E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Product Status	Not For New Designs
Core Processor	8051
Core Size	8-Bit
Speed	25MHz
Connectivity	CANbus, EBI/EMI, SMBus (2-Wire/I ² C), SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, Temp Sensor, WDT
Number of I/O	64
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	4.25K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 3.6V
Data Converters	A/D 8x8b, 13x10b; D/A 2x10b, 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/c8051f042-gq

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

	Figure 6.5. ADC0 Equivalent Input Circuits	. 78
	Figure 6.6. Temperature Sensor Transfer Function	
	Figure 6.7. ADC0 Data Word Example	. 83
	Figure 6.8. 10-Bit ADC0 Window Interrupt Example:	
	Right Justified Single-Ended Data	85
	Figure 6.9. 10-Bit ADC0 Window Interrupt Example:	
	Right Justified Differential Data	86
	Figure 6.10. 10-Bit ADC0 Window Interrupt Example:	
	Left Justified Single-Ended Data	87
	Figure 6.11. 10-Bit ADC0 Window Interrupt Example: Left Justified Differential Da	
	88	
7	8-Bit ADC (ADC2, C8051F040/1/2/3 Only)	
••	Figure 7.1. ADC2 Functional Block Diagram	91
	Figure 7.2. ADC2 Track and Conversion Example Timing	
	Figure 7.3. ADC2 Equivalent Input Circuit	
	Figure 7.4. ADC2 Data Word Example	
	Figure 7.5. ADC Window Compare Examples, Single-Ended Mode	
	Figure 7.6. ADC Window Compare Examples, Differential Mode	
8.	DACs, 12-Bit Voltage Mode (C8051F040/1/2/3 Only)	102
0.	Figure 8.1. DAC Functional Block Diagram	105
9.	Voltage Reference (C8051F040/2/4/6)	
• •	Figure 9.1. Voltage Reference Functional Block Diagram	113
10	Voltage Reference (C8051F041/3/5/7)	-
	Figure 10.1. Voltage Reference Functional Block Diagram	117
11.	.Comparators	
	Figure 11.1. Comparator Functional Block Diagram	121
	Figure 11.2. Comparator Hysteresis Plot	
12	CIP-51 Microcontroller	
	Figure 12.1. CIP-51 Block Diagram	127
	Figure 12.2. Memory Map	
	Figure 12.3. SFR Page Stack	
	Figure 12.4. SFR Page Stack While Using SFR Page 0x0F To Access Port 5	137
	Figure 12.5. SFR Page Stack After ADC2 Window Comparator Interrupt Occurs.	
	Figure 12.6. SFR Page Stack Upon PCA Interrupt Occurring During an ADC2 ISR	R
	139	
	Figure 12.7. SFR Page Stack Upon Return From PCA Interrupt	140
	Figure 12.8. SFR Page Stack Upon Return From ADC2 Window Interrupt	141
13	Reset Sources	
	Figure 13.1. Reset Sources	
	Figure 13.2. Reset Timing	166
14	Oscillators	
	Figure 14.1. Oscillator Diagram	
	Figure 14.2. 32.768 kHz External Crystal Example	177
15	Flash Memory	
	Figure 15.1. Flash Program Memory Map and Security Bytes	181

