

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Not For New Designs
Core Processor	8051
Core Size	8-Bit
Speed	25MHz
Connectivity	CANbus, EBI/EMI, SMBus (2-Wire/I ² C), SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, Temp Sensor, WDT
Number of I/O	32
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	4.25K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 3.6V
Data Converters	A/D 8x8b, 13x12b; D/A 2x10b, 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/c8051f041-gqr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

14.2.External Oscillator Drive Circuit	175
14.3.System Clock Selection	
14.4.External Crystal Example	
14.5.External RC Example	
14.6.External Capacitor Example	
15. Flash Memory	
15.1.Programming The Flash Memory	
15.2.Non-volatile Data Storage	
15.3.Security Options	
15.3.1.Summary of Flash Security Options	
16. External Data Memory Interface and On-Chip XRAM	
16.1.Accessing XRAM	
16.1.1.16-Bit MOVX Example	
16.1.2.8-Bit MOVX Example	
16.2.Configuring the External Memory Interface	188
16.3.Port Selection and Configuration	188
16.4.Multiplexed and Non-multiplexed Selection	
16.4.1.Multiplexed Configuration	
16.4.2.Non-multiplexed Configuration	
16.5.Memory Mode Selection	
16.5.1.Internal XRAM Only	
16.5.2.Split Mode without Bank Select	
16.5.3.Split Mode with Bank Select	
16.5.4.External Only	
16.6.Timing	
16.6.1.Non-multiplexed Mode	
16.6.2.Multiplexed Mode	
17. Port Input/Output	
17.1.Ports 0 through 3 and the Priority Crossbar Decoder	
17.1.1.Crossbar Pin Assignment and Allocation	
17.1.2.Configuring the Output Modes of the Port Pins	
17.1.3.Configuring Port Pins as Digital Inputs	
17.1.4.Weak Pullups	
17.1.5.Configuring Port 1, 2, and 3 Pins as Analog Inputs	
17.1.6.External Memory Interface Pin Assignments	
17.1.7.Crossbar Pin Assignment Example	
17.2.Ports 4 through 7	
17.2.1.Configuring Ports Which are Not Pinned Out	. 221
17.2.2.Configuring the Output Modes of the Port Pins	
17.2.3.Configuring Port Pins as Digital Inputs	
17.2.4.Weak Pullups	
17.2.5.External Memory Interface	. 221
18. Controller Area Network (CAN0)	
18.1.Bosch CAN Controller Operation	
18.1.1.CAN Controller Timing	

18.Controller Area Network (CAN0)	
Table 18.1. Background System Information	229
Table 18.2. CAN Register Index and Reset Values	233
19. System Management BUS/I ² C BUS (SMBUS0)	
Table 19.1. SMB0STA Status Codes and States 2	252
20. Enhanced Serial Peripheral Interface (SPI0)	
21.UART0	
Table 21.1. UART0 Modes 2	266
Table 21.2. Oscillator Frequencies for Standard Baud Rates	273
22.UART1	
Table 22.1. Timer Settings for Standard Baud Rates Using the Internal 24.5 MHz C cillator 2	
Table 22.2. Timer Settings for Standard Baud Rates Using an External 25.0 MHz C cillator 2	
Table 22.3. Timer Settings for Standard Baud Rates Using an External 22.1184 MI Oscillator 2	Hz
Table 22.4. Timer Settings for Standard Baud Rates Using an External 18.432 MH Oscillator 2	
Table 22.5. Timer Settings for Standard Baud Rates Using an External 11.0592 MF Oscillator	
Table 22.6. Timer Settings for Standard Baud Rates Using an External 3.6864 MH Oscillator 2	
23. Timers	
24. Programmable Counter Array	
Table 24.1. PCA Timebase Input Options	306
Table 24.2. PCA0CPM Register Settings for PCA Capture/Compare Modules 3 25. JTAG (IEEE 1149.1)	307
Table 25.1. Boundary Data Register Bit Definitions 3	320

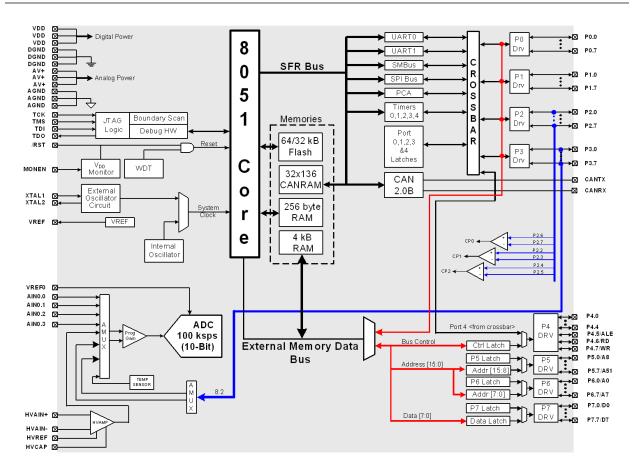
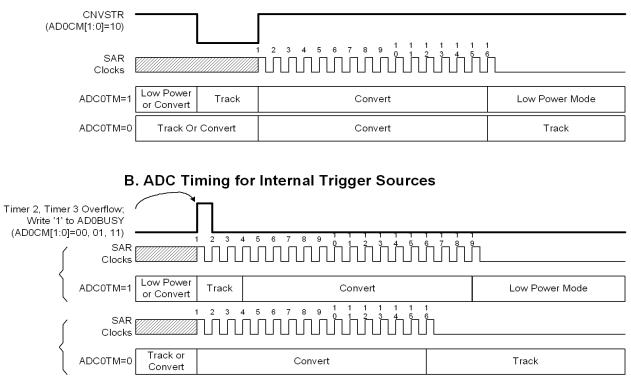


