

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Not For New Designs
Core Processor	8051
Core Size	8-Bit
Speed	25MHz
Connectivity	CANbus, EBI/EMI, SMBus (2-Wire/I ² C), SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, Temp Sensor, WDT
Number of I/O	32
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	4.25K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 3.6V
Data Converters	A/D 8x8b, 13x10b; D/A 2x10b, 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/c8051f043-gqr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

C8051F040/1/2/3/4/5/6/7

NOTES:

1.9. 8-Bit Analog to Digital Converter (C8051F040/1/2/3 Only)

The C8051F040/1/2/3 devices have an on-board 8-bit SAR ADC (ADC2) with an 8-channel input multiplexer and programmable gain amplifier. This ADC features a 500 ksps maximum throughput and true 8-bit performance with an INL of ±1LSB. Eight input pins are available for measurement and can be programmed as single-ended or differential inputs. The ADC is under full control of the CIP-51 microcontroller via the Special Function Registers. The ADC2 voltage reference is selected between the analog power supply (AV+) and an external VREF pin. On C8051F040/2 devices, ADC2 has its own dedicated VREF2 input pin; on C8051F041/3 devices, ADC2 shares the VREFA input pin with the 12/10-bit ADC0. User software may put ADC2 into shutdown mode to save power.

A programmable gain amplifier follows the analog multiplexer. The gain stage can be especially useful when different ADC input channels have widely varied input voltage signals, or when it is necessary to "zoom in" on a signal with a large dc offset (in differential mode, a DAC could be used to provide the dc offset). The PGA gain can be set in software to 0.5, 1, 2, or 4.

A flexible conversion scheduling system allows ADC2 conversions to be initiated by software commands, timer overflows, or an external input signal. ADC2 conversions may also be synchronized with ADC0 software-commanded conversions. Conversion completions are indicated by a status bit and an interrupt (if enabled), and the resulting 8-bit data word is latched into an SFR upon completion.

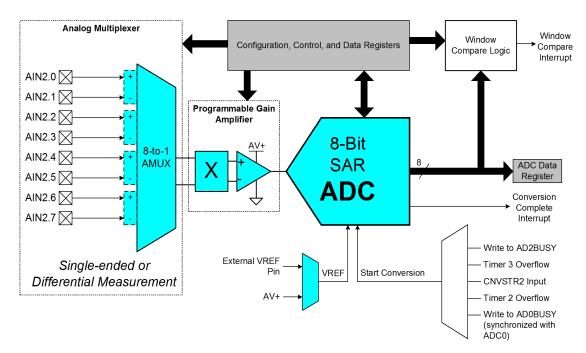
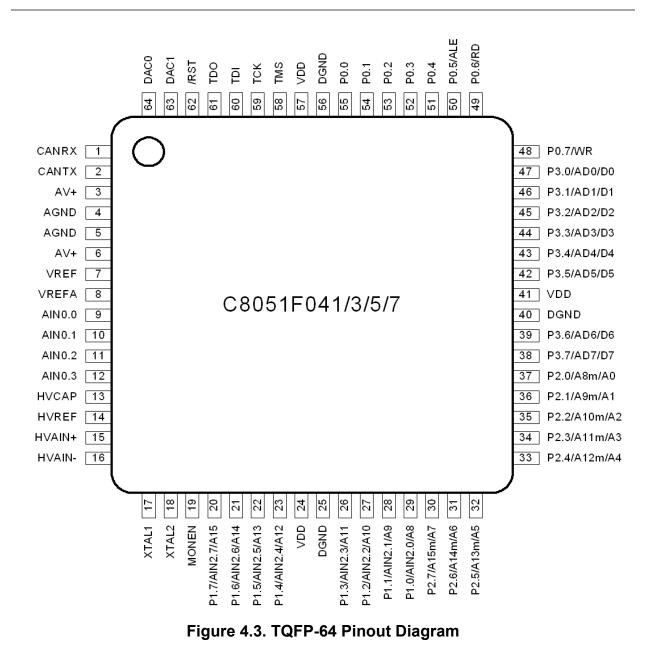
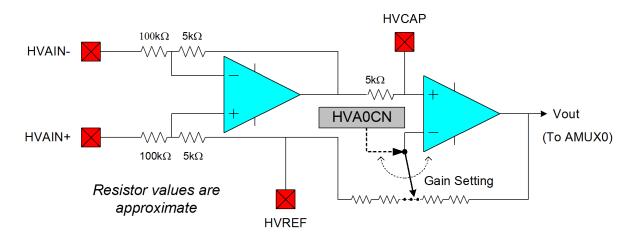