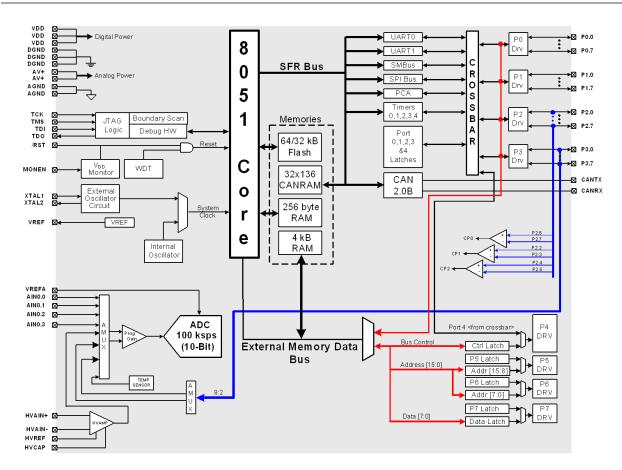


Figure 1.4. C8051F045/7 Block Diagram

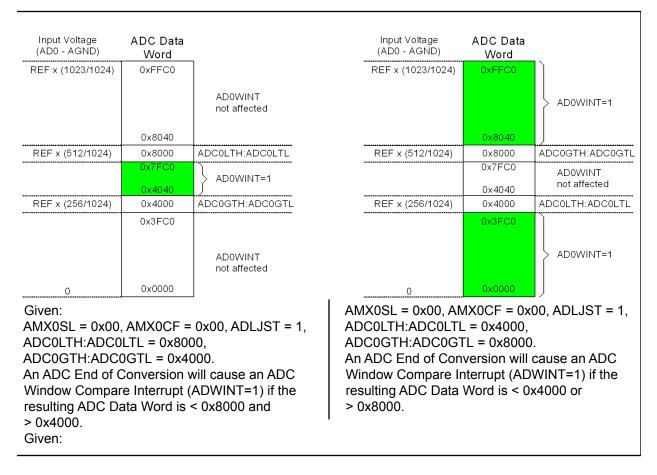
2. Absolute Maximum Ratings

Table 2.1. Absolute Maximum Ratings*

Parameter	Conditions	Min	Тур	Max	Units			
Ambient temperature under bias		-55	—	125	°C			
Storage Temperature		-65	—	150	°C			
Voltage on any Pin (except V _{DD} , Port I/O, and JTAG pins) with respect to DGND		-0.3		V _{DD} + 0.3	V			
Voltage on any Port I/O Pin, /RST, and JTAG pins with respect to DGND		-0.3	_	5.8	V			
Voltage on V _{DD} with respect to DGND		-0.3	_	4.2	V			
Maximum Total current through V _{DD} , AV+, DGND, and AGND			_	800	mA			
Maximum output current sunk by any Port pin		—	—	100	mA			
Maximum output current sunk by any other I/O pin		_	_	50	mA			
Maximum output current sourced by any Port pin			—	100	mA			
Maximum output current sourced by any other I/O pin		—	—	50	mA			
Maximum output current sourced by any other I/O pin — — 50 mA *Note: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the devices at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability. Due to special I/O design requirements of the High Voltage Difference Amplifier, undue electrical over-voltage stress (i.e., ESD) experienced by these pads may result in impedance degradation of these inputs (HVAIN+ and HVAIN–). For this reason, care should be taken to ensure proper handling and use as typically required to prevent ESD damage to electrostatically sensitive CMOS devices (e.g., static-free workstations, use of								

grounding straps, over-voltage protection in end-applications, etc.)

Global DC Electrical Characteristic 3.


Table 3.1. Global DC Electrical Characteristics

-40 to +85 °C, 25 MHz System Clock unless otherwise specified.

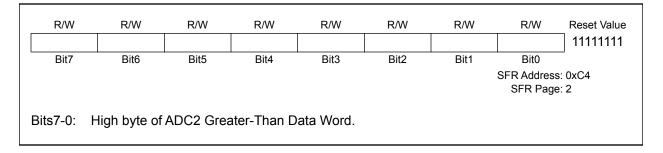
Parameter	Conditions	Min	Тур	Max	Units
Analog Supply Voltage ¹		2.7	3.0	3.6	V
Analog Supply Current	Internal REF, ADC, DAC, Com- parators all active	_	1.7	_	mA
Analog Supply Current with analog sub-systems inactive	Internal REF, ADC, DAC, Com- parators all disabled, oscillator disabled		0.2	—	μA
Analog-to-Digital Supply Delta (V _{DD} - AV+)		_	_	0.5	V
Digital Supply Voltage		2.7	3.0	3.6	V
Digital Supply Current with CPU active (Normal Mode)	V_{DD} = 2.7 V, Clock = 25 MHz V_{DD} = 2.7 V, Clock = 1 MHz V_{DD} = 2.7 V, Clock = 32 kHz		10 0.5 20		mA mA μA
Digital Supply Current with CPU inactive (not accessing Flash) (Idle Mode)	V_{DD} = 2.7 V, Clock = 25 MHz V_{DD} = 2.7 V, Clock = 1 MHz V_{DD} = 2.7 V, Clock = 32 kHz		5 0.2 10		mA mA μA
Digital Supply Current (shutdown) (Stop Mode)	Oscillator not running	_	0.2	_	μA
Digital Supply RAM Data Retention Voltage		_	1.5	_	V
Specified Operating Temperature Range		-40	_	+85	°C
SYSCLK (system clock frequency) ²		0	_	25	MHz
Tsysl (SYSCLK low time)		18	_	_	ns
Tsysh (SYSCLK high time)		18			ns

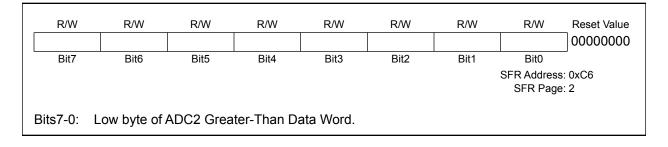
1. Analog Supply AV+ must be greater than 1 V for V_{DD} monitor to operate. 2. SYSCLK must be at least 32 kHz to enable debugging.

Figure 6.10. 10-Bit ADC0 Window Interrupt Example: Left Justified Single-Ended Data

Table 6.2. 10-Bit ADC0 Electrical Characteristics

 V_{DD} = 3.0 V, AV+ = 3.0 V, V_{REF} = 2.40 V (REFBE = 0), PGA Gain = 1, -40 to +85 °C unless otherwise specified.