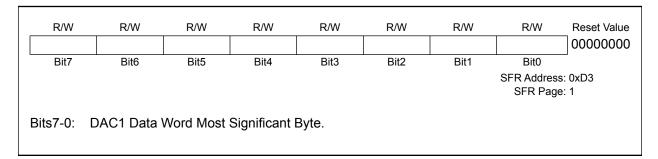
Figure 1.3. C8051F044/6 Block Diagram



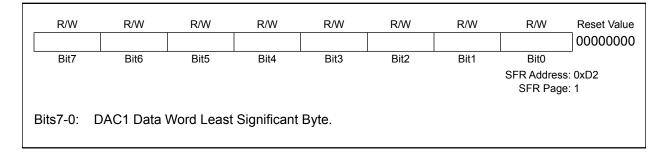
4. Pinout and Package Definitions

	Pin Nu	mbers		Description		
Name	F040/2/4/6	F041/3/5/7	Туре			
V _{DD}	37, 64, 90	24, 41, 57		Digital Supply Voltage. Must be tied to +2.7 to +3.6 V.		
DGND	38, 63, 89	25, 40, 56		Digital Ground. Must be tied to Ground.		
AV+	8, 11, 14	3, 6		Analog Supply Voltage. Must be tied to +2.7 to +3.6 V.		
AGND	9, 10, 13	4, 5		Analog Ground. Must be tied to Ground.		
TMS	1	58	D In	JTAG Test Mode Select with internal pullup.		
TCK	2	59	D In	JTAG Test Clock with internal pullup.		
TDI	3	60	D In	JTAG Test Data Input with internal pullup. TDI is latched on the rising edge of TCK.		
TDO	4	61	D Out	JTAG Test Data Output with internal pullup. Data is shifted out on TDO on the falling edge of TCK. TDO output is a tri-state driver.		
/RST	5	62	D I/O	Device Reset. Open-drain output of internal V_{DD} monitor. Is driven low when V_{DD} is < 2.7 V and MONEN is high. An external source can initiate a system reset by driving this pin low.		
XTAL1	26	17	A In	Crystal Input. This pin is the return for the internal oscilla- tor circuit for a crystal or ceramic resonator. For a preci- sion internal clock, connect a crystal or ceramic resonator from XTAL1 to XTAL2. If overdriven by an external CMOS clock, this becomes the system clock.		
XTAL2	27	18	A Out	Crystal Output. This pin is the excitation driver for a crystal or ceramic resonator.		
MONEN	28	19	D In	V_{DD} Monitor Enable. When tied high, this pin enables the internal V_{DD} monitor, which forces a system reset when V_{DD} is < 2.7 V. When tied low, the internal V_{DD} monitor is disabled. In most applications, MONEN should be connected directly to V_{DD} .		
VREF	12	7	A I/O	Bandgap Voltage Reference Output (all devices). DAC Voltage Reference Input (C8051F041/3 only).		
VREFA		8	A In	ADC0 (C8051F041/3/5/7) and ADC2 (C8051F041/3 only) Voltage Reference Input.		
VREF0	16		A In	ADC0 Voltage Reference Input.		
VREF2	17		A In	ADC2 Voltage Reference Input (C8051F040/2 only).		
VREF	15		A In	DAC Voltage Reference Input (C8051F040/2 only).		
AIN0.0	18	9	A In	ADC0 Input Channel 0 (See ADC0 Specification for complete description).		

