E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Not For New Designs
Core Processor	8051
Core Size	8-Bit
Speed	25MHz
Connectivity	CANbus, EBI/EMI, SMBus (2-Wire/I ² C), SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, Temp Sensor, WDT
Number of I/O	64
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	4.25K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 3.6V
Data Converters	A/D 8x8b, 13x10b; D/A 2x10b, 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/c8051f042-gqr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

List of Figures

1.	System Overview	
	Figure 1.1. C8051F040/2 Block Diagram	21
	Figure 1.2. C8051F041/3 Block Diagram	22
	Figure 1.3. C8051F044/6 Block Diagram	23
	Figure 1.4. C8051F045/7 Block Diagram	24
	Figure 1.5. Comparison of Peak MCU Execution Speeds	25
	Figure 1.6. On-Board Clock and Reset	26
	Figure 1.7. On-Chip Memory Map	27
	Figure 1.8. Development/In-System Debug Diagram	28
	Figure 1.9. Digital Crossbar Diagram	29
	Figure 1.10. PCA Block Diagram	30
	Figure 1.11. CAN Controller Diagram	31
	Figure 1.12. 10/12-Bit ADC Block Diagram	32
	Figure 1.13. 8-Bit ADC Diagram	33
	Figure 1.14. Comparator and DAC Diagram	34
	Absolute Maximum Ratings	
	Global DC Electrical Characteristic	
4.	Pinout and Package Definitions	
	Figure 4.1. TQFP-100 Pinout Diagram	
	Figure 4.2. TQFP-100 Package Drawing	
	Figure 4.3. TQFP-64 Pinout Diagram	
	Figure 4.4. TQFP-64 Package Drawing	46
5.	12-Bit ADC (ADC0, C8051F040/1 Only)	
	Figure 5.1. 12-Bit ADC0 Functional Block Diagram	
	Figure 5.2. Analog Input Diagram	
	Figure 5.3. High Voltage Difference Amplifier Functional Diagram	
	Figure 5.4. 12-Bit ADC Track and Conversion Example Timing	
	Figure 5.5. ADC0 Equivalent Input Circuits	
	Figure 5.6. Temperature Sensor Transfer Function	
	Figure 5.7. ADC0 Data Word Example	61
	Figure 5.8. 12-Bit ADC0 Window Interrupt Example:	
	Right Justified Single-Ended Data	63
	Figure 5.9. 12-Bit ADC0 Window Interrupt Example:	
	Right Justified Differential Data	64
	Figure 5.10. 12-Bit ADC0 Window Interrupt Example:	
	Left Justified Single-Ended Data	
	Figure 5.11. 12-Bit ADC0 Window Interrupt Example: Left Justified Differential Dat 66	a.
6.	10-Bit ADC (ADC0, C8051F042/3/4/5/6/7 Only)	• •
	Figure 6.1. 10-Bit ADC0 Functional Block Diagram	
	Figure 6.2. Analog Input Diagram	
	Figure 6.3. High Voltage Difference Amplifier Functional Diagram	
	Figure 6.4. 10-Bit ADC Track and Conversion Example Timing	77

	Figure 6.5. ADC0 Equivalent Input Circuits	. 78
	Figure 6.6. Temperature Sensor Transfer Function	
	Figure 6.7. ADC0 Data Word Example	. 83
	Figure 6.8. 10-Bit ADC0 Window Interrupt Example:	
	Right Justified Single-Ended Data	85
	Figure 6.9. 10-Bit ADC0 Window Interrupt Example:	
	Right Justified Differential Data	86
	Figure 6.10. 10-Bit ADC0 Window Interrupt Example:	
	Left Justified Single-Ended Data	87
	Figure 6.11. 10-Bit ADC0 Window Interrupt Example: Left Justified Differential Da	
	88	
7	8-Bit ADC (ADC2, C8051F040/1/2/3 Only)	
••	Figure 7.1. ADC2 Functional Block Diagram	91
	Figure 7.2. ADC2 Track and Conversion Example Timing	
	Figure 7.3. ADC2 Equivalent Input Circuit	
	Figure 7.4. ADC2 Data Word Example	
	Figure 7.5. ADC Window Compare Examples, Single-Ended Mode	
	Figure 7.6. ADC Window Compare Examples, Differential Mode	
8.	DACs, 12-Bit Voltage Mode (C8051F040/1/2/3 Only)	102
0.	Figure 8.1. DAC Functional Block Diagram	105
9.	Voltage Reference (C8051F040/2/4/6)	
•••	Figure 9.1. Voltage Reference Functional Block Diagram	113
10	Voltage Reference (C8051F041/3/5/7)	-
	Figure 10.1. Voltage Reference Functional Block Diagram	117
11.	.Comparators	
	Figure 11.1. Comparator Functional Block Diagram	121
	Figure 11.2. Comparator Hysteresis Plot	
12	CIP-51 Microcontroller	
	Figure 12.1. CIP-51 Block Diagram	127
	Figure 12.2. Memory Map	
	Figure 12.3. SFR Page Stack	
	Figure 12.4. SFR Page Stack While Using SFR Page 0x0F To Access Port 5	137
	Figure 12.5. SFR Page Stack After ADC2 Window Comparator Interrupt Occurs.	
	Figure 12.6. SFR Page Stack Upon PCA Interrupt Occurring During an ADC2 ISR	R
	139	
	Figure 12.7. SFR Page Stack Upon Return From PCA Interrupt	140
	Figure 12.8. SFR Page Stack Upon Return From ADC2 Window Interrupt	141
13	Reset Sources	
	Figure 13.1. Reset Sources	
	Figure 13.2. Reset Timing	166
14	Oscillators	
	Figure 14.1. Oscillator Diagram	
	Figure 14.2. 32.768 kHz External Crystal Example	177
15	Flash Memory	
	Figure 15.1. Flash Program Memory Map and Security Bytes	181