Figure 1.13. 8-Bit ADC Diagram

C8051F040/1/2/3/4/5/6/7

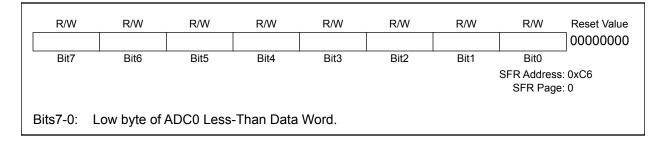

5.2. High-Voltage Difference Amplifier

The High Voltage Difference Amplifier (HVDA) can be used to measure high differential voltages up to 60 V peak-to-peak, reject high common-mode voltages up to ±60 V, and condition the signal voltage range to be suitable for input to ADC0. The input signal to the HVDA may be below AGND to –60 volts, and as high as +60 volts, making the device suitable for both single and dual supply applications. The HVDA provides a common-mode signal for the ADC via the High Voltage Reference Input (HVREF), allowing measurement of signals outside the specified ADC input range using on-chip circuitry. The HVDA has a gain of 0.05 V/V to 14 V/V. The first stage 20:1 difference amplifier has a gain of 0.05 V/V when the output amplifier is used as a unity gain buffer. When the output amplifier is set to a gain of 280 (selected using the HVGAIN bits in the High Voltage Control Register), an overall gain of 14 can be attained.

The HVDA uses four available external pins: +HVAIN, –HVAIN, HVCAP, and HVREF. HVAIN+ and HVAINserve as the differential inputs to the HVDA. HVREF should be used to provide a common mode reference for input to ADC0, and to prevent the output of the HVDA circuit from saturating. The output from the HVDA circuit as calculated by Equation 5.1 must remain within the "Output Voltage Range" specification listed in Table 5.3. The ideal value for HVREF in most applications is equal to 1/2 the supply voltage for the device. When the ADC is configured for differential measurement, the HVREF signal is applied to the AINinput of the ADC, thereby removing HVREF from the measurement. HVCAP facilitates the use of a capacitor for noise filtering in conjunction with R7 (see Figure 5.3 for R7 and other approximate resistor values). Alternatively, the HVCAP could also be used to access amplification of the first stage of the HVDA at an external pin. (See Table 5.3 on page 68 for electrical specifications of the HVDA.)

$$V_{OUT} = [(HVAIN+) - (HVAIN-)] \cdot Gain + HVREF$$

Note: The output voltage of the HVDA is selected as an input to the AIN+ input of ADC0 via its analog multiplexer (AMUX0). HVDA output voltages outside the ADC's input range will result in saturation of the ADC input. Allow for adequate settle/tracking time for proper voltage measurements.