Table 4.1. Pin Definitions



A. ADC Timing for External Trigger Source


Figure 5.4. 12-Bit ADC Track and Conversion Example Timing

SFR Definition 8.4. DAC1H: DAC1 High Byte

SFR Definition 8.5. DAC1L: DAC1 Low Byte

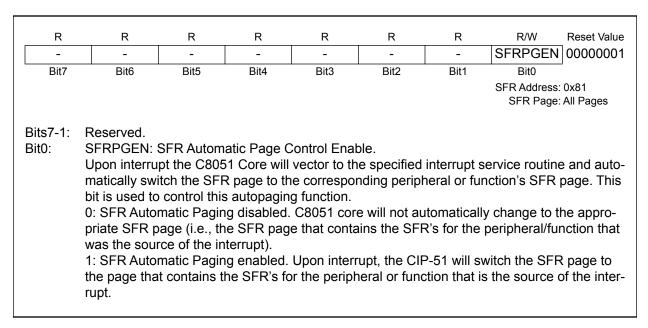
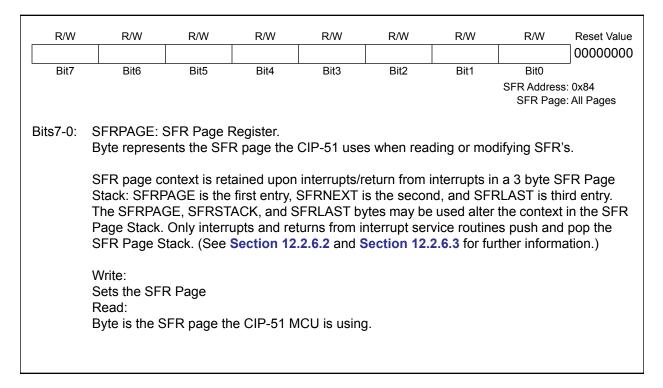


Table 11.1. Comparator Electrical Characteristics

Parameter	Conditions	Min	Тур	Max	Units
Response Time,	CPn+ – CPn– = 100 mV	—	100	_	ns
Mode 0	CPn+ – CPn– = 10 mV		250	_	ns
Response Time,	CPn+ – CPn– = 100 mV		175	_	ns
Mode 1	CPn+ – CPn– = 10 mV		500	_	ns
Response Time,	CPn+ – CPn– = 100 mV		320	_	ns
Mode 2	CPn+ – CPn– = 10 mV		1100	_	ns
Response Time,	CPn+ – CPn– = 100 mV		1050	_	ns
Mode 3	CPn+ – CPn– = 10 mV	-	5200	_	ns
Common-Mode Rejection Ratio		_	1.5	4	mV/V
Positive Hysteresis 1	CPnHYP1-0 = 00		0	1	mV
Positive Hysteresis 2	CPnHYP1-0 = 01	2	4.5	7	mV
Positive Hysteresis 3	CPnHYP1-0 = 10	4	9	13	mV
Positive Hysteresis 4	CPnHYP1-0 = 11	10	17	25	mV
Negative Hysteresis 1	CPnHYN1-0 = 00		0	1	mV
Negative Hysteresis 2	CPnHYN1-0 = 01	2	4.5	7	mV
Negative Hysteresis 3	CPnHYN1-0 = 10	4	9	13	mV
Negative Hysteresis 4	CPnHYN1-0 = 11	10	17	25	mV
Inverting or Non-Inverting Input Voltage Range		-0.25		V _{DD} + 0.25	V
Input Capacitance			7		pF
Input Bias Current		-5	0.001	+5	nA
Input Offset Voltage		-5		+5	mV
Power Supply					
Power Supply Rejection		_	0.1	1	mV/V
Power-up Time			10	_	μs
	Mode 0	—	7.6		μA
Supply Current at DC	Mode 1	- 1	3.2	_	μA
Supply Current at DC	Mode 2	—	1.3		μA
	Mode 3		0.4		μA


 V_{DD} = 3.0 V, -40 to +85 °C unless otherwise specified.

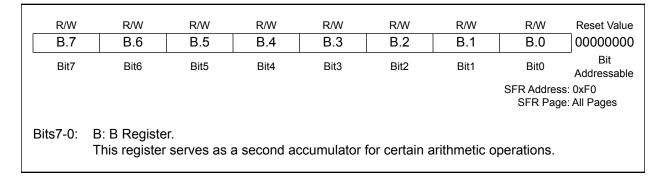
SFR Definition 12.1. SFR Page Control Register: SFRPGCN

SFR Definition 12.2. SFR Page Register: SFRPAGE

Table 12.3. Special Function Registers (Continued)

SFRs are listed in alphabetical order. All undefined SFR locations are reserved.

