Next Page Stack Access Register	page 143
SFRLAST	0x86	All Pages	SFR Last Page Stack Access Register	page 143
SMB0ADR	0xC3	0	SMBus Slave Address	page 250
SMB0CN	0xC0	0	SMBus Control	page 247
SMB0CR	0xCF	0	SMBus Clock Rate	page 248
SMB0DAT	0xC2	0	SMBus Data	page 249
SMB0STA	0xC1	0	SMBus Status	page 251
SP	0x81	All Pages	Stack Pointer	page 150

148

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value
	CP2IE	CP1IE	CP0IE	EPCA0	EWADC0	ESMB0	ESPI0	00000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
		SFR Address	: 0xE6					
		SFR Page	: All Pages					
Bit7.	Reserved R							
Bit6:	CP2IE: Enal	ole Compar	ator (CP2)	Interrupt.				
	This bit sets	the maskin	g of the CP	2 interrupt.				
	0: Disable C	P2 interrup	ts.	•				
	1: Enable inf	errupt requ	ests genera	ated by the	CP2IF flag.			
Bit6:	CP1IE: Enal	ole Compar	ator (CP1)	Interrupt.				
	This bit sets	the maskin	g of the CP	1 interrupt.				
	U: Disable C	P1 Interrup	IS. osta gonor	atod by the				
Bit6 [.]	CP0IE: Enab	ole Compar	ator (CP0)	Interrupt	or ni nay.			
Dito.	This bit sets	the maskin	g of the CP	0 interrupt.				
	0: Disable C	P0 interrup	ts.	•				
	1: Enable int	errupt requ	ests genera	ated by the	CP0IF flag.			
Bit3:	EPCA0: Ena	ble Program	nmable Co	unter Array	(PCA0) Inte	errupt.		
	This bit sets	the maskin	g of the PC	A0 interrup	ts.			
	0: Disable al	I PCAU inte	rrupts.	ated by DC	• •			
Bit2.		nable Wind	ow Compa	rison ADCO	NU. Interrunt			
DILZ.	This bit sets	the maskin	a of ADC0	Window Co	mparison in	terrupt.		
	0: Disable A	DC0 Windo	w Comparis	son Interrup	ot.			
	1: Enable Int	terrupt requ	ests genera	ated by AD	C0 Window	Compariso	ns.	
Bit1:	ESMB0: Ena	able System	n Managem	ent Bus (SI	MBus0) Inte	rrupt.		
	This bit sets	the maskin	g of the SN	IBus interru	pt.			
	0: Disable al	I SMBus int	terrupts.	ted by the	Clflor			
RitO	ESPIO: Enable	errupt requ	esis genera arinharal In	terface (SP	SI IIAG. 10) Interrunt			
Dito.	This bit sets	the maskin	a of SPI0 ir	terrunt	io) interiupt	•		
	0: Disable al	I SPI0 inter	rupts.	non apt.				
	1: Enable Int	terrupt requ	ests genera	ated by the	SPI0 flag.			

Table 13.1. Reset Electrical Characteristics

-40 to +85 °C unless otherwise specified.

Parameter	Conditions	Min	Тур	Max	Units
RST Output Low Voltage	I_{OL} = 8.5 mA, V_{DD} = 2.7 V to 3.6 V			0.6	V
RST Input High Voltage		0.7 x V _{DD}	_	_	V
RST Input Low Voltage		_	_	0.3 x V _{DD}	
RST Input Leakage Current	RST = 0.0 V	_	50	—	μA
V _{DD} for /RST Output Valid		1.0	_	—	V
AV+ for /RST Output Valid		1.0	—	—	V
V_{DD} POR Threshold (V_{RST})		2.40	2.55	2.70	V
Minimum /RST Low Time to Generate a System Reset		10			ns
Reset Time Delay	$\overline{\text{RST}}$ rising edge after V_{DD} crosses V_{RST} threshold	80	100	120	ms
Missing Clock Detector Timeout	Time from last system clock to reset initiation	100	220	500	μs

C8051F040/1/2/3/4/5/6/7

Figure 15.1. Flash Program Memory Map and Security Bytes

15.3.1. Summary of Flash Security Options

There are three Flash access methods supported on the C8051F04x devices; 1) Accessing Flash through the JTAG debug interface, 2) Accessing Flash from firmware residing below the Flash Access Limit, and 3) Accessing Flash from firmware residing at or above the Flash Access Limit.