Equation 5.1. Calculating HVDA Output Voltage to AIN+

Figure 5.3. High Voltage Difference Amplifier Functional Diagram

SFR Definition 5.12. ADC0LTL: ADC0 Less-Than Data Low Byte

Input Voltage (AD0 - AGND)	ADC Data Word		Input Voltage (AD0 - AGND)	ADC Data Word	
REF x (4095/4096)	0x0FFF		REF x (4095/4096)	0x0FFF	
		AD0WINT not affected			AD0WINT=1
	0x0201			0x0201	
REF x (512/4096)	0x0200	ADC0LTH:ADC0LTL	REF x (512/4096)	0x0200	ADC0GTH:ADC0GTL
	0x01FF	AD0WINT=1		0x01FF	ADOWINT
	0x0101	ADOWINT-T		0x0101	not affected
REF x (256/4096)	0x0100	ADC0GTH:ADC0GTL	REF x (256/4096)	0x0100	ADC0LTH:ADC0LTL
	0x00FF	AD0WINT not affected		0x00FF	> ADOWINT=1
0	0x0000		0	0x0000	J
Given: AMX0SL = 0x00 AD0LJST = '0', ADC0LTH:ADC0 ADC0GTH:ADC An ADC0 End of ADC0 Window 0 = '1') if the resul < 0x0200 and >	DLTL = 0x02 0GTL = 0x0 Conversion Compare Int ting ADC0 [00, 100. n will cause an errupt (AD0WINT	Given: AMX0SL = 0x00, AD0LJST = '0', ADC0LTH:ADC0I ADC0GTH:ADC0I An ADC0 End of ADC0 Window C = '1') if the resulti > 0x0200 or < 0x	_TL = 0x010 GTL = 0x02 Conversion ompare Inte ng ADC0 D	00, 200. will cause an errupt (AD0WINT

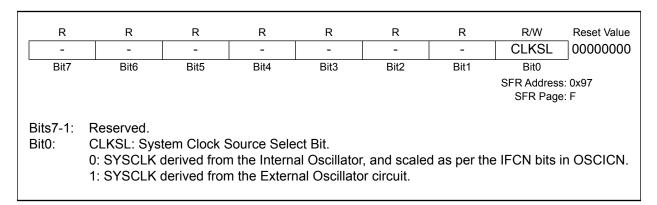
Figure 5.8. 12-Bit ADC0 Window Interrupt Example: Right Justified Single-Ended Data

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value
-	-	-	AD0VRS	AD1VRS	TEMPE	BIASE	REFBE	00000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	-
							SFR Address SFR Page	
Bits7-5:	UNUSED. R	ead = 000k	o: Write = do	on't care.				
Bit4:	AD0VRS: AD							
	0: ADC0 volt	age refere	nce from VF	REFA pin.				
	1: ADC0 volt	age refere	nce from DA	AC0 output (C8051F04	1/3 only).		
Bit3:	AD2VRS: AD	•		•	051F041/3	only).		
	0: ADC2 volt	-		•				
DIIO	1: ADC2 volt	•						
Bit2:	TEMPE: Tem	•						
	0: Internal Te 1: Internal Te	•						
Bit1:	BIASE: ADC	•			'Must ha '1'	if using AD	(C or DAC)	
Ditt.	0: Internal Bi						0 01 DAO).	
	1: Internal Bi							
Bit0:	REFBE: Inte			Enable Bit.				
	0: Internal R	eference B	uffer Off.					
	1: Internal R	oforonoo D	uffor On Int	tornal valtas	faranaa	, in driven a		

SFR Definition 10.1. REF0CN: Reference Control

Table 14.1. Internal Oscillator Electrical Characteristics

-40 to +85 °C unless otherwise specified.


Parameter	Conditions	Min	Тур	Max	Units
Calibrated Internal Oscillator Frequency		24	24.5	25	MHz
Internal Oscillator Supply Current (from V_{DD})	OSCICN.7 = 1	_	450	_	μA
External Clock Frequency		0	—	30	MHz
T _{XCH} (External Clock High Time)		15		_	ns
T _{XCL} (External Clock Low Time)		15		_	ns

14.2. External Oscillator Drive Circuit

The external oscillator circuit may drive an external crystal, ceramic resonator, capacitor, or RC network. A CMOS clock may also provide a clock input. For a crystal or ceramic resonator configuration, the crystal/ resonator must be wired across the XTAL1 and XTAL2 pins as shown in Option 1 of Figure 14.1. In RC, capacitor, or CMOS clock configuration, the clock source should be wired to the XTAL2 and/or XTAL1 pin(s) as shown in Option 2, 3, or 4 of Figure 14.1. The type of external oscillator must be selected in the OSCXCN register, and the frequency control bits (XFCN) must be selected appropriately (see SFR Definition 14.4).