Register	Address	SFR Page	Description	Page No.
DAC1L ³	0xD2	1	DAC1 Low Byte	page 109
DPH	0x83	All Pages	Data Pointer High	page 150
DPL	0x82	All Pages	Data Pointer Low	page 150
EIE1	0xE6	All Pages	Extended Interrupt Enable 1	page 159
EIE2	0xE7	All Pages	Extended Interrupt Enable 2	page 160
EIP1	0xF6	All Pages	Extended Interrupt Priority 1	page 161
EIP2	0xF7	All Pages	Extended Interrupt Priority 2	page 162
EMI0CF	0xA3	0	EMIF Configuration	page 190
EMI0CN	0xA2	0	External Memory Interface Control	page 189
EMI0TC	0xA1	0	EMIF Timing Control	page 195
FLACL	0xB7	F	Flash Access Limit	page 184
FLSCL	0xB7	0	Flash Scale	page 184
HVA0CN	0xD6	0	High Voltage Differential Amp Control	page 53 ¹ , page 75 ²
IE	0xA8	All Pages	Interrupt Enable	page 157
IP	0xB8	All Pages	Interrupt Priority	page 158
OSCICL	0x8B	F	Internal Oscillator Calibration	page 174
OSCICN	0x8A	F	Internal Oscillator Control	page 174
OSCXCN	0x8C	F	External Oscillator Control	page 176
P0	0x80	All Pages	Port 0 Latch	page 215
POMDOUT	0xA4	F	Port 0 Output Mode Configuration	page 216
P1	0x90	All Pages	Port 1 Latch	page 216
P1MDIN	0xAD	F	Port 1 Input Mode Configuration	page 217
P1MDOUT	0xA5	F	Port 1 Output Mode Configuration	page 217
P2	0xA0	All Pages	Port 2 Latch	page 218
P2MDIN	0xAE	F	Port 2 Input Mode Configuration	page 218
P2MDOUT	0xA6	F	Port 2 Output Mode Configuration	page 219
P3	0xB0	All Pages	Port 3 Latch	page 219
P3MDIN	0xAF	F	Port 3 Input Mode Configuration	page 220
P3MDOUT	0xA7	F	Port 3 Output Mode Configuration	page 220
P4 ⁴	0xC8	F	Port 4 Latch	page 222
P4MDOUT ⁴	0x9C	F	Port 4 Output Mode Configuration	page 222
P5 ⁴	0xD8	F	Port 5 Latch	page 223
P5MDOUT ⁴	0x9D	F	Port 5 Output Mode Configuration	page 223
P6 ⁴	0xE8	F	Port 6 Latch	page 224
P6MDOUT ⁴	0x9E	F	Port 6 Output Mode Configuration	page 224
P7 ⁴	0xF8	F	Port 7 Latch	page 225
P7MDOUT ⁴	0x9F	F	Port 7 Output Mode Configuration	page 225
PCA0CN	0xD8	0	PCA Control	page 314
PCA0CPH0	0xFC	0	PCA Capture 0 High	page 318
PCA0CPH1	0xFE	0	PCA Capture 1 High	page 318
PCA0CPH2	0xEA	0	PCA Capture 2 High	page 318
PCA0CPH3	0xEC	0	PCA Capture 3 High	page 318



C8051F040/1/2/3/4/5/6/7

SFR Definition 12.9. ACC: Accumulator

R/W ACC.7	R/W ACC.6	R/W ACC.5	R/W ACC.4	R/W ACC.3	R/W ACC.2	R/W ACC.1	R/W ACC.0	Reset Value
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	Bit Addressable
							SFR Address SFR Page	s: 0xE0 e: All Pages
Bits7-0: ACC: Accumulator. This register is the accumulator for arithmetic operations.								

SFR Definition 12.10. B: B Register

12.3.3. Interrupt Priorities

Each interrupt source can be individually programmed to one of two priority levels: low or high. A low priority interrupt service routine can be preempted by a high priority interrupt. A high priority interrupt cannot be preempted. Each interrupt has an associated interrupt priority bit in an SFR (IP-EIP2) used to configure its priority level. Low priority is the default. If two interrupts are recognized simultaneously, the interrupt with the higher priority is serviced first. If both interrupts have the same priority level, a fixed priority order is used to arbitrate, given in Table 12.4.

12.3.4. Interrupt Latency

Interrupt response time depends on the state of the CPU when the interrupt occurs. Pending interrupts are sampled and priority decoded each system clock cycle. The fastest possible response time is 5 system clock cycles: 1 clock cycle to detect the interrupt and 4 clock cycles to complete the LCALL to the ISR. If an interrupt is pending when a RETI is executed, a single instruction is executed before an LCALL is made to service the pending interrupt. Therefore, the slowest response time for an interrupt (when no other interrupt is currently being serviced or the new interrupt is of greater priority) occurs when the CPU is performing an RETI instruction followed by a DIV as the next instruction. In this case, the response time is 18 system clock cycles: 1 clock cycle to detect the interrupt, 5 clock cycles to execute the RETI, 8 clock cycles to complete the DIV instruction and 4 clock cycles to execute the LCALL to the ISR. If the CPU is executing an ISR for an interrupt with equal or higher priority, the new interrupt will not be serviced until the current ISR completes, including the RETI and following instruction.

12.3.5. Interrupt Register Descriptions

The SFRs used to enable the interrupt sources and set their priority level are described below. Refer to the datasheet section associated with a particular on-chip peripheral for information regarding valid interrupt conditions for the peripheral and the behavior of its interrupt-pending flag(s).

12.17.2.Stop Mode

Setting the Stop Mode Select bit (PCON.1) causes the CIP-51 to enter Stop mode as soon as the instruction that sets the bit completes. In Stop mode, the CPU and internal oscillators are stopped, effectively shutting down all digital peripherals. Each analog peripheral must be shut down individually prior to entering Stop Mode. Stop mode can only be terminated by an internal or external reset. On reset, the CIP-51 performs the normal reset sequence and begins program execution at address 0x0000.

If enabled, the Missing Clock Detector will cause an internal reset and thereby terminate the Stop mode. The Missing Clock Detector should be disabled if the CPU is to be put to sleep for longer than the MCD timeout of 100 μ s.