Parameter	Conditions	Min	Тур	Max	Units
DC Accuracy					
Resolution			10		bits
Integral Nonlinearity			_	±1	LSB
Differential Nonlinearity	Guaranteed Monotonic			±1	LSB
Offset Error			0.2±1	_	LSB
Full Scale Error	Differential mode		0.1±1	—	LSB
Offset Temperature Coefficient			±0.25	_	ppm/°C
Dynamic Performance (10 kHz	sine-wave input, 0 to 1 dB bel	ow Full So	cale, 100	ksps)	
Signal-to-Noise Plus Distortion		59	—	—	dB
Total Harmonic Distortion	Up to the 5 th harmonic	—	-70	—	dB
Spurious-Free Dynamic Range			80		dB
Conversion Rate	1	I	1		
SAR Clock Frequency			—	2.5	MHz
Conversion Time in SAR Clocks		16	_	—	clocks
Track/Hold Acquisition Time		1.5		_	μs
Throughput Rate				100	ksps
Analog Inputs					
Input Voltage Range	Single-ended operation	0	—	VREF	V
Common-mode Voltage Range	Differential operation	AGND	—	AV+	V
Input Capacitance		—	10	—	pF
Temperature Sensor			1	I	
Nonlinearity ^{1,2}		—	±1	—	°C
Absolute Accuracy ^{1,2}			±3	—	°C
Gain ^{1,2}		_	2.86 ±0.034	—	mV/°C
Offset ^{1,2}	Temp = 0 °C	-	0.776 ±0.009	—	V
Power Specifications	1	I	1		
Power Supply Current (AV+ supplied to ADC)	Operating Mode, 100 ksps	—	450	900	μA
Power Supply Rejection		<u> </u>	±0.3	_	mV/V


7.3. ADC2 Programmable Window Detector

The ADC2 Programmable Window Detector continuously compares the ADC2 output to user-programmed limits, and notifies the system when an out-of-bound condition is detected. This is especially effective in an interrupt-driven system, saving code space and CPU bandwidth while delivering faster system response times. The window detector interrupt flag (AD2WINT in ADC2CN) can also be used in polled mode. The reference words are loaded into the ADC2 Greater-Than and ADC2 Less-Than registers (ADC2GT and ADC2LT). Notice that the window detector flag can be asserted when the measured data is inside or outside the user-programmed limits, depending on the programming of the ADC2GT and ADC2LT registers.

SFR Definition 7.6. ADC2GT: ADC2 Greater-Than Data

SFR Definition 7.7. ADC2LT: ADC2 Less-Than Data

7.3.1. Window Detector in Single-Ended Mode

Figure 7.5 shows two example window comparisons for Single-ended mode, with ADC2LT = 0x20 and ADC2GT = 0x10. In Single-ended mode, the codes vary from 0 to VREF x (255/256) and are represented as 8-bit unsigned integers. In the left example, an AD2WINT interrupt will be generated if the ADC2 conversion word (ADC2) is within the range defined by ADC2GT and ADC2LT (if 0x10 < ADC2 < 0x20). In the right example, and AD2WINT interrupt will be generated if ADC2 is outside of the range defined by ADC2GT and ADC2LT (if ADC2 < 0x20). In the right example, and AD2WINT interrupt will be generated if ADC2 is outside of the range defined by ADC2GT and ADC2LT (if ADC2 < 0x10 or ADC2 > 0x20).

Mnemonic	Description	Bytes	Clock Cycles
JNZ rel	Jump if A does not equal zero	2	2/3
CJNE A, direct, rel	Compare direct byte to A and jump if not equal	3	3/4
CJNE A, #data, rel	Compare immediate to A and jump if not equal	3	3/4
CJNE Rn, #data, rel	Compare immediate to Register and jump if not equal	3	3/4
CJNE @Ri, #data, rel	Compare immediate to indirect and jump if not equal	3	4/5
DJNZ Rn, rel	Decrement Register and jump if not zero	2	2/3
DJNZ direct, rel	Decrement direct byte and jump if not zero	3	3/4
NOP	No operation	1	1

Table 12.1. CIP-51 Instruction Set Summary (Continued)

Notes on Registers, Operands and Addressing Modes:

Rn - Register R0-R7 of the currently selected register bank.

@Ri - Data RAM location addressed indirectly through R0 or R1.

rel - 8-bit, signed (two's complement) offset relative to the first byte of the following instruction. Used by SJMP and all conditional jumps.

direct - 8-bit internal data location's address. This could be a direct-access Data RAM location (0x00-0x7F) or an SFR (0x80-0xFF).

#data - 8-bit constant

#data16 - 16-bit constant

bit - Direct-accessed bit in Data RAM or SFR

addr11 - 11-bit destination address used by ACALL and AJMP. The destination must be within the same 2K-byte page of program memory as the first byte of the following instruction.

addr16 - 16-bit destination address used by LCALL and LJMP. The destination may be anywhere within the 64 kB program memory space.

There is one unused opcode (0xA5) that performs the same function as NOP. All mnemonics copyrighted © Intel Corporation 1980.