1.2. On-Chip Memory

The CIP-51 has a standard 8051 program and data address configuration. It includes 256 bytes of data RAM, with the upper 128 bytes dual-mapped. Indirect addressing accesses the upper 128 bytes of general purpose RAM, and direct addressing accesses the 128 byte SFR address space. The CIP-51 SFR address space contains up to 256 *SFR Pages*. In this way, the CIP-51 MCU can accommodate the many SFRs required to control and configure the various peripherals featured on the device. The lower 128 bytes of RAM are accessible via direct and indirect addressing. The first 32 bytes are addressable as four banks of general purpose registers, and the next 16 bytes can be byte addressable or bit addressable.

The CIP-51 in the C8051F04x MCUs additionally has an on-chip 4 kB RAM block and an external memory interface (EMIF) for accessing off-chip data memory or memory-mapped peripherals. The on-chip 4 byte block can be addressed over the entire 64 kB external data memory address range (overlapping 4 kB boundaries). External data memory address space can be mapped to on-chip memory only, off-chip memory only, or a combination of the two (addresses up to 4 kB directed to on-chip, above 4 kB directed to EMIF). The EMIF is also configurable for multiplexed or non-multiplexed address/data lines.

The MCU's program memory consists of 64 kB (C8051F040/1/2/3/4/5) or 32 kB (C8051F046/7) of Flash. This memory may be reprogrammed in-system in 512 byte sectors, and requires no special off-chip programming voltage. The 512 bytes from addresses 0xFE00 to 0xFFFF are reserved for the 64 kB devices. There is also a single 128 byte sector at address 0x10000 to 0x1007F, which may be useful as a small table for software constants. See Figure 1.7 for the MCU system memory map.

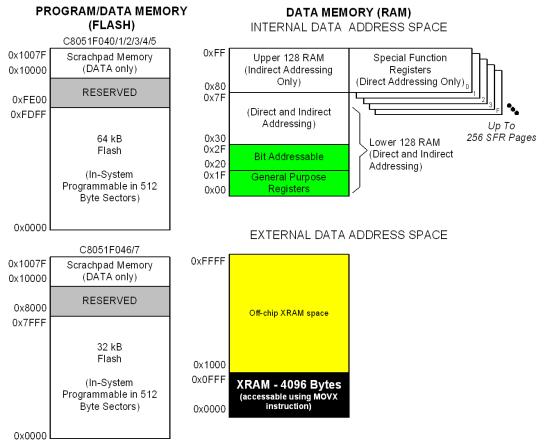


Figure 1.7. On-Chip Memory Map

P6.2/A10m/A2 P6.3/A11m/A3 P6.4/A12m/A4 P6.0/A8m/A0 P6.1/A9m/A1 DAC1 P4.0 P4.1 P4.2 P4.3 P4.4 P4.5/ALE P5.0/A8 P5.1/A9 P5.2/A10 P5.3/A11 P5.4/A12 P5.5/A13 P5.6/A14 P5.7/A15 P4.6/RD P4.7/WR DGND DAC0 100 8 86 88 8 8 5 8 8 22 8 8 2 88 8 ₹ 8 2 2 88 2 1 2 75 P6.5/A13m/A5 TMS 1 TCK 2 74 P6.6/A14m/A6 3 TDI 73 P6.7/A15m/A7 4 72 P7.0/AD0/D0 TDO 5 71 P7.1/AD1/D1 /RST CANRX 6 70 P7.2/AD2/D2 7 69 P7.3/AD3/D3 CANTX AV+ 8 68 P7.4/AD4/D4 AGND 9 67 P7.5/AD5/D5 AGND 10 66 P7.6/AD6/D6 AV+ 11 65 P7.7/AD7/D7 VREF 12 64 VDD C8051F040/2/4/6 AGND 13 63 DGND AV+ 14 62 P0.0 61 P0.1 VREFD 15 60 P0.2 VREF0 16 VREF2 17 59 P0.3 58 P0.4 AIN0.0 18 57 P0.5/ALE AIN0.1 19 56 P0.6/RD AIN0.2 20 AIN0.3 21 55 P0.7/WR HVCAP 22 54 P3.0/AD0/D0 HVREF 23 53 P3.1/AD1/D1 52 P3.2/AD2/D2 HVAIN+ 24 HVAIN- 25 51 P3.3/AD3/D3 [4] 26 27 2 P1.6/AIN2.6/A14 [P1.5/AIN2.5/A13] P1.1/AIN2.1/A9 [P1.0/AIN2.0/A8 [P2.7/A15m/A7 P2.6/A14m/A6 P2.5/A13m/A5 P2.4/A13m/A4 P2.4/A12m/A4 P2.3/A11m/A3 DQ DGND P2.0/A8m/A0 | P3.7/AD7/D7 | P3.6/AD6/D6 | P3.5/AD5/D5 | P3.4/AD4/D4 | XTAL1 XTAL2 MONEN P1.4/AIN2.4/A12 P1.2/AIN2.2/A10 P2.2/A10m/A2 P1.7/AIN2.7/A15 P1.3/AIN2.3/A11 P2.1/A9m/A1