Accessing Flash through the JTAG debug interface:

- 1. The Read and Write/Erase Lock bytes (security bytes) provide security for Flash access through the JTAG interface.
- 2. Any unlocked page may be read from, written to, or erased.
- 3. Locked pages cannot be read from, written to, or erased.
- 4. Reading the security bytes is always permitted.
- 5. Locking additional pages by writing to the security bytes is always permitted.
- 6. If the page containing the security bytes is **unlocked**, it can be directly erased. **Doing so will reset the security bytes and unlock all pages of Flash.**
- 7. If the page containing the security bytes is **locked**, it cannot be directly erased. **To unlock the page containing the security bytes**, a **full JTAG device erase is required**. A full JTAG device erase will erase all Flash pages, including the page containing the security bytes and the security bytes themselves.
- 8. The Reserved Area cannot be read from, written to, or erased at any time.

Accessing Flash from firmware residing below the Flash Access Limit:

- 1. The Read and Write/Erase Lock bytes (security bytes) do not restrict Flash access from user firmware.
- 2. Any page of Flash except the page containing the security bytes may be read from, written to, or erased.
- 3. The page containing the security bytes cannot be erased. Unlocking pages of Flash can only be performed via the JTAG interface.
- 4. The page containing the security bytes may be read from or written to. Pages of Flash can be locked from JTAG access by writing to the security bytes.
- 5. The Reserved Area cannot be read from, written to, or erased at any time.

Accessing Flash from firmware residing at or above the Flash Access Limit:

- 1. The Read and Write/Erase Lock bytes (security bytes) do not restrict Flash access from user firmware.
- 2. Any page of Flash at or above the Flash Access Limit except the page containing the security bytes may be read from, written to, or erased.
- 3. Any page of Flash below the Flash Access Limit cannot be read from, written to, or erased.
- 4. Code branches to locations below the Flash Access Limit are permitted.
- 5. **The page containing the security bytes cannot be erased.** Unlocking pages of Flash can only be performed via the JTAG interface.
- 6. The page containing the security bytes may be read from or written to. Pages of Flash can be locked from JTAG access by writing to the security bytes.
- 7. The Reserved Area cannot be read from, written to, or erased at any time.

16.6.1.3.8-bit MOVX with Bank Select: EMI0CF[4:2] = '110'.