SFR Definition 12.8. PSW: Program Status Word

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value	
CY	AC	F0	RS1	RS0	OV	F1	PARITY	0000000	
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	Bit Addressable	
							SFR Address SFR Page	: 0xD0 : All Pages	
Bit7:	CY: Carry I	-lag.							
		•	e last arithmet	tic operatio	n resulted	in a carry (a	ddition) or a	borrow	
	•	,	red to 0 by all	other arith	metic oper	ations.			
Bit6:		ry Carry Fla	0						
			last arithmeti						
			nigh order nib	ble. It is clo	eared to 0	by all other	arithmetic o	perations.	
Bit5:	F0: User Fl	0							
			le, general pu	urpose flag	for use un	der software	e control.		
Bits4-3:		Register Ba		1			_		
	These bits select which register bank is used during register accesses.								
	RS1	RS0 R	egister Bank	Addr	ess				
	RS1 0	RS0 R	egister Bank 0	Addr 0x00–					
			-		0x07				
	0	0	0	0x00-	0x07 0x0F				
	0	0 1	0	0x00- 0x08-	0x07 0x0F 0x17				
	0 0 1	0 1 0	0 1 2	0x00- 0x08- 0x10-	0x07 0x0F 0x17				
Bit2:	0 0 1 1 0V: Overflo	0 1 0 1 2 w Flag.	0 1 2 3	0x00- 0x08- 0x10- 0x18-	0x07 0x0F 0x17 0x1F				
Bit2:	0 0 1 1 OV: Overflo This bit is s	0 1 0 1 2 2 2 3 2 3 2 3 3 2 3 3 2 3 3 3 3 3 3	0 1 2 3 er the followin	0x00- 0x08- 0x10- 0x18- g circumst	0x07 0x0F 0x17 0x1F ances:				
Bit2:	0 0 1 1 OV: Overflo This bit is s • An AD	0 1 0 1 bw Flag. to 1 unde D, ADDC, o	0 1 2 3 er the followin r SUBB instru	0x00– 0x08– 0x10– 0x18– og circumst	0x07 0x0F 0x17 0x1F ances: ses a sign-o				
Bit2:	0 0 1 1 OV: Overflo This bit is s • An AD • A MUL	0 1 0 1 Dw Flag. D, ADDC, o instruction	0 1 2 3 er the followin r SUBB instru results in an	0x00- 0x08- 0x10- 0x18- g circumst uction caus overflow (r	0x07 0x0F 0x17 0x1F ances: ses a sign-c esult is gre				
Bit2:	0 0 1 1 OV: Overflo This bit is s • An AD • A MUL • A DIV	0 1 0 1 ow Flag. et to 1 unde D, ADDC, o instruction instruction	0 1 2 3 er the followin r SUBB instru results in an causes a divid	0x00- 0x08- 0x10- 0x18- g circumst uction caus overflow (r de-by-zero	0x07 0x0F 0x17 0x1F ances: ses a sign-c result is gre condition.	eater than 28	55).		
Bit2:	0 0 1 1 OV: Overflo This bit is s • An AD • A MUL • A DIV The OV bit	0 1 0 1 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0	0 1 2 3 er the followin r SUBB instru results in an	0x00- 0x08- 0x10- 0x18- g circumst uction caus overflow (r de-by-zero	0x07 0x0F 0x17 0x1F ances: ses a sign-c result is gre condition.	eater than 28	55).	in all	
-	0 0 1 1 0V: Overflo This bit is s • An AD • A MUL • A DIV The OV bit other cases	0 1 0 1 Dow Flag. Det to 1 under D, ADDC, or instruction of instruction of is cleared to s.	0 1 2 3 er the followin r SUBB instru results in an causes a divid	0x00- 0x08- 0x10- 0x18- g circumst uction caus overflow (r de-by-zero	0x07 0x0F 0x17 0x1F ances: ses a sign-c result is gre condition.	eater than 28	55).	in all	
-	0 0 1 1 0V: Overflo This bit is s • An AD • A MUL • A DIV The OV bit other cases F1: User Fl	0 1 0 1 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0	0 1 2 3 er the followin r SUBB instru results in an causes a divid o 0 by the AD	0x00- 0x08- 0x10- 0x18- eg circumst uction caus overflow (r de-by-zero D, ADDC,	0x07 0x0F 0x17 0x1F ances: ances: ess a sign-o esult is gre condition. SUBB, MU	eater than 25	55). instructions	in all	
Bit1:	0 0 1 1 0V: Overflo This bit is s • An AD • A MUL • A DIV The OV bit other cases F1: User FI This is a bit	0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0	0 1 2 3 er the followin r SUBB instru results in an causes a divid	0x00- 0x08- 0x10- 0x18- eg circumst uction caus overflow (r de-by-zero D, ADDC,	0x07 0x0F 0x17 0x1F ances: ances: ess a sign-o esult is gre condition. SUBB, MU	eater than 25	55). instructions	in all	
-	0 0 1 1 0V: Overflo This bit is s • An AD • A MUL • A DIV The OV bit other cases F1: User FI This is a bir PARITY: Pa	0 1 0 1 0 1 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0	0 1 2 3 er the followin r SUBB instru results in an causes a divid o 0 by the AD	0x00- 0x08- 0x10- 0x18- g circumst uction caus overflow (r de-by-zero D, ADDC, urpose flag	0x07 0x0F 0x17 0x1F ances: ees a sign-c esult is gre condition. SUBB, MU for use un	eater than 25	55). instructions e control.		
Bit1:	0 0 1 1 0V: Overflo This bit is s • An AD • A MUL • A DIV The OV bit other cases F1: User FI This is a bir PARITY: Pa	0 1 0 1 0 1 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0	0 1 2 3 er the followin r SUBB instru results in an causes a divid o 0 by the AD	0x00- 0x08- 0x10- 0x18- g circumst uction caus overflow (r de-by-zero D, ADDC, urpose flag	0x07 0x0F 0x17 0x1F ances: ees a sign-c esult is gre condition. SUBB, MU for use un	eater than 25	55). instructions e control.		