Figure 4.1. TQFP-100 Pinout Diagram

C8051F040/1/2/3/4/5/6/7

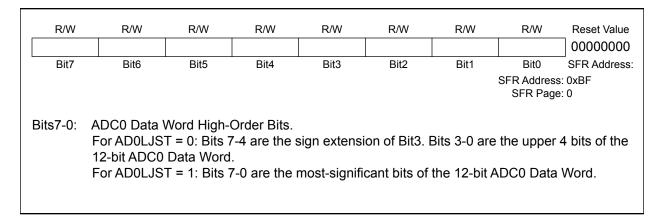
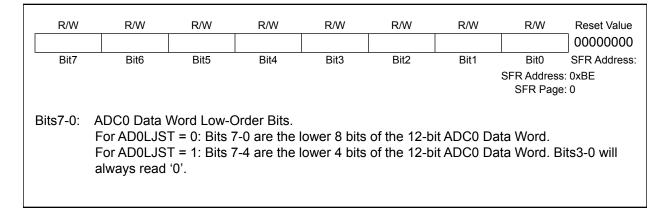

					Δ	MX0AD3-	0			
		0000	0001	0010	0011	0100	0101	0110	0111	1xxx
	0000	AIN0.0	AIN0.1	AIN0.2	AIN0.3	HVDA	AGND	P3EVEN	P3ODD	TEMP SENSOR
	0001	+(AIN0.0) -(AIN0.1)		AIN0.2	AIN0.3	HVDA	AGND	P3EVEN	P3ODD	TEMP SENSOR
	0010	AIN0.0	AIN0.1	+(AIN0.2) -(AIN0.3)		HVDA	AGND	P3EVEN	P3ODD	TEMP SENSOR
	0011	+(AIN0.0) -(AIN0.1)		+(AIN0.2) -(AIN0.3)		HVDA	AGND	P3EVEN	P3ODD	TEMP SENSOR
	0100	AIN0.0	AIN0.1	AIN0.2	AIN0.3	+(HVDA) -(HVREF)		P3EVEN	P3ODD	TEMP SENSOR
	0101	+(AIN0.0) -(AIN0.1)		AIN0.2	AIN0.3	+(HVDA) -(HVREF)		P3EVEN	P3ODD	TEMP SENSOR
3-0	0110	AIN0.0	AIN0.1	+(AIN0.2) -(AIN0.3)		+(HVDA) -(HVREF)		P3EVEN	P3ODD	TEMP SENSOR
Bits	0111	+(AIN0.0) -(AIN0.1)		+(AIN0.2) -(AIN0.3)		+(HVDA) -(HVREF)		P3EVEN	P3ODD	TEMP SENSOR
AMX0CF	1000	AIN0.0	AIN0.1	AIN0.2	AIN0.3	HVDA	AGND	+P3EVEN -P3ODD		TEMP SENSOR
AM	1001	+(AIN0.0) -(AIN0.1)		AIN0.2	AIN0.3	HVDA	AGND	+P3EVEN -P3ODD		TEMP SENSOR
	1010	AIN0.0	AIN0.1	+(AIN0.2) -(AIN0.3)		HVDA	AGND	+P3EVEN -P3ODD		TEMP SENSOR
	1011	+(AIN0.0) -(AIN0.1)		+(AIN0.2) -(AIN0.3)		HVDA	AGND	+P3EVEN -P3ODD		TEMP SENSOR
	1100	AIN0.0	AIN0.1	AIN0.2	AIN0.3	+(HVDA) -(HVREF)		+P3EVEN -P3ODD)		TEMP SENSOR
	1101	+(AIN0.0) -(AIN0.1)		AIN0.2	AIN0.3	+(HVDA) -(HVREF)		+P3EVEN -P3ODD		TEMP SENSOR
	1110	AIN0.0	AIN0.1	+(AIN0.2) -(AIN0.3)		+(HVDA) -(HVREF)		+P3EVEN -P3ODD		TEMP SENSOR
	1111	+(AIN0.0) -(AIN0.1)		+(AIN0.2) -(AIN0.3)		+(HVDA) -(HVREF)		+P3EVEN -P3ODD		TEMP SENSOR

Table 5.1. AMUX Selection Chart (AMX0AD3–0 and AMX0CF3–0 bits)


Note: "P3EVEN" denotes even numbered and "P3ODD" odd numbered Port 3 pins selected in the AMX0PRT register.

SFR Definition 5.7. ADC0H: ADC0 Data Word MSB

SFR Definition 5.8. ADC0L: ADC0 Data Word LSB

9. Voltage Reference (C8051F040/2/4/6)

The voltage reference circuit offers full flexibility in operating the ADC and DAC modules. Three voltage reference input pins allow each ADC and the two DACs (C8051F040/2 only) to reference an external voltage reference or the on-chip voltage reference output. ADC0 may also reference the DAC0 output internally, and ADC2 may reference the analog power supply voltage, via the VREF multiplexers shown in Figure 9.1.