Figure 16.6. Non-multiplexed 8-bit MOVX with Bank Select Timing

C8051F040/1/2/3/4/5/6/7

				F	2 0							P	1							Р	2							Р	3				Crossbar Register I	Bits
PIN I/O	0	1	2	3	4	5	6	7	0	1	2	3	4	5	6	7	0	1	2	3	4	5	6	7	0	1	2	3	4	5	6	7		
TX0 RX0	•	•																															UARTOEN: XBR0.2	2
SCK	•	•	•																													_		
MISO	-	•	•	•																														
MOSI		•	•	•	•																												SPI0EN: XBR0.	1
NSS				٠		٠		NS	SS is	s no	t as	sigr	ned 1	to a	a poi	rt p	in v	vhe	n th	e S	PI i	s pl	ace	d ir	1 3-V	vire	e me	ode					1	
SDA	•		٠	٠	٠	٠	٠									-																_		-
SCL		•		•	•	٠	٠	٠																									SMB0EN: XBR0.	0
TX1	•		٠	٠	٠	٠	٠	٠	٠																									
RX1		•		•	٠	٠	٠	٠	•	•																							UARTIEN: XBR2.	2
CEX0	٠		٠	٠	٠	٠	٠	٠	•	•	٠																							
CEX1		٠		٠	٠	٠	٠	٠	•	•	•	•																						
CEX2			٠		٠	٠	٠	٠	•	•	•	•	•																					15.01
CEX3				٠		٠	٠	٠	•	•	•	•	•	•																			PCAUME: XBRU.	[5:3]
CEX4					٠		٠	٠	•	•	•	•	•	•	•																			
CEX5						٠		٠	•	•	•	•	•	•	•	•																		
ECI	٠	٠	٠	٠	٠	٠	٠	٠	•	•	•	•	•	•	•	•	٠																ECI0E: XBR0.	6
CP0	٠	٠	٠	٠	٠	٠	٠	٠	•	•	•	•	•	•	•	•	٠	٠															CP0E: XBR0.	7
CP1	•	٠	٠	٠	٠	٠	٠	٠	٠	•	•	•	•	•	•	•	٠	٠	٠														CP1E: XBR1.	0
CP2	•	٠	٠	٠	٠	٠	٠	٠	•	•	•	•	•	•	•	•	٠	٠	٠	٠													CP2E: XBR3.	3
то	•	٠	٠	٠	٠	٠	٠	٠	•	•	•	•	•	•	•	•	٠	٠	٠	٠	٠												T0E: XBR1.	1
/INT0	•	٠	٠	٠	٠	٠	٠	٠	•	•	•	•	•	•	•	•	٠	٠	٠	٠	٠	٠											INTOE: XBR1.	2
T1	•	٠	٠	٠	٠	٠	٠	٠	•	•	•	•	•	•	•	•	٠	٠	٠	٠	٠	٠	٠										T1E: XBR1.	3
/INT1	٠	٠	٠	٠	٠	٠	٠	٠	•	•	٠	٠	•	•	•	•	٠	٠	٠	٠	٠	٠	٠	٠									INT1E: XBR1.4	4
T2	•	٠	٠	٠	٠	٠	٠	٠	٠	•	•	•	•	•	•	•	٠	٠	٠	٠	٠	٠	٠	٠	•								T2E: XBR1.	5
T2EX	•	٠	٠	٠	٠	٠	٠	٠	•	•	•	•	•	•	•	•	٠	٠	٠	٠	٠	٠	٠	٠	٠	•							T2EXE: XBR1.	6
Т3	•	٠	٠	٠	٠	٠	٠	٠	•	•	•	•	•	•	•	•	٠	٠	٠	٠	٠	٠	٠	٠	٠	•	٠						T3E: XBR3.	0
T3EX	•	٠	٠	٠	٠	٠	٠	٠	•	•	•	•	•	•	•	•	٠	٠	٠	٠	٠	٠	٠	٠	٠	•	٠	٠					T3EXE: XBR3.	1
T4	•	٠	٠	٠	٠	٠	٠	٠	•	•	•	•	•	•	•	•	٠	٠	٠	٠	٠	٠	٠	٠	٠	•	٠	٠	•				T4E: XBR2.	3
T4EX	٠	٠	٠	٠	٠	٠	٠	٠	•	•	•	•	•	•	•	•	٠	٠	٠	٠	٠	٠	٠	٠	•	•	•	•	•	•			T4EXE: XBR2.4	4
/SYSCLK	٠	٠	٠	٠	٠	٠	٠	٠	•	•	•	•	•	•	•	•	٠	٠	٠	٠	٠	٠	٠	٠	•	•	٠	٠	•	•	•		SYSCKE: XBR1.	7
CNVSTR0	٠	٠	٠	٠	٠	٠	٠	٠	•	•	•	•	•	•	•	•	٠	٠	٠	٠	٠	٠	٠	٠	•	•	•	•	•	•	•	•	CNVSTE0: XBR2.	0
CNVSTR2	•	٠	٠	٠	٠	٠	٠	٠	•	•	•	•	•	•	•	•	٠	٠	٠	٠	٠	٠	٠	٠	٠	•	٠	٠	•	•	•	•	CNVSTE2: XBR3.2	2
						ALE	/RD	MR	► AIN1.0/A8	T AIN1.1/A9	ation 1.2/A10	Z AIN1.3/A11	AIN1.4/A12	叠 AIN1.5/A13	pp AIN1.6/A14	T AIN1.7/A15	₹ Bm/A0	₽ A9m/A1	pp A10m/A2	<u></u> <u>≥</u> A11m/A3	-u a12m/A4	e A13m/A5	P A14m/A6	다 A15m/A7	Z AD0/D0	ax AD1/D1	D2/D2	AD3/D3	AD4/D4	a AD5/D5	De/De	BD7/D7		