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value		
-	PCP2	PCP1	PCP0	PPCA0	PWADC0	PSMB0	PSPI0	00000000		
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0			
							SFR Address			
							SFR Page	e: All Pages		
Bit7:	Reserved.									
Bit6:	PCP2: Com	oarator2 (C	P2) Interrur	ot Priority C	Control					
	This bit sets									
	0: CP2 inter			•						
	1: CP2 inter	•								
Bit5:	PCP1: Com	parator1 (C	P1) Interrup	ot Priority C	ontrol.					
	This bit sets									
	0: CP1 inter									
	1: CP1 inter	•	• • •							
Bit4:	PCP0: Com				control.					
	This bit sets the priority of the CP0 interrupt.									
	0: CP0 interrupt set to low priority level. 1: CP0 interrupt set to high priority level.									
		•	• • •				1			
Bit3:		•) Interrupt Pr	iority Cont	rol.			
	This bit sets 0: PCA0 inte									
	1: PCA0 inte	•								
Bit2:		•	• •		ot Priority Co	ntrol				
DILZ.	This bit sets					muor.				
	0: ADC0 Wir									
	1: ADC0 Wir									
Bit1:			•	• • •		ority Contr	ol.			
	PSMB0: System Management Bus (SMBus0) Interrupt Priority Control. This bit sets the priority of the SMBus0 interrupt.									
	0: SMBus interrupt set to low priority level.									
	1: SMBus in	terrupt set f	to high prior	rity level.						
Bit0:	PSPI0: Seria	al Periphera	al Interface	(SPI0) Inter	rrupt Priority	Control.				
	This bit sets			•						
	0: SPI0 inter	•								
	1: SPI0 inter	rupt set to	high priority	level.						

SFR Definition 12.15. EIP1: Extended Interrupt Priority 1

13.7.1. Enable/Reset WDT

The watchdog timer is both enabled and reset by writing 0xA5 to the WDTCN register. The user's application software should include periodic writes of 0xA5 to WDTCN as needed to prevent a watchdog timer overflow. The WDT is enabled and reset as a result of any system reset.

13.7.2. Disable WDT

Writing 0xDE followed by 0xAD to the WDTCN register disables the WDT. The following code segment illustrates disabling the WDT:

```
CLR EA ; disable all interrupts
MOV WDTCN,#0DEh ; disable software watchdog timer
MOV WDTCN,#0ADh
SETB EA ; re-enable interrupts
```

The writes of 0xDE and 0xAD must occur within 4 clock cycles of each other, or the disable operation is ignored. Interrupts should be disabled during this procedure to avoid delay between the two writes.

13.7.3. Disable WDT Lockout

Writing 0xFF to WDTCN locks out the disable feature. Once locked out, the disable operation is ignored until the next system reset. Writing 0xFF does not enable or reset the watchdog timer. Applications always intending to use the watchdog should write 0xFF to WDTCN in the initialization code.