14.3. System Clock Selection

The CLKSL bit in register CLKSEL selects which oscillator is used as the system clock. CLKSL must be set to '1' for the system clock to run from the external oscillator; however the external oscillator may still clock peripherals (timers, PCA) when the internal oscillator is selected as the system clock. The system clock may be switched on-the-fly between the internal and external oscillator, so long as the selected oscillator is enabled and has settled. The internal oscillator requires little start-up time and may be enabled and selected as the system clock in the same write to OSCICN. External crystals and ceramic resonators typically require a start-up time before they are settled and ready for use as the system clock. The Crystal Valid Flag (XTLVLD in register OSCXCN) is set to '1' by hardware when the external oscillator is settled. To avoid reading a false XTLVLD in crystal mode, software should delay at least 1 ms between enabling the external oscillator and checking XTLVLD. RC and C modes typically require no startup time.

SFR Definition 14.3. CLKSEL: Oscillator Clock Selection

Parameter	Description	Min	Мах	Units
T _{SYSCLK}	System Clock Period	40		ns
T _{ACS}	Address/Control Setup Time	0	3 x T _{SYSCLK}	ns
T _{ACW}	Address/Control Pulse Width	1 x T _{SYSCLK}	16 x T _{SYSCLK}	ns
T _{ACH}	Address/Control Hold Time	0	3 x T _{SYSCLK}	ns
T _{ALEH}	Address Latch Enable High Time	1 x T _{SYSCLK}	4 x T _{SYSCLK}	ns
T _{ALEL}	Address Latch Enable Low Time	1 x T _{SYSCLK}	4 x T _{SYSCLK}	ns
T _{WDS}	Write Data Setup Time	1 x T _{SYSCLK}	19 x T _{SYSCLK}	ns
T _{WDH}	Write Data Hold Time	0	3 x T _{SYSCLK}	ns
T _{RDS}	Read Data Setup Time	20		ns
T _{RDH}	Read Data Hold Time	0		ns

 Table 16.1. AC Parameters for External Memory Interface

17. Port Input/Output

The C8051F04x family of devices are fully integrated mixed-signal System on a Chip MCUs with 64 digital I/O pins (C8051F040/2/4/6) or 32 digital I/O pins (C8051F041/3/5/7), organized as 8-bit Ports. All ports are both bit- and byte-addressable through their corresponding Port Data registers. All Port pins are 5 V-tolerant, and all support configurable Open-Drain or Push-Pull output modes and weak pullups. A block diagram of the Port I/O cell is shown in Figure 17.1. Complete Electrical Specifications for the Port I/O pins are given in Table 17.1.

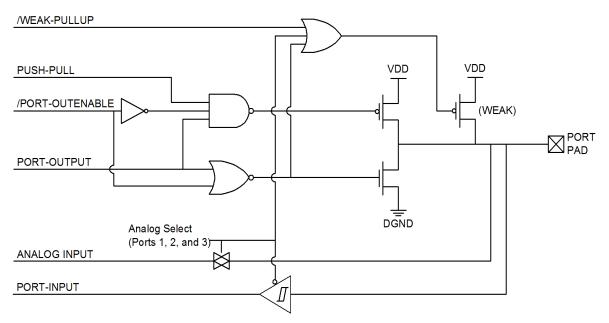
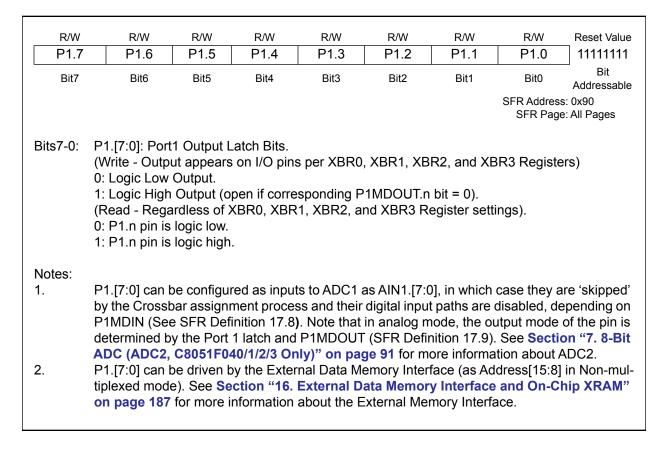