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value	
_	_		_	—	—	STOP	IDLE	00000000	
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
							SFR Address SFR Pag	s: 0x87 e: All Pages	
Bits7-3 Bit1:	STOP: STOP Mode Select. Writing a '1' to this bit will place the CIP-51 into STOP mode. This bit will always read '0'. 0: No effect.								
Bit0:	Writing a '1' 0: No effect. 1: CIP-51 fo	 CIP-51 forced into power-down mode. (Turns off internal oscillator). IDLE: IDLE Mode Select. Writing a '1' to this bit will place the CIP-51 into IDLE mode. This bit will always read '0'. O: No effect. CIP-51 forced into idle mode. (Shuts off clock to CPU, but clock to Timers, Interrupts, and all peripherals remain active.) 							

SFR Definition 12.18. PCON: Power Control

14.4. External Crystal Example

If a crystal or ceramic resonator is used as an external oscillator source for the MCU, the circuit should be configured as shown in Figure 14.1, Option 1. The External Oscillator Frequency Control value (XFCN) should be chosen from the Crystal column of the table in SFR Definition 14.4 (OSCXCN register). For example, an 11.0592 MHz crystal requires an XFCN setting of 111b.

When the crystal oscillator is enabled, the oscillator amplitude detection circuit requires a settle time to achieve proper bias. Introducing a delay of at least 1 ms between enabling the oscillator and checking the XTLVLD bit will prevent a premature switch to the external oscillator as the system clock. Switching to the external oscillator before the crystal oscillator has stabilized can result in unpredictable behavior. The recommended procedure is:

- Step 1. Enable the external oscillator in crystal oscillator mode.
- Step 2. Wait at least 1 ms.
- Step 3. Poll for XTLVLD => '1'.
- Step 4. Switch the system clock to the external oscillator.

Note: Tuning-fork crystals may require additional settling time before XTLVLD returns a valid result.

The capacitors shown in the external crystal configuration provide the load capacitance required by the crystal for correct oscillation. These capacitors are "in series" as seen by the crystal and "in parallel" with the stray capacitance of the XTAL1 and XTAL2 pins.

Note: The load capacitance depends upon the crystal and the manufacturer. Please refer to the crystal data sheet when completing these calculations.

For example, a tuning-fork crystal of 32.768 kHz with a recommended load capacitance of 12.5 pF should use the configuration shown in Figure 14.1, Option 1. The total value of the capacitors and the stray capacitance of the XTAL pins should equal 25 pF. With a stray capacitance of 3 pF per pin, the 22 pF capacitors yield an equivalent capacitance of 12.5 pF across the crystal, as shown in Figure 14.2.

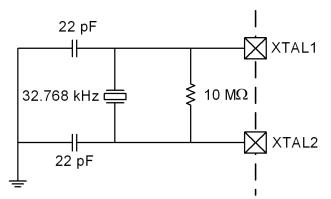
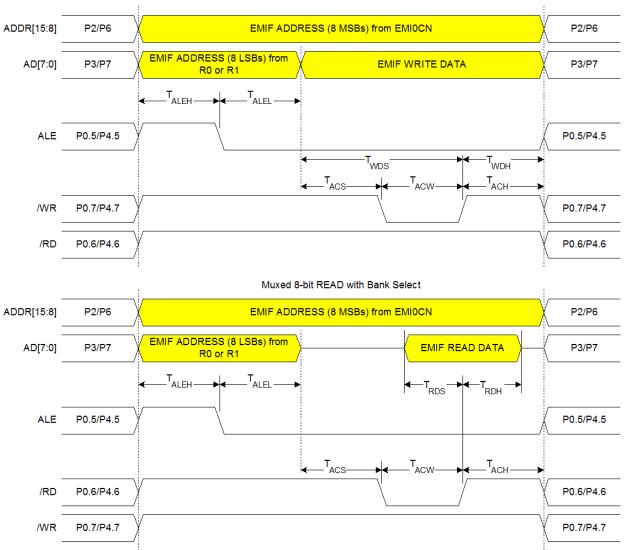



Figure 14.2. 32.768 kHz External Crystal Example

Important Note on External Crystals: Crystal oscillator circuits are quite sensitive to PCB layout. The crystal should be placed as close as possible to the XTAL pins on the device. The traces should be as short as possible and shielded with ground plane from any other traces which could introduce noise or interference.

16.6.2.3.8-bit MOVX with Bank Select: EMI0CF[4:2] = '010'.

Muxed 8-bit WRITE with Bank Select

Figure 16.9. Multiplexed 8-bit MOVX with Bank Select Timing

C8051F040/1/2/3/4/5/6/7

SFR Definition 17.7, SFR Definition 17.10, and SFR Definition 17.13), a set of SFRs which are both byteand bit-addressable. The output states of Port pins that are allocated by the Crossbar are controlled by the digital peripheral that is mapped to those pins. Writes to the Port Data registers (or associated Port bits) will have no effect on the states of these pins.