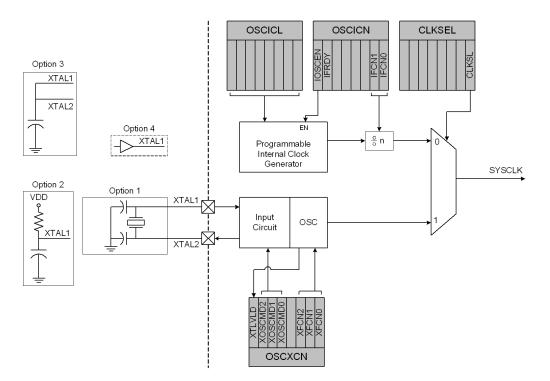
13.7.4. Setting WDT Interval

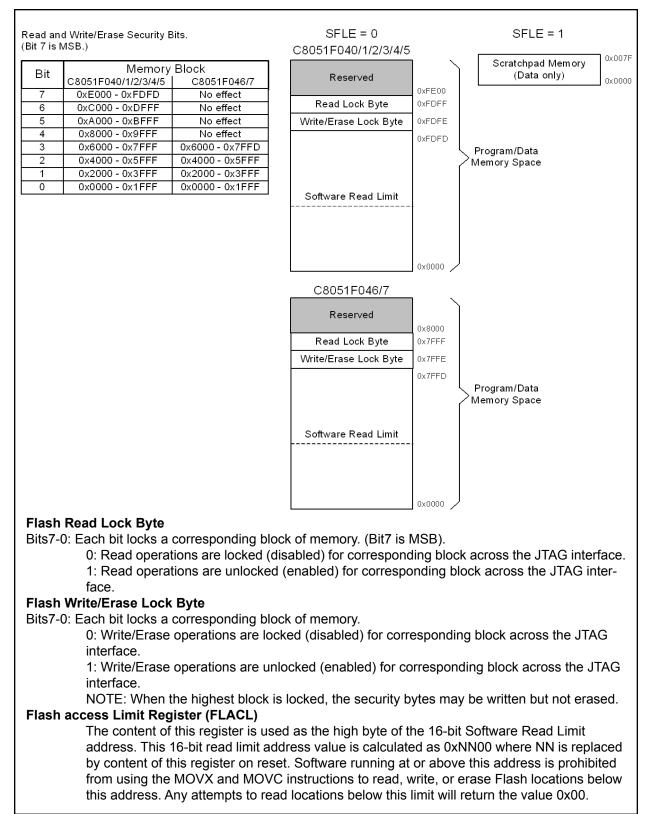
WDTCN.[2:0] control the watchdog timeout interval. The interval is given by the following equation:

 $4^{3 + WDTCN[2-0]} \times T_{sysclk}$; where T_{sysclk} is the system clock period.

For a 3 MHz system clock, this provides an interval range of 0.021 ms to 349.5 ms. WDTCN.7 must be logic 0 when setting this interval. Reading WDTCN returns the programmed interval. WDTCN.[2:0] reads 111b after a system reset.

14. Oscillators



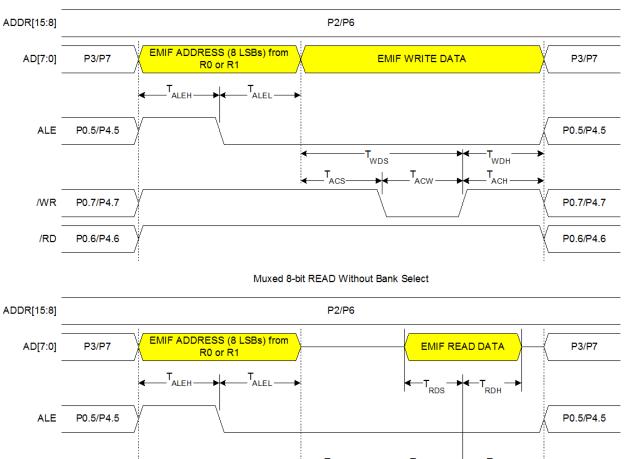

Figure 14.1. Oscillator Diagram

14.1. Programmable Internal Oscillator

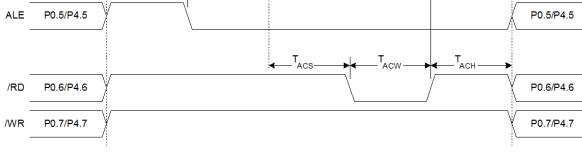
All C8051F04x devices include a programmable internal oscillator that defaults as the system clock after a system reset. The internal oscillator period can be programmed via the OSCICL register as defined by SFR Definition 14.1. OSCICL is factory calibrated to obtain a 24.5 MHz frequency.

Electrical specifications for the precision internal oscillator are given in Table 14.1 on page 175. The programmed internal oscillator frequency must not exceed 25 MHz. The system clock may be derived from the programmed internal oscillator divided by 1, 2, 4, or 8, as defined by the IFCN bits in register OSCICN.

Figure 15.1. Flash Program Memory Map and Security Bytes



R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value
EAS1	EAS0	ERW3	EWR2	EWR1	EWR0	EAH1	EAH0	11111111
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	_
							SFR Address SFR Page	
Bits7-6:	EAS1-0: EM	IF Address	Setup Time	e Bits.				
	00: Address	setup time	= 0 SYSCL	K cycles.				
	01: Address	setup time	= 1 SYSCL	K cycle.				
	10: Address							
	11: Address	•						
Bits5-2:	EWR3-0: EN	-						
	0000: /WR a	•						
	0001: /WR a	•						
	0010: /WR a	•						
	0011: /WR a	•						
	0100: /WR a	•						
	0101: /WR a 0110: /WR a	•						
	0110: /WR a	•						
	1000: /WR a	•						
	1000: /WR a	•						
	1010: /WR a	•						
	1011: /WR a	•						
	1100: /WR a	•						
	1101: /WR a	•						
	1110: /WR a	•						
	1111: /WR a							
Bits1-0:	EAH1-0: EM	IIF Address	Hold Time	Bits.	-			
	00: Address	hold time =	0 SYSCLK	cycles.				
	01: Address	hold time =	1 SYSCLK	Ccycle.				
	10: Address							
	11: Address	hold time =	3 SYSCLK	cycles.				