Figure 17.1. Port I/O Cell Block Diagram

Table 17.1. Port I/O DC Electrical Characteristics

 V_{DD} = 2.7 to 3.6 V, -40 to +85 °C unless otherwise specified.

Parameter	Conditions	Min	Тур	Мах	Units
Output High Voltage	I _{OH} = –3 mA, Port I/O Push-Pull	V _{DD} – 0.7	_		
(V _{OH})	I _{OH} = –10 μA, Port I/O Push-Pull	V _{DD} – 0.1		_	V
(VOH)	I _{OH} = –10 mA, Port I/O Push-Pull	—	V _{DD} – 0.8		
	I _{OL} = 8.5 mA	_	_	0.6	
Output Low Voltage	I _{OL} = 10 μA	_	—	0.1	V
(V _{OL})	I _{OL} = 25 mA	_	1.0	_	
Input High Voltage (VIH)		0.7 x V _{DD}	—	—	
Input Low Voltage (VIL)		—	—	0.3 x V _{DD}	
	DGND < Port Pin < V _{DD} , Pin Tri-state	—	—	—	
Input Leakage Current	Weak Pullup Off	_	—	± 1	μA
	Weak Pullup On		10		
Input Capacitance			5		pF

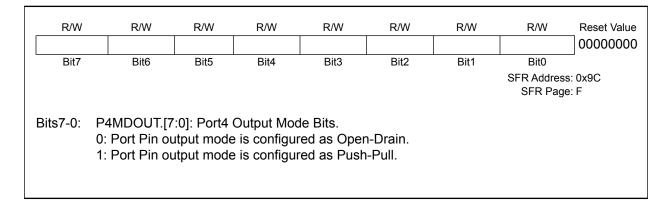


C8051F040/1/2/3/4/5/6/7

SFR Definition 17.6. P0MDOUT: Port0 Output Mode

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value			
								00000000			
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0				
							SFR Address	s: 0xA4			
							SFR Page	e: F			
Bits7-0:	 its7-0: P0MDOUT.[7:0]: Port0 Output Mode Bits. 0: Port Pin output mode is configured as Open-Drain. 1: Port Pin output mode is configured as Push-Pull. 										
Note:	SDA, SCL, ar always config	•			,	•	ART1 is in M	lode 0) are			

SFR Definition 17.7. P1: Port1 Data



R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value
P4.7	P4.6	P4.5	P4.4	P4.3	P4.2	P4.1	P4.0	11111111
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	Bit Addressable
							SFR Address SFR Page	
Bits7-0:	P4.[7:0]: Port Write - Outpu 0: Logic Low 1: Logic High 17.17. Read - Retur 0: P4.n pin is 1: P4.n pin is Note: P4.7 (/ Interface. Se page 187 for	ut appears Output. Output (C ns states o logic low. logic high WR), P4.6 e Section	on I/O pins Open-Drain i of I/O pins. (/RD), and "16. Exter i	f correspon P4.5 (ALE)	can be driv	ven by the E	External Dat	a Memory

SFR Definition 17.16. P4: Port4 Data

SFR Definition 17.17. P4MDOUT: Port4 Output Mode

18.1.1. CAN Controller Timing

The CAN controller's system clock (f_{sys}) is derived from the CIP-51 system clock (SYSCLK). Note that an external oscillator (such as a quartz crystal) is typically required due to the high accuracy requirements for CAN communication. Refer to Section "4.10.4 Oscillator Tolerance Range" in the Bosch CAN User's Guide for further information regarding this topic.