The internal voltage reference circuit consists of a 1.2 V, temperature stable bandgap voltage reference generator and a gain-of-two output buffer amplifier. The internal reference may be routed via the VREF pin to external system components or to the voltage reference input pins shown in Figure 9.1. Bypass capacitors of 0.1 μ F and 4.7 μ F are recommended from the VREF pin to AGND, as shown in Figure 9.1. See Table 9.1 for voltage reference specifications.

The Reference Control Register, REF0CN (defined in SFR Definition 9.1) enables/disables the internal reference generator and selects the reference inputs for ADC0 and ADC2. The BIASE bit in REF0CN enables the on-board reference generator while the REFBE bit enables the gain-of-two buffer amplifier which drives the VREF pin. When disabled, the supply current drawn by the bandgap and buffer amplifier falls to less than 1 μ A (typical) and the output of the buffer amplifier enters a high impedance state. If the internal bandgap is used as the reference voltage generator, BIASE and REFBE must both be set to logic 1. If the internal reference is not used, REFBE may be set to logic 0. Note that the BIASE bit must be set to logic 1 if either DAC or ADC is used, regardless of the voltage reference used. If neither the ADC nor the DAC are being used, both of these bits can be set to logic 0 to conserve power. Bits AD0VRS and AD2VRS select the ADC0 and ADC2 voltage reference sources, respectively. The electrical specifications for the Voltage Reference are given in Table 9.1.

The temperature sensor connects to the highest order input of the ADC0 input multiplexer (see Section "5.1. Analog Multiplexer and PGA" on page 47 for C8051F040 devices, or Section "6.1. Analog Multiplexer and PGA" on page 69 for C8051F042/4/6 devices). The TEMPE bit within REF0CN enables and disables the temperature sensor. While disabled, the temperature sensor defaults to a high impedance state and any A/D measurements performed on the sensor while disabled result in meaningless data.

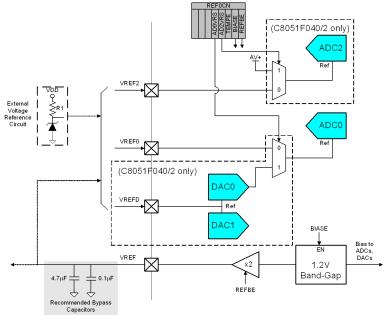


Figure 9.1. Voltage Reference Functional Block Diagram

SFR Definition 12.13. EIE1: Extended I	Interrupt Enable 1
--	--------------------

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value
	CP2IE	CP1IE	CP0IE	EPCA0	EWADC0	ESMB0	ESPI0	0000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
							SFR Address	
							SFR Page	e: All Pages
Bit7:	Reserved. R	ead = 0b V	Vrite = don'	t care				
Bit6:	CP2IE: Enal							
	This bit sets							
	0: Disable C		•					
	1: Enable inf	errupt requ	ests genera	ated by the	CP2IF flag.			
Bit6:	CP1IE: Enal							
	This bit sets		•	1 interrupt.				
	0: Disable C							
Dilo	1: Enable inf				CP1IF flag.			
Bit6:	CP0IE: Enal							
	This bit sets 0: Disable C			o interrupt.				
	1: Enable inf			ated by the				
Bit3:	EPCA0: Ena					rrunt		
Dito.	This bit sets					inupt.		
	0: Disable al							
	1: Enable int		•	ated by PC	٩0.			
Bit2:	EWADC0: E							
	This bit sets	the maskin	g of ADC0	Window Co	mparison in	terrupt.		
	0: Disable A							
	1: Enable Int						ns.	
Bit1:	ESMB0: Ena					rrupt.		
	This bit sets		•	Bus interru	pt.			
	0: Disable al							
Bit0:	1: Enable inf ESPI0: Enab							
DILU.	This bit sets		•	•	io) menupi.			
	0: Disable al		•	iteriupi.				
	1: Enable Int			ated by the	SPI0 flag			
			este genere		er is nag.			

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value			
-	PCP2	PCP1	PCP0	PPCA0	PWADC0	PSMB0	PSPI0	00000000			
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0				
							SFR Address				
							SFR Page	e: All Pages			
Bit7:	Reserved.										
Bit6:	PCP2: Com	oarator2 (C	P2) Interrur	ot Priority C	Control						
	This bit sets										
	0: CP2 inter			•							
	1: CP2 inter	•									
Bit5:	PCP1: Com	parator1 (C	P1) Interrup	ot Priority C	ontrol.						
	This bit sets										
	0: CP1 inter										
	1: CP1 inter	•	• • •								
Bit4:	PCP0: Com				control.						
	This bit sets			•							
	0: CP0 inter										
	1: CP0 inter	•	• • •				1				
Bit3:		•) Interrupt Pr	iority Cont	rol.				
	This bit sets 0: PCA0 inte			•							
	1: PCA0 inte	•									
Bit2:		•	• •		ot Priority Co	ntrol					
DILZ.	This bit sets					muor.					
	0: ADC0 Wir										
	1: ADC0 Wir										
Bit1:			•	• • •		ority Contr	ol.				
	PSMB0: System Management Bus (SMBus0) Interrupt Priority Control. This bit sets the priority of the SMBus0 interrupt.										
	0: SMBus interrupt set to low priority level.										
	1: SMBus in	terrupt set f	to high prior	rity level.							
Bit0:	PSPI0: Seria	al Periphera	al Interface	(SPI0) Inter	rrupt Priority	Control.					
	This bit sets			•							
	0: SPI0 inter	•									
	1: SPI0 inter	rupt set to	high priority	level.							