A Read of a Port Data register (or Port bit) will always return the logic state present at the pin itself, regardless of whether the Crossbar has allocated the pin for peripheral use or not. An exception to this occurs during the execution of a *read-modify-write* instruction (ANL, ORL, XRL, CPL, INC, DEC, DJNZ, JBC, CLR, SET, and the bitwise MOV operation). During the *read* cycle of the *read-modify-write* instruction, it is the contents of the Port Data register, not the state of the Port pins themselves, which is read.

Because the Crossbar registers affect the pinout of the peripherals of the device, they are typically configured in the initialization code of the system before the peripherals themselves are configured. Once configured, the Crossbar registers are typically left alone.

Once the Crossbar registers have been properly configured, the Crossbar is enabled by setting XBARE (XBR2.4) to a logic 1. Until XBARE is set to a logic 1, the output drivers on Ports 0 through 3 are explicitly disabled in order to prevent possible contention on the Port pins while the Crossbar registers and other registers which can affect the device pinout are being written.

The output drivers on Crossbar-assigned input signals (like RX0, for example) are explicitly disabled; thus the values of the Port Data registers and the PnMDOUT registers have no effect on the states of these pins.

17.1.2. Configuring the Output Modes of the Port Pins

The output drivers on Ports 0 through 3 remain disabled until the Crossbar is enabled by setting XBARE (XBR2.4) to a logic 1.

The output mode of each port pin can be configured to be either Open-Drain or Push-Pull. In the Push-Pull configuration, writing a logic 0 to the associated bit in the Port Data register will cause the Port pin to be driven to GND, and writing a logic 1 will cause the Port pin to be driven to V_{DD} . In the Open-Drain configuration, writing a logic 0 to the associated bit in the Port Data register will cause the Port pin to be driven to GND, and a logic 1 will cause the Port pin to assume a high-impedance state. The Open-Drain configuration is useful to prevent contention between devices in systems where the Port pin participates in a shared interconnection in which multiple outputs are connected to the same physical wire (like the SDA signal on an SMBus connection).

The output modes of the Port pins on Ports 0 through 3 are determined by the bits in the associated PnMDOUT registers (See SFR Definition 17.6, SFR Definition 17.9, SFR Definition 17.12, and SFR Definition 17.15). For example, a logic 1 in P3MDOUT.7 will configure the output mode of P3.7 to Push-Pull; a logic 0 in P3MDOUT.7 will configure the output mode of P3.7 to Open-Drain. All Port pins default to Open-Drain output.

The PnMDOUT registers control the output modes of the port pins regardless of whether the Crossbar has allocated the Port pin for a digital peripheral or not. The exceptions to this rule are: the Port pins connected to SDA, SCL, RX0 (if UART0 is in Mode 0), and RX1 (if UART1 is in Mode 0) are always configured as Open-Drain outputs, regardless of the settings of the associated bits in the PnMDOUT registers.

17.1.3. Configuring Port Pins as Digital Inputs

A Port pin is configured as a digital input by setting its output mode to "Open-Drain" in the PnMDOUT register and writing a logic 1 to the associated bit in the Port Data register. For example, P3.7 is configured as

18.2.3. Message Handler Registers

The Message Handler Registers are *read only* registers. Their flags can be read via the indexed access method with CAN0ADR, CAN0DATH, and CAN0DATL. The message handler registers provide interrupt, error, transmit/receive requests, and new data information.

Please refer to the Bosch CAN User's Guide for information on the function and use of the Message Handler Registers.

18.2.4. CIP-51 MCU Special Function Registers

C8051F04x family peripherals are modified, monitored, and controlled using Special Function Registers (SFR's). Only three of the CAN Controller's registers may be accessed directly with SFR's. However, all CAN Controller registers can be accessed indirectly using three CIP-51 MCU SFR's: the CAN Data Registers (CAN0DATH and CAN0DATL) and CAN Address Register (CAN0ADR).

18.2.5. Using CAN0ADR, CAN0DATH, and CANDATL to Access CAN Registers

Each CAN Controller Register has an index number (see Table 18.2). The CAN register address space is 128 words (256 bytes). A CAN register is accessed via the CAN Data Registers (CAN0DATH and CAN0-DATL) when a CAN register's index number is placed into the CAN Address Register (CAN0ADR). For example, if the Bit Timing Register is to be configured with a new value, CAN0ADR is loaded with 0x03. The low byte of the desired value is accessed using CAN0DATL and the high byte of the bit timing register is accessed using CAN0DATL is bit addressable for convenience. To load the value 0x2304 into the Bit Timing Register:

CANOADR = 0x03; // Load Bit Timing Register's index (Table 18.1) CANODATH = 0x23; // Move the upper byte into data reg high byte CANODATL = 0x04; // Move the lower byte into data reg low byte

<u>Note:</u> CAN0CN, CAN0STA, and CAN0TST may be accessed either by using the index method, or by direct access with the CIP-51 MCU SFR's. CAN0CN is located at SFR location 0xF8/SFR page 1 (SFR Definition 18.3), CAN0TST at 0xDB/SFR page 1 (SFR Definition 18.4), and CAN0STA at 0xC0/SFR page 1 (SFR Definition 18.5).