18.1.2. Example Timing Calculation for 1 Mbit/Sec Communication

This example shows how to configure the CAN contoller timing parameters for a 1 Mbit/Sec bit rate. Table 18.1 shows timing-related system parameters needed for the calculation.

Parameter	Value	Description
CIP-51 system clock (SYSCLK)	22.1184 MHz	External oscillator in 'Crystal Oscillator Mode'. A 22.1184 MHz quartz crystal is connected between XTAL1 and XTAL2.
CAN Controller system clock (f _{sys})	22.1184 MHz	Derived from SYSCLK.
CAN clock period (t _{sys})	45.211 ns	Derived from 1/f _{sys} .
CAN time quantum (t _q)	45.211 ns	Derived from t _{sys} x BRP ^{1,2}
CAN bus length	10 m	5 ns/m signal delay between CAN nodes.
Propagation delay time ³	400 ns	2 x (transceiver loop delay + bus line delay)

Table 18.1. Background System Information

Notes:

1. The CAN time quantum (t_q) is the smallest unit of time recognized by the CAN contoller. Bit timing parameters are often specified in integer multiples of the time quantum.

2. The Baud Rate Prescaler (BRP) is defined as the value of the BRP Extension Register plus 1. The BRP Extension Register has a reset value of 0x0000; the Baud Rate Prescaler has a reset value of 1.

3. Based on an ISO-11898 compliant transceiver. CAN does not specify a physical layer.

Each bit transmitted on a CAN network has 4 segments (Sync_Seg, Prop_Seg, Phase_Seg1, and Phase_Seg2), as shown in Figure 18.3. The sum of these segments determines the CAN bit time (1/bit rate). In this example, the desired bit rate is 1 Mbit/sec; therefore, the desired bit time is 1000 ns.

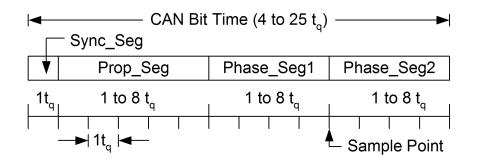


Figure 18.3. Four Segments of a CAN Bit Time

Mode	Status Code	SMBus State	Typical Action		
Ъъ	0x08	START condition transmitted.	Load SMB0DAT with Slave Address + R/W. Clear STA.		
MT MR	0x10	Repeated START condition transmitted.	Load SMB0DAT with Slave Address + R/W. Clear STA.		
	0x18	Slave Address + W transmitted. ACK received.	Load SMB0DAT with data to be transmit- ted.		
mitter	0x20	Slave Address + W transmitted. NACK received.	Acknowledge poll to retry. Set STO + STA.		
Master Transmitter	0x28	Data byte transmitted. ACK received.	 Load SMB0DAT with next byte, OR Set STO, OR Clear STO then set STA for repeated START. 		
Mas	0x30	Data byte transmitted. NACK received.	1) Retry transfer OR 2) Set STO.		
	0x38	Arbitration Lost.	Save current data.		
eiver	0x40 Slave Address + R transmitted. ACK received		If only receiving one byte, clear AA (send NACK after received byte). Wait for received data.		
r Rec	0x48	Slave Address + R transmitted. NACK received.	Acknowledge poll to retry. Set STO + STA.		
Master Receiver	0x50	Data byte received. ACK transmitted.	Read SMB0DAT. Wait for next byte. If next byte is last byte, clear AA.		
	0x58	Data byte received. NACK transmitted.	Set STO.		