SFR Definition 12.15. EIP1: Extended Interrupt Priority 1

14. Oscillators

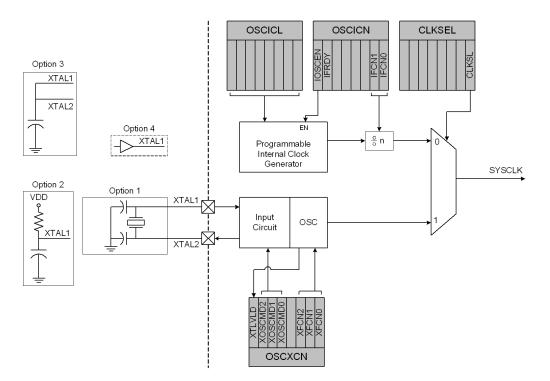


Figure 14.1. Oscillator Diagram

14.1. Programmable Internal Oscillator

All C8051F04x devices include a programmable internal oscillator that defaults as the system clock after a system reset. The internal oscillator period can be programmed via the OSCICL register as defined by SFR Definition 14.1. OSCICL is factory calibrated to obtain a 24.5 MHz frequency.

Electrical specifications for the precision internal oscillator are given in Table 14.1 on page 175. The programmed internal oscillator frequency must not exceed 25 MHz. The system clock may be derived from the programmed internal oscillator divided by 1, 2, 4, or 8, as defined by the IFCN bits in register OSCICN.

14.5. External RC Example

If an RC network is used as an external oscillator source for the MCU, the circuit should be configured as shown in Figure 14.1, Option 2. The capacitor should be no greater than 100 pF; however, for very small capacitors, the total capacitance may be dominated by parasitic capacitance in the PCB layout. To determine the required External Oscillator Frequency Control value (XFCN) in the OSCXCN Register, first select the RC network value to produce the desired frequency of oscillation. If the frequency desired is 100 kHz, let R = 246 k Ω and C = 50 pF:

f = 1.23(10³) / RC = 1.23 (10³) / [246 x 50] = 0.1 MHz = 100 kHz

Referring to the table in SFR Definition 14.4, the required XFCN setting is 010b.

14.6. External Capacitor Example

If a capacitor is used as an external oscillator for the MCU, the circuit should be configured as shown in Figure 14.1, Option 3. The capacitor should be no greater than 100 pF; however, for very small capacitors, the total capacitance may be dominated by parasitic capacitance in the PCB layout. To determine the required External Oscillator Frequency Control value (XFCN) in the OSCXCN Register, select the desired frequency of oscillation and find the capacitor to be used from the equations below. Assume $V_{DD} = 3.0 \text{ V}$ and f = 50 kHz:

 $f = KF / (C \times V_{DD}) = KF / (C \times 3) = 0.050 MHz$

If a frequency of roughly 50 kHz is desired, select the K Factor from the table in SFR Definition 14.4 as KF = 7.7:

0.050 MHz = 7.7 / (C x 3)

C x 3 = 7.7 / 0.050 = 154, so C = 154 / 3 pF = 51.3 pF

Therefore, the XFCN value to use in this example is 010b.

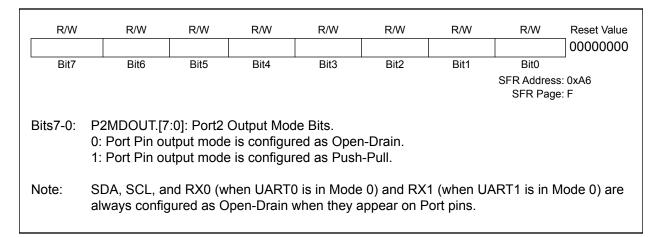
The lock bits can always be read and cleared to logic 0 regardless of the security setting applied to the block containing the security bytes. This allows additional blocks to be protected after the block containing the security bytes has been locked. Important Note: The only means of removing a lock once set is to erase the entire program memory space by performing a JTAG erase operation (i.e., cannot be done in user firmware). Addressing either security byte while performing a JTAG erase operation will automatically initiate erasure of the entire program memory space (except for the reserved area). This erasure can only be performed via JTAG. If a non-security byte in the 0xFBFF-0xFDFF (C8051F040/1/2/3/4/5) or 0x7DFF-0x7FFF (C8051F046/7) page is addressed during the JTAG erasure, only that page (including the security bytes) will be erased.

The Flash Access Limit security feature (see Figure 15.1) protects proprietary program code and data from being read by software running on the C8051F04x. This feature provides support for OEMs that wish to program the MCU with proprietary value-added firmware before distribution. The value-added firmware can be protected while allowing additional code to be programmed in remaining program memory space later.

The Software Read Limit (SRL) is a 16-bit address that establishes two logical partitions in the program memory space. The first is an upper partition consisting of all the program memory locations at or above the SRL address, and the second is a lower partition consisting of all the program memory locations starting at 0x0000 up to (but excluding) the SRL address. Software in the upper partition can execute code in the lower partition, but is prohibited from reading locations in the lower partition using the MOVC instruction. (Executing a MOVC instruction from the upper partition with a source address in the lower partition will always return a data value of 0x00.) Software running in the lower partition can access locations in both the upper and lower partition without restriction.