18.2.6. CAN0ADR Autoincrement Feature

For ease of programming message objects, CAN0ADR features autoincrementing for the index ranges 0x08 to 0x12 (Interface Registers 1) and 0x20 to 0x2A (Interface Registers 2). When the CAN0ADR register has an index in these ranges, the CAN0ADR will autoincrement by 1 to point to the next CAN register 16-bit word upon a read/write of <u>CAN0DATL</u>. This speeds programming of the frequently-accessed interface registers when configuring message objects.

<u>NOTE:</u> Table 18.2 below supersedes Figure 5 in Section 3, "Programmer's Model" of the Bosch CAN User's Guide.

21.3. Configuration of a Masked Address

The UART0 address is configured via two SFRs: SADDR0 (Serial Address) and SADEN0 (Serial Address Enable). SADEN0 sets the bit mask for the address held in SADDR0: bits set to logic 1 in SADEN0 correspond to bits in SADDR0 that are checked against the received address byte; bits set to logic 0 in SADEN0 correspond to "don't care" bits in SADDR0.

Example 1, SLAVE #1		Example 2, S	LAVE #2	Example 3, S	Example 3, SLAVE #3		
SADDR0	= 00110101	SADDR0	= 00110101	SADDR0	= 00110101		
SADEN0	= 00001111	SADEN0	= 11110011	SADEN0	= 11000000		
UART0 Address	= xxxx0101	UART0 Address	= 0011xx01	UART0 Address	= 00xxxxxx		

Setting the SM20 bit (SCON0.5) configures UART0 such that when a stop bit is received, UART0 will generate an interrupt only if the ninth bit is logic 1 (RB80 = '1') and the received data byte matches the UART0 slave address. Following the received address interrupt, the slave will clear its SM20 bit to enable interrupts on the reception of the following data byte(s). Once the entire message is received, the addressed slave resets its SM20 bit to ignore all transmissions until it receives the next address byte. While SM20 is logic 1, UART0 ignores all bytes that do not match the UART0 address and include a ninth bit that is logic 1.

21.4. Broadcast Addressing

Multiple addresses can be assigned to a single slave and/or a single address can be assigned to multiple slaves, thereby enabling "broadcast" transmissions to more than one slave simultaneously. The broadcast address is the logical OR of registers SADDR0 and SADEN0, and '0's of the result are treated as "don't cares". Typically a broadcast address of 0xFF (hexadecimal) is acknowledged by all slaves, assuming "don't care" bits as '1's. The master processor can be configured to receive all transmissions or a protocol can be implemented such that the master/slave role is temporarily reversed to enable half-duplex transmission between the original master and slave(s).

Example 4, SI	_AVE #1	Example 5, SL	AVE #2	Example 6, SLAVE #3		
SADDR0	= 00110101	SADDR0	= 00110101	SADDR0	= 00110101	
SADEN0	= 00001111	SADEN0	= 11110011	SADEN0	= 11000000	
Broadcast Address	= 00111111	Broadcast Address	= 11110111	Broadcast Address	= 11110101	
				denth conce		

Where all ZEROES in the Broadcast address are don't cares.

Note in the above examples 4, 5, and 6, each slave would recognize as "valid" an address of 0xFF as a broadcast address. Also note that examples 4, 5, and 6 uses the same SADDR0 and SADEN0 register values as shown in the examples 1, 2, and 3 respectively (slaves #1, 2, and 3). Thus, a master could address each slave device individually using a masked address, and also broadcast to all three slave devices. For example, if a Master were to send an address of "11110101", only slave #1 would recognize the address as valid. If a master were to then send an address of "1111111", all three slave devices would recognize the address as a valid broadcast address.

23.2.3. Auto-Reload Mode

In Auto-Reload Mode, the counter/timer can be configured to count up or down and cause an interrupt/flag to occur upon an overflow/underflow event. When counting up, the counter/timer will set its overflow/underflow flag (TFn) and cause an interrupt (if enabled) upon overflow/underflow, the values in the Reload/Capture Registers (RCAPnH and RCAPnL) are loaded into the timer, and the timer is restarted. When the Timer External Enable Bit (EXENn) bit is set to '1' and the Decrement Enable Bit (DCEN) is '0', a '1'-to-'0' transition on the TnEX pin (configured as an input in the digital crossbar) will cause a timer reload (in addition to timer overflows causing auto-reloads). When DCEN is set to '1', the state of the TnEX pin controls whether the counter/timer counts *up* (increments) or *down* (decrements), and will not cause an auto-reload or interrupt event. See Section 23.2.1 for information concerning configuration of a timer to count down.

When counting down, the counter/timer will set its overflow/underflow flag (TFn) and cause an interrupt (if enabled) when the value in the timer (TMRnH and TMRnL registers) matches the 16-bit value in the Reload/Capture Registers (RCAPnH and RCAPnL). This is considered an underflow event, and will cause the timer to load the value 0xFFFF. The timer is automatically restarted when an underflow occurs.