Table 19.1. SMB0STA Status Codes and States

Mode	Status Code	SMBus State	Typical Action		
	0x60	Own slave address + W received. ACK trans- mitted.	Wait for data.		
	0x68	Arbitration lost in sending SLA + R/W as mas- ter. Own address + W received. ACK transmit- ted.	Save current data for retry when bus is free. Wait for data.		
<u> </u>	0x70	General call address received. ACK transmit- ted.	Wait for data.		
Slave Receiver	0x78	Arbitration lost in sending SLA + R/W as mas- ter. General call address received. ACK trans- mitted.	Save current data for retry when bus is free.		
Slave	0x80 Data byte received. ACK transmitted. 0x88 Data byte received. NACK transmitted.		Read SMB0DAT. Wait for next byte or STOP.		
0,			Set STO to reset SMBus.		
	0x90	Data byte received after general call address. ACK transmitted.	Read SMB0DAT. Wait for next byte or STOP.		
	0x98	Data byte received after general call address. NACK transmitted.	Set STO to reset SMBus.		
	0xA0	STOP or repeated START received.	No action necessary.		
_	0xA8	Own address + R received. ACK transmitted.	Load SMB0DAT with data to transmit.		
Slave Transmitter	0xB0	Arbitration lost in transmitting SLA + R/W as master. Own address + R received. ACK transmitted.	Save current data for retry when bus is free. Load SMB0DAT with data to transmit.		
Tra	0xB8	Data byte transmitted. ACK received.	Load SMB0DAT with data to transmit.		
ave	0xC0	Data byte transmitted. NACK received.	Wait for STOP.		
S	0xC8	Last data byte transmitted (AA=0). ACK received.	Set STO to reset SMBus.		
Slave	0xD0	SCL Clock High Timer per SMB0CR timed out	Set STO to reset SMBus.		
_	0x00	Bus Error (illegal START or STOP)	Set STO to reset SMBus.		
A	0xF8	Idle	State does not set SI.		

Table 19.1. SMB0STA Status Codes and States (Continued)

R/W	R/W	R/W	R/W	R/W	R/W	R	R/W	Reset Value
SPIF	WCOL	MODF	RXOVRN	NSSMD1	NSSMD0	TXBMT	SPIEN	00000110
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	Bit Addressable
							SFR Address SFR Page	: 0xF8
Bit 7:	SPIF: SPI0 I This bit is se setting this b automatically	t to logic 1 bit causes th	by hardwar ne CPU to v	ector to the	SPI0 interr	upt service		
Bit 6:	WCOL: Write This bit is se the SPI0 dat cleared by se	e Collision t to logic 1 a register v	Flag. by hardwar	e (and gene	erates a SPI	0 interrupt)		
Bit 5:	MODF: Mod This bit is se collision is de matically cle	e Fault Flag t to logic 1 etected (NS	by hardwar SS is low, M	STEN = 1,	and NSSME	D[1:0] = 01)		
Bit 4:	RXOVRN: R This bit is se buffer still ho is shifted into must be clear	eceive Ove t to logic 1 olds unread o the SPI0 ared by soft	errun Flag (S by hardwar data from a shift registe ware.	Slave Mode e (and gene a previous ti r. This bit is	only). erates a SPI ransfer and	0 interrupt) the last bit	of the curre	nt transfer
Bits 3-2:	NSSMD1-NS Selects betw (See Section Slave Mode 00: 3-Wire S 01: 4-Wire S 1x: 4-Wire S assume the	veen the fol n "20.2. SF Operation lave or 3-w lave or Mul ingle-Maste	lowing NSS PIO Master M " on page tire Master I Iti-Master M er Mode. NS	operation (Mode Opera 259). Mode. NSS ode (Defau	ation" on pa signal is no lt). NSS is a	t routed to Ilways an ir	a port pin. put to the c	levice.
Bit 1:	TXBMT: Tran This bit will b data in the tr indicating that	be set to log ansmit buff at it is safe	gic 0 when r er is transfe	erred to the	SPI shift reg	gister, this b		
Bit 0:	SPIEN: SPIC This bit enab 0: SPI disab 1: SPI enabl	oles/disable led.	es the SPI.					

SFR Definition 20.2. SPI0CN: SPI0 Control

22.2. Operational Modes

UART1 provides standard asynchronous, full duplex communication. The UART mode (8-bit or 9-bit) is selected by the S1MODE bit (SCON1.7). Typical UART connection options are shown below.