The Value-added firmware should be placed in the lower partition. On reset, control is passed to the valueadded firmware via the reset vector. Once the value-added firmware completes its initial execution, it branches to a predetermined location in the upper partition. If entry points are published, software running in the upper partition may execute program code in the lower partition, but it cannot read the contents of the lower partition. Parameters may be passed to the program code running in the lower partition either through the typical method of placing them on the stack or in registers before the call or by placing them in prescribed memory locations in the upper partition.

The SRL address is specified using the contents of the Flash Access Register. The 16-bit SRL address is calculated as 0xNN00, where NN is the contents of the SRL Security Register. Thus, the SRL can be located on 256-byte boundaries anywhere in program memory space. However, the 512-byte erase sector size essentially requires that a 512 boundary be used. The contents of a non-initialized SRL security byte is 0x00, thereby setting the SRL address to 0x0000 and allowing read access to all locations in program memory space by default.



PSN 970				Pi) 4
MIN UKA FXO	0	3			
RX0	w.	۲			
SCK	1		ø		
MISO		۲		۲	
MOSI		v	\$		
NSS					-
SDA	\$		\$		
SCL		۲	-		
TX1	\$		@		
RX1		۲		49	
CEX0	\$		\$		\$
CEX1		۹	-	49	
CEX2			\$		
CEX3				۲	
CEX4					
CEX5					
ECI	en e				, B
CP0	\$		ø	0	
CP1	\$	8	\$		0
CP2	Ø	@	ø	ø	() ()
TO	\$	\$		1000000 100000000000000000000000000000	
/INTO	\$	\$	\$	\$	۲
T1	ann an	ø	\$	¢	en e
/INT1	annan B	\$		\$	ø
T2	-	۲	۲	\$	۲
T2EX	ø	\$	\$	\$	ti th
Т3	۲	\$	Ø	1	¢,
тзех	۲	۲	۲	۲	۲
T4	ø	۲	ø	8	ø
T4EX	Ø	۲	ø	Ø	en e
SYSCLK	۲	۲	۲	۲	۲
CNVSTRO	Ø	۲	¢	ø	(B)
CNVSTR2	\$	\$		\$	
	innnnn:	tiinnn	inesne	dimme.	anana;

Figure 17.6. Crossbar Example: (EMIFLE = 1; EMIF in Multiplexed Mode; P1MDIN = 0xE3; XBR0 = 0x05; XBR1 = 0x14; XBR2 = 0x42)

SFR Definition 17.12. P2MDOUT: Port2 Output Mode

SFR Definition 17.13. P3: Port3 Data

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value					
P3.7	P3.6	P3.5	P3.4	P3.3	P3.2	P3.1	P3.0	11111111					
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit2 Bit1		Bit Addressable					
							SFR Address SFR Page	s: 0xB0 e: All Pages					
Bits7-0:													
Note:	P3.[7:0] can be driven by the External Data Memory Interface (as AD[7:0] in Multiplexed mode, or as D[7:0] in Non-multiplexed mode). See Section "16. External Data Memory Interface and On-Chip XRAM" on page 187 for more information about the External Memory Interface.												

SFR Definition 19.1	. SMB0CN: SMBus0 Control
---------------------	--------------------------

R	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value						
BUSY	ENSMB	STA	STO	SI	AA	FTE	TOE	00000000						
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0 SFR Addres SFR Pag							
Bit7:	BUSY: Busy Status Flag. 0: SMBus0 is free 1: SMBus0 is busy													
Bit6:	 SMBus0 is busy ENSMB: SMBus Enable. This bit enables/disables the SMBus serial interface. SMBus0 disabled. SMBus0 enabled. 													
Bit5:	STA: SMBus 0: No START 1: When ope bus is not fre more bytes h	Start Flag. condition rating as a e, the STA ave been t	is transmitte master, a S RT is transr ransmitted	START cond nitted after	a STOP is ı	received.) If	STA is set	after one or						
Bit4:	START cond STO: SMBus 0: No STOP 1: Setting ST tion is receive dition is trans causes SMB	Stop Flag condition is O to logic ed, hardwa mitted follo	s transmitte 1 causes a ire clears S owed by a S	STOP conc TO to logic START conc	0. If both S dition. In sla	TA and ST ave mode, s	O are set, a	a STOP con-						
Bit3:	SI: SMBus S This bit is set 0xF8 does no the CPU to v cleared by ha	erial Interru by hardwa ot cause Sl ector to the	upt Flag. are when on I to be set.) e SMBus inf	e of 27 pos When the S errupt serv	sible SMBu SI interrupt ice routine.	us0 states is is enabled,	setting this	bit causes						
Bit2:	AA: SMBus A This bit define line. 0: A "not ack	Assert Ackr es the type nowledge"	owledge Fl of acknowl (high level	ag. edge returr on SDA) is	ied during t returned du	uring the ac	knowledge	cycle.						
Bit1:	1: An "acknow FTE: SMBus 0: No timeour 1: Timeout w	Free Time t when SC	r Enable Bi L is high	t		-		cie.						
Bit0:	TOE: SMBus 0: No timeou 1: Timeout w	Timeout E t when SC	inable Bit L is low.											