SFR Definition 16.3. EMI0TC: External Memory Timing Control

16.6.2.2.8-bit MOVX without Bank Select: EMI0CF[4:2] = '001' or '011'.

Muxed 8-bit WRITE Without Bank Select

Figure 16.8. Multiplexed 8-bit MOVX without Bank Select Timing

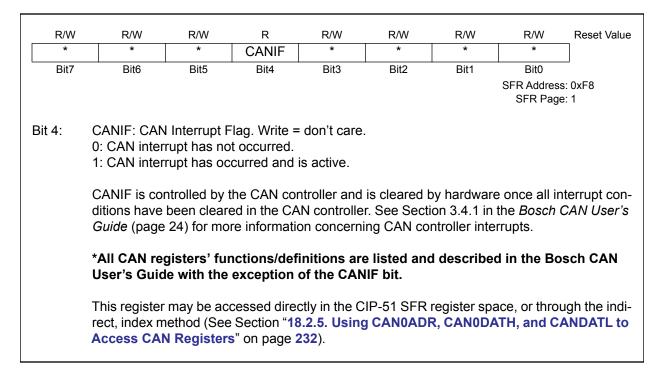
a digital input by setting P3MDOUT.7 to a logic 0, which selects open-drain output mode, and P3.7 to a logic 1, which disables the low-side output driver.

If the Port pin has been assigned to a digital peripheral by the Crossbar and that pin functions as an input (for example RX0, the UART0 receive pin), then the output drivers on that pin are automatically disabled.

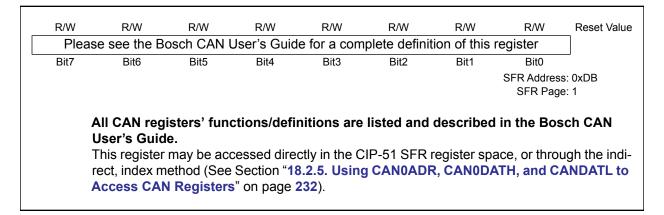
17.1.4. Weak Pullups

By default, each Port pin has an internal weak pullup device enabled which provides a resistive connection (about 100 k Ω) between the pin and V_{DD}. The weak pullup devices can be globally disabled by writing a logic 1 to the Weak Pullup Disable bit, (WEAKPUD, XBR2.7). The weak pullup is automatically deactivated on any pin that is driving a logic 0; that is, an output pin will not contend with its own pullup device. The weak pullup device can also be explicitly disabled on Ports 1, 2, and 3 pin by configuring the pin as an Analog Input, as described below.

17.1.5. Configuring Port 1, 2, and 3 Pins as Analog Inputs


The pins on Port 1 can serve as analog inputs to the ADC2 analog MUX (C8051F040/1/2/3 only), the pins on Port 2 can serve as analog inputs to the Comparators, and the pins on Port 3 can serve as inputs to ADC0. A Port pin is configured as an Analog Input by writing a logic 0 to the associated bit in the PnMDIN registers. All Port pins default to a Digital Input mode. Configuring a Port pin as an analog input:

- Disables the digital input path from the pin. This prevents additional power supply current from being drawn when the voltage at the pin is near V_{DD} / 2. A read of the Port Data bit will return a logic 0 regardless of the voltage at the Port pin.
- 2. Disables the weak pullup device on the pin.
- 3. Causes the Crossbar to "skip over" the pin when allocating Port pins for digital peripherals, except for P2.0-P2.1.


Note that the output drivers on a pin configured as an Analog Input are not explicitly disabled. Therefore, the associated PnMDOUT bits of pins configured as Analog Inputs should explicitly be set to logic 0 (Open-Drain output mode), and the associated Port Data bits should be set to logic 1 (high-impedance). Also note that it is not required to configure a Port pin as an Analog Input in order to use it as an input to the ADC's or Comparators; however, it is strongly recommended. See the analog peripheral's corresponding section in this datasheet for further information.

SFR Definition	18.3. CAN0CN:	CAN Control
----------------	---------------	-------------

SFR Definition 18.4. CAN0TST: CAN Test

21.1.4. Mode 3: 9-Bit UART, Variable Baud Rate

Mode 3 uses the Mode 2 transmission protocol with the Mode 1 baud rate generation. Mode 3 operation transmits 11 bits: a start bit, 8 data bits (LSB first), a programmable ninth data bit, and a stop bit. The baud rate is derived from Timer 1 or Timer 2, 3, or 4 overflows, as defined by Equation 21.1 and Equation 21.3. Multiprocessor communications and hardware address recognition are supported, as described in **Section 21.2**.

21.2. Multiprocessor Communications

Modes 2 and 3 support multiprocessor communication between a master processor and one or more slave processors by special use of the ninth data bit and the built-in UART0 address recognition hardware. When a master processor wants to transmit to one or more slaves, it first sends an address byte to select the target(s). An address byte differs from a data byte in that its ninth bit is logic 1; in a data byte, the ninth bit is always set to logic 0. UART0 will recognize as "valid" (i.e., capable of causing an interrupt) **two** types of addresses: (1) a *masked* address and (2) a *broadcast* address **at any given time**. Both are described below.