Figure 17.3. Priority Crossbar Decode Table (EMIFLE = 0; P1MDIN = 0xFF)

17.1.1. Crossbar Pin Assignment and Allocation

The Crossbar assigns Port pins to a peripheral if the corresponding enable bits of the peripheral are set to a logic 1 in the Crossbar configuration registers XBR0, XBR1, XBR2, and XBR3, shown in SFR Definition 17.1, SFR Definition 17.2, SFR Definition 17.3, and SFR Definition 17.4. For example, if the UART0EN bit (XBR0.2) is set to a logic 1, the TX0 and RX0 pins will be mapped to P0.0 and P0.1 respectively. Because UART0 has the highest priority, its pins will always be mapped to P0.0 and P0.1 when UART0EN is set to a logic 1. If a digital peripheral's enable bits are not set to a logic 1, then its ports are not accessible at the Port pins of the device. Also note that the Crossbar assigns pins to all associated functions when a serial communication peripheral is selected (i.e. SMBus, SPI, UART). It would be impossible, for example, to assign TX0 to a Port pin without assigning RX0 as well. Each combination of enabled peripherals results in a unique device pinout.

All Port pins on Ports 0 through 3 that are not allocated by the Crossbar can be accessed as General-Purpose I/O (GPIO) pins by reading and writing the associated Port Data registers (See SFR Definition 17.5,

SFR Definition 20.3. SPI0CKR: SPI0 Clock Rate

								Depart Value					
			R/W SCD4										
	Bite	Bits				Bit1	BitO						
DI(/	SFR Page: 0												
Bits 7-0: 5	7-0: SCR7-SCR0: SPI0 Clock Rate These bits determine the frequency of the SCK output when the SPI0 module is configured for master mode operation. The SCK clock frequency is a divided version of the system clock, and is given in the following equation, where <i>SYSCLK</i> is the system clock frequency and <i>SPI0CKR</i> is the 8-bit value held in the SPI0CKR register. $f_{SCK} = \frac{SYSCLK}{2 \times (SPI0CKR + 1)}$												
Example: I	f SYSCLK =	2 MHz and	I SPIOCKR	= 0x04,									
	$f_{SCK} = \frac{2}{2}$	$\frac{2000000}{\times (4+1)}$											
J	$f_{SCK} = 20$	0 <i>kHz</i>											

23.1.3. Mode 2: 8-bit Counter/Timer with Auto-Reload

Mode 2 configures Timer 0 and Timer 1 to operate as 8-bit counter/timers with automatic reload of the start value. TL0 holds the count and TH0 holds the reload value. When the counter in TL0 overflows from 0xFF to 0x00, the timer overflow flag TF0 (TCON.5) is set and the counter in TL0 is reloaded from TH0. If Timer 0 interrupts are enabled, an interrupt will occur when the TF0 flag is set. The reload value in TH0 is not changed. TL0 must be initialized to the desired value before enabling the timer for the first count to be correct. When in Mode 2, Timer 1 operates identically to Timer 0.

Both counter/timers are enabled and configured in Mode 2 in the same manner as Mode 0. Setting the TR0 bit (TCON.4) enables the timer when either GATE0 (TMOD.3) is logic 0 or when the input signal /INT0 is low.

Figure 23.2. T0 Mode 2 Block Diagram

24.2.2. Software Timer (Compare) Mode

In Software Timer mode, the PCA0 counter/timer is compared to the module's 16-bit capture/compare register (PCA0CPHn and PCA0CPLn). When a match occurs, the Capture/Compare Flag (CCFn) in PCA0CN is set to logic 1 and an interrupt request is generated if CCF interrupts are enabled. The CCFn bit is not automatically cleared by hardware when the CPU vectors to the interrupt service routine, and must be cleared by software. Setting the ECOMn and MATn bits in the PCA0CPMn register enables Software Timer mode.

Important Note About Capture/Compare Registers: When writing a 16-bit value to the PCA0 Capture/ Compare registers, the low byte should always be written first. Writing to PCA0CPLn clears the ECOMn bit to '0'; writing to PCA0CPHn sets ECOMn to '1'.

Figure 24.5. PCA Software Timer Mode Diagram