11.0592 MHZ OSCIIIATOR												
		Freque	ncy: 11.0592	MHz								
Target Baud Rate (bps)	Baud Rate % Error	Oscillator Divide Factor	Source	SCA1-SCA0 (pre-scale select) [*]	T1M [*]	Timer 1 Reload Value (hex)						
230400	0.00%	48	SYSCLK	XX	1	0xE8						
115200	0.00%	96	SYSCLK	XX	1	0xD0						
57600	0.00%	192	SYSCLK	XX	1	0xA0						
28800	0.00%	384	SYSCLK	XX	1	0x40						
14400	0.00%	768	SYSCLK / 12	00	0	0xE0						
9600	0.00%	1152	SYSCLK / 12	00	0	0xD0						
2400	0.00%	4608	SYSCLK / 12	00	0	0x40						
1200	0.00%	9216	SYSCLK / 48	10	0	0xA0						
230400	0.00%	48	EXTCLK / 8	11	0	0xFD						
115200	0.00%	96	EXTCLK / 8	11	0	0xFA						
57600	0.00%	192	EXTCLK / 8	11	0	0xF4						
28800	0.00%	384	EXTCLK / 8	11	0	0xE8						
14400	0.00%	768	EXTCLK / 8	11	0	0xD0						
9600	0.00%	1152	EXTCLK / 8	11	0	0xB8						
_	X = Don't care	2										

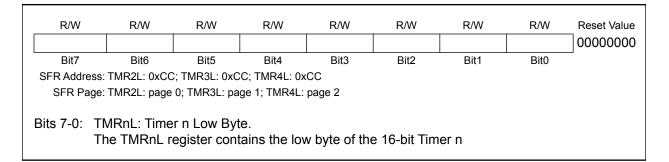
Table 22.5. Timer Settings for Standard Baud Rates Using an External11.0592 MHz Oscillator

X = Don't care

*Note: SCA1-SCA0 and T1M bit definitions can be found in Section 23.1.

SFR Definition 23.9. TMRnCF: Timer n Configuration

		_	R/W TnM1	R/W TnM0	R/W TOGn	R/W TnOE	R/W DCEN	Reset Value						
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	Bit						
					DILL	Diti	Dito	Addressable						
	ess: TMR2CF:0xC age TMR2CF: pag	-												
Bit7-5:	Reserved.													
Bit4-3:	TnM1 and Tr	nM0: Timer	Clock Mode	e Select Bit	S.									
	Bits used to select the Timer clock source. The sources can be the System Clock													
	(SYSCLK), SYSCLK divided by 2 or 12, or an external clock signal routed to Tn (port pin)													
	divided by 8.		rce is select	ed as follov	/S:									
	00: SYSCLK													
	01: SYSCLK		(10)											
	10: EXTERNAL CLOCK/8													
Bit2:	11: SYSCLK/		ato hit											
DILZ.	TOGn: Toggle output state bit. When timer is used to toggle a port pin, this bit can be used to read the state of the output, o													
	can be written to in order to force the state of the output.													
Bit1:	TnOE: Timer output enable bit.													
	This bit enables the timer to output a 50% duty cycle output to the timer's assigned external													
	port pin.													
	<u>NOTE</u> : A timer is configured for Square Wave Output as follows:													
	CP/RLn=0													
	C/Tn = 0													
	TnOE = 1													
	Load RCAPnH:RCAPnL (See Section "Equation 23.1. Square Wave Frequency" on													
	page 300). Configure Port Pin for output (See Section "17, Port Input/Output" on page 202)													
	Configure Port Pin for output (See Section "17. Port Input/Output" on page 203). 0: Output of toggle mode not available at Timers' assigned port pin.													
	1: Output of toggle mode available at Timers' assigned port pin.													
Bit0:	DCEN: Decre													
	This bit enab	les the time	er to count ι	up or down	as determin	ed by the s	tate of TnE	EX.						
	0: Timer will o	count up, re	egardless of	f the state c	f TnEX.									
	1: Timer will o	•		•	e state of T	nEX as foll	ows:							
			timer count											
	if Tnl	∟X = 1, the	timer count	ts UP.										


SFR Definition 23.10. RCAPnL: Timer n Capture Register Low Byte

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
SFR Address:	RCAP2L: 0xC	A; RCAP3L: 0	xCA; RCAP4L	: 0xCA				
SFR Page:	RCAP2L: pag	e 0; RCAP3L:	page 1; RCAF	P4L: page 2				
m		register ca	ptures the lo	ow byte of T				d in capture the reload

SFR Definition 23.11. RCAPnH: Timer n Capture Register High Byte

R/V	/ R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value
								00000000
Bit	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
SFR Ad	dress: RCAP2H	: 0xCB; RCAP3H:	0xCB; RCAP4	IH: 0xCB				
SFR	Page: RCAP2H	: page 0; RCAP3H	I: page 1; RCA	P4H: page 2				
Bits 7-0): RCAPnH	: Timer n Capt	ure Registe	r High Byte.				
	The RCA	PnH register c	aptures the	high byte of	f Timer n wl	nen Timer r	n is confiqu	ired in cap-
		e. When Timer	•	• •			•	
	reload va		ge					