23.2.3. Auto-Reload Mode

In Auto-Reload Mode, the counter/timer can be configured to count up or down and cause an interrupt/flag to occur upon an overflow/underflow event. When counting up, the counter/timer will set its overflow/underflow flag (TFn) and cause an interrupt (if enabled) upon overflow/underflow, the values in the Reload/Capture Registers (RCAPnH and RCAPnL) are loaded into the timer, and the timer is restarted. When the Timer External Enable Bit (EXENn) bit is set to '1' and the Decrement Enable Bit (DCEN) is '0', a '1'-to-'0' transition on the TnEX pin (configured as an input in the digital crossbar) will cause a timer reload (in addition to timer overflows causing auto-reloads). When DCEN is set to '1', the state of the TnEX pin controls whether the counter/timer counts *up* (increments) or *down* (decrements), and will not cause an auto-reload or interrupt event. See Section 23.2.1 for information concerning configuration of a timer to count down.

When counting down, the counter/timer will set its overflow/underflow flag (TFn) and cause an interrupt (if enabled) when the value in the timer (TMRnH and TMRnL registers) matches the 16-bit value in the Reload/Capture Registers (RCAPnH and RCAPnL). This is considered an underflow event, and will cause the timer to load the value 0xFFFF. The timer is automatically restarted when an underflow occurs.

Counter/Timer with Auto-Reload mode is selected by clearing the CP/RLn bit. Setting TRn to logic 1 enables and starts the timer.

In Auto-Reload Mode, the External Flag (EXFn) toggles upon every overflow or underflow and does not cause an interrupt. The EXFn flag can be thought of as the most significant bit (MSB) of a 17-bit counter.

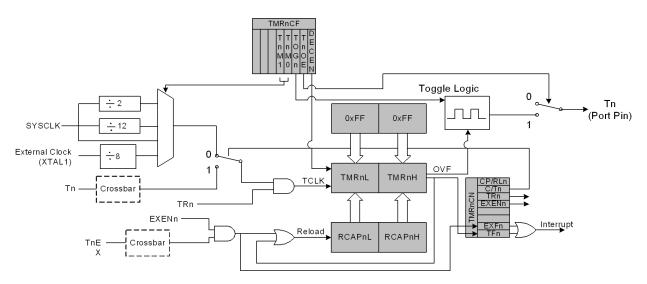


Figure 23.5. Tn Auto-reload Mode and Toggle Mode Block Diagram

JTAG Register Definition 25.3. FLASHCON: JTAG Flash Control Register

								Reset Value		
SFLE	WRMD	2 WRMD1	WRMD0	RDMD3	RDMD2	RDMD1	RDMD0	00000000		
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0			
This regis		ines how the T Register.	Flash interfa	ace logic wi	ll respond to	o reads and	l writes to th	ie		
Bit 7: Bits6-4:	When this scratchpa address ra yield unde 0: Flash a URMD2-0 The Write	Mode Select	sh reads an r. When acc 7F should n ted to the P ted to the 1 Select Bits Bits control	nd writes fro cessing the ot be attem program/Dat 28-byte scr how the int	m user soft scratchpad, pted. Read a Flash sec atchpad sec	, Flash acce s/Writes ou ctor. ctor.	esses out of tside of this	the range will		
	 Bits6-4: WRMD2-0: Write Mode Select Bits. The Write Mode Select Bits control how the interface logic responds to writes to the FLASH-DAT Register per the following values: 000: A FLASHDAT write replaces the data in the FLASHDAT register, but is otherwise ignored. 001: A FLASHDAT write initiates a write of FLASHDAT into the memory address by the FLASHADR register. FLASHADR is incremented by one when complete. 010: A FLASHDAT write initiates an erasure (sets all bytes to 0xFF) of the Flash page containing the address in FLASHADR. The data written must be 0xA5 for the erase to occur. FLASHADR is not affected. If FLASHADR targets the Read Lock Byte or the Write/Erase Lock Byte, the entire user space will be erased (i.e. entire Flash memory except for the Reserved area (See Section "15. Flash Memory" on page 179). (All other values for WRMD2-0 are reserved.) 									
Bits3-0:	RDMD3-0 The Read DAT Regi 0000: A ig 0001: A te 0010: A op Fl w	Read Mode Mode Select ster per the for FLASHDAT re rif no operation FLASHDAT re ceration is act ASHDAT. Th ithout initiating values for RD	Select Bits. Bits control Ilowing value ead provide ead initiates on is curren ead initiates ive and any is mode allo g an extra re	how the inf les: s the data i s a read of t tly active. T s a read of t data from a ows single b ead.	n the FLAS he byte add his mode is he byte add a previous r	HDAT regis Iressed by t used for b Iressed by l ead has alr	tter, but is of the FLASHA lock reads. FLASHADR eady been i	therwise ADR regis- only if no read from		