Counter/Timer with Auto-Reload mode is selected by clearing the CP/RLn bit. Setting TRn to logic 1 enables and starts the timer.

In Auto-Reload Mode, the External Flag (EXFn) toggles upon every overflow or underflow and does not cause an interrupt. The EXFn flag can be thought of as the most significant bit (MSB) of a 17-bit counter.

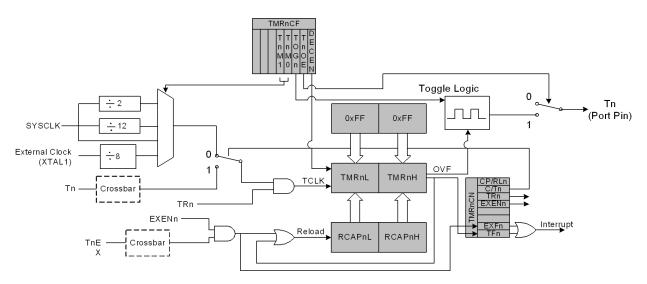


Figure 23.5. Tn Auto-reload Mode and Toggle Mode Block Diagram

C8051F040/1/2/3/4/5/6/7

SFR Definition 23.9. TMRnCF: Timer n Configuration

	_		R/W TnM1	R/W TnM0	R/W TOGn	R/W TnOE	R/W DCEN	Reset Value				
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	Bit				
					DILL	Ditt	Dito	Addressable				
	ess: TMR2CF:0xC age TMR2CF: pag	-										
Bit7-5:	Reserved.											
Bit4-3:	TnM1 and Tr	M0: Timer	Clock Mode	e Select Bit	S.							
	Bits used to s	select the T	imer clock s	source. The	sources ca	an be the Sy	stem Cloc	k				
	(SYSCLK), S	YSCLK div	ided by 2 o	r 12, or an o	external clo	ck signal ro	uted to Tn	(port pin)				
	divided by 8.		rce is select	ed as follov	/S:							
	00: SYSCLK											
	01: SYSCLK		(10)									
	10: EXTERN		8/8									
Bit2:	11: SYSCLK		ato hit									
DILZ.	TOGn: Toggle output state bit. When timer is used to toggle a port pin, this bit can be used to read the state of the output, or											
	can be writte							c output, o				
Bit1:					lo output.							
	TnOE: Timer output enable bit. This bit enables the timer to output a 50% duty cycle output to the timer's assigned external											
	port pin.		•	,	, ,		Ũ					
	NOTE: A time	er is config	ured for Squ	uare Wave	Output as fo	ollows:						
	CP/RLn = 0											
	C/Tn = 0											
	TnOE = 1											
	Load RCAPnH:RCAPnL (See Section "Equation 23.1. Square Wave Frequency" on											
	page 300). Configure Po	rt Din for o	utnut (Soo	Section #15	7 Port Innu	ut/Output"	00 0000 2	02)				
	0: Output of t						on page z	03).				
					•	• •						
Bit0:	•	1: Output of toggle mode available at Timers' assigned port pin. DCEN: Decrement Enable Bit.										
	This bit enab	les the time	er to count u	up or down	as determin	ed by the s	tate of TnE	EX.				
	0: Timer will (count up, re	egardless of	f the state c	f TnEX.	•						
	1: Timer will o			•	e state of T	nEX as foll	ows:					
			timer count									
	if Tnl	_X = 1, the	timer count	ts UP.								

24.2.3. High-Speed Output Mode

In High-Speed Output mode, a module's associated CEXn pin is toggled each time a match occurs between the PCA Counter and the module's 16-bit capture/compare register (PCA0CPHn and PCA0CPLn). Setting the TOGn, MATn, and ECOMn bits in the PCA0CPMn register enables the High-Speed Output mode.

Important Note About Capture/Compare Registers: When writing a 16-bit value to the PCA0 Capture/ Compare registers, the low byte should always be written first. Writing to PCA0CPLn clears the ECOMn bit to '0'; writing to PCA0CPHn sets ECOMn to '1'.

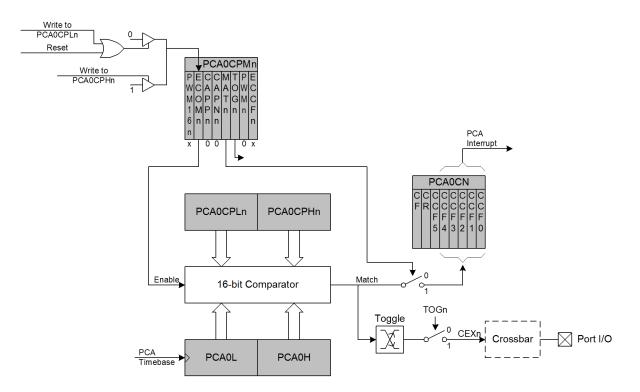


Figure 24.6. PCA High-Speed Output Mode Diagram