SFR Definition 23.12. TMRnL: Timer n Low Byte

24.2. Capture/Compare Modules

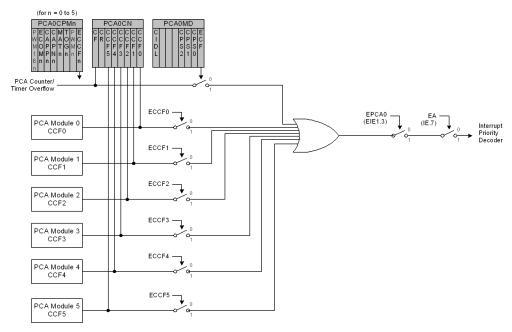

Each module can be configured to operate independently in one of six operation modes: Edge-triggered Capture, Software Timer, High Speed Output, Frequency Output, 8-Bit Pulse Width Modulator, or 16-Bit Pulse Width Modulator. Each module has Special Function Registers (SFRs) associated with it in the CIP-51 system controller. These registers are used to exchange data with a module and configure the module's mode of operation.

Table 24.2 summarizes the bit settings in the PCA0CPMn registers used to select the PCA0 capture/compare module's operating modes. Setting the ECCFn bit in a PCA0CPMn register enables the module's CCFn interrupt. Note: PCA0 interrupts must be globally enabled before individual CCFn interrupts are recognized. PCA0 interrupts are globally enabled by setting the EA bit (IE.7) and the EPCA0 bit (EIE1.3) to logic 1. See Figure 24.3 for details on the PCA interrupt configuration.

PWM16	ECOM	CAPP	CAPN	MAT	TOG	PWM	ECCF	Operation Mode
Х	Х	1	0	0	0	0	Х	Capture triggered by positive edge on CEXn
Х	Х	0	1	0	0	0	Х	Capture triggered by negative edge on CEXn
Х	Х	1	1	0	0	0	Х	Capture triggered by transition on CEXn
Х	1	0	0	1	0	0	Х	Software Timer
Х	1	0	0	1	1	0	Х	High-Speed Output
Х	1	0	0	0	1	1	Х	Frequency Output
0	1	0	0	0	0	1	0	8-Bit Pulse Width Modulator
1	1	0	0	0	0	1	0	16-Bit Pulse Width Modulator

Table 24.2. PCA0CPM Register Settings for PCA Capture/Compare Modules

X = Don't Care

Figure 24.3. PCA Interrupt Block Diagram

24.3. Register Descriptions for PCA0

Following are detailed descriptions of the special function registers related to the operation of PCA0.

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Valu					
CF	CR	CCF5	CCF4	CCF3	CCF2	CCF1	CCF0	0000000					
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0						
							SFR Addres SFR Pag						
t7:	CF: PCA Co												
	Set by hardv												
	the Counter/												
	tor to the CF interrupt service routine. This bit is not automatically cleared by hardware and must be cleared by software.												
it6:	CR: PCA0 C			trol.									
	This bit enab				mer.								
	0: PCA0 Cou	unter/Timer	disabled.										
	1: PCA0 Cou	unter/Timer	enabled.										
it5:	CCF5: PCAC												
	This bit is set by hardware when a match or capture occurs. When the CCF interrupt is												
	enabled, setting this bit causes the CPU to vector to the CCF interrupt service routine. This bit is not automatically cleared by hardware and must be cleared by software.												
it4:	CCF4: PCA					cleared by	sontware.						
114.			•			rs When th	e CCE inte	rrunt is					
	This bit is set by hardware when a match or capture occurs. When the CCF interrupt is enabled, setting this bit causes the CPU to vector to the CCF interrupt service routine. This												
	bit is not automatically cleared by hardware and must be cleared by software.												
it3:	CCF3: PCA0 Module 3 Capture/Compare Flag.												
	This bit is set by hardware when a match or capture occurs. When the CCF interrupt is												
	enabled, set	•						outine. This					
it2:	bit is not auto					cleared by	software.						
πz.	CCF2: PCA					re Whon th	o CCE into	rrunt is					
	This bit is set by hardware when a match or capture occurs. When the CCF interrupt is enabled, setting this bit causes the CPU to vector to the CCF interrupt service routine. This												
	bit is not aut	•											
it1:	CCF1: PCAC					,							
			This bit is set by hardware when a match or capture occurs. When the CCF interrupt is										
		enabled, setting this bit causes the CPU to vector to the CCF interrupt service routine. This											
					tor to the C			•					
:10.		omatically o	cleared by h	ardware ar	ctor to the C d must be o			•					
litO:	CCF0: PCAC	omatically o Module 0	cleared by h Capture/Co	ardware ar	tor to the C d must be o	cleared by	software.	outine. This					
itO:	CCF0: PCA0 This bit is se	omatically o Module 0 It by hardwa	cleared by h Capture/Co are when a	ardware ar mpare Flag match or ca	ctor to the C nd must be o g. apture occur	cleared by s	software. he CCF inte	outine. This rrupt is					
itO:	CCF0: PCAC	omatically o 0 Module 0 t by hardwa ting this bit	cleared by h Capture/Co are when a causes the	ardware ar ompare Flag match or ca CPU to veo	ctor to the C ad must be o apture occur ctor to the C	cleared by s rs. When th CCF interrup	software. le CCF inte ot service ro	outine. This rrupt is					

SFR Definition 24.1. PCA0CN: PCA Control