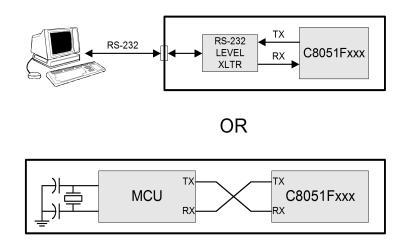


Figure 22.3. UART Interconnect Diagram

22.2.1. 8-Bit UART

8-Bit UART mode uses a total of 10 bits per data byte: one start bit, eight data bits (LSB first), and one stop bit. Data are transmitted LSB first from the TX1 pin and received at the RX1 pin. On receive, the eight data bits are stored in SBUF1 and the stop bit goes into RB81 (SCON1.2).

Data transmission begins when software writes a data byte to the SBUF1 register. The TI1 Transmit Interrupt Flag (SCON1.1) is set at the end of the transmission (the beginning of the stop-bit time). Data reception can begin any time after the REN1 Receive Enable bit (SCON1.4) is set to logic 1. After the stop bit is received, the data byte will be loaded into the SBUF1 receive register if the following conditions are met: RI1 must be logic 0, and if MCE1 is logic 1, the stop bit must be logic 1. In the event of a receive data overrun, the first received 8 bits are latched into the SBUF1 receive register and the following overrun data bits are lost.

If these conditions are met, the eight bits of data is stored in SBUF1, the stop bit is stored in RB81 and the RI1 flag is set. If these conditions are not met, SBUF1 and RB81 will not be loaded and the RI1 flag will not be set. An interrupt will occur if enabled when either TI1 or RI1 is set.

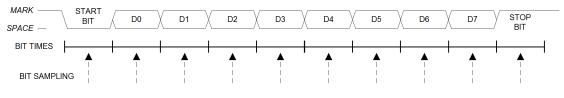


Figure 22.4. 8-Bit UART Timing Diagram

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value			
S1MODE	Ξ -	MCE1	REN1	TB81	RB81	TI1	RI1	0100000			
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	Bit Addressable			
							SFR Addres SFR Pag				
Bit7:	S1MODE: S This bit sele 0: Mode 0: 8 1: Mode 1: 9	ects the UAF 8-bit UART	RT1 Operati with Variable	on Mode. e Baud Rat							
Bit6:	UNUSED. F										
Bit5:	MCE1: Multiprocessor Communication Enable.										
	The function of this bit is dependent on the Serial Port 0 Operation Mode.										
	Mode 0: Checks for valid stop bit.										
	0: Logic level of stop bit is ignored.										
	1: RI1 will only be activated if stop bit is logic level 1. Mode 1: Multiprocessor Communications Enable.										
	0: Logic level of ninth bit is ignored.										
	1: RI1 is set and an interrupt is generated only when the ninth bit is logic 1.										
Bit4:	REN1: Receive Enable.										
	This bit enables/disables the UART receiver.										
	0: UART1 reception disabled.										
	1: UART1 re	•									
Bit3:	TB81: Ninth Transmission Bit.										
	The logic level of this bit will be assigned to the ninth transmission bit in 9-bit UART Mode. It										
D'10	is not used in 8-bit UART Mode. Set or cleared by software as required.										
Bit2:	RB81: Ninth					:					
	RB81 is assigned the value of the STOP bit in Mode 0; it is assigned the value of the 9th data bit in Mode 1.										
Bit1:											
Dit i.	TI1: Transmit Interrupt Flag. Set by hardware when a byte of data has been transmitted by UART1 (after the 8th bit in 8- bit UART Mode, or at the beginning of the STOP bit in 9-bit UART Mode). When the UART1 interrupt is enabled, setting this bit causes the CPU to vector to the UART1 interrupt service routine. This bit must be cleared manually by software.										
Bit0:	RI1: Receiv	•	•								
		g time). Whe	n the UAR1	1 interrupt	s been recei is enabled, routine. This	setting this	bit to '1' c	auses the			

SFR Definition 22.1. SCON1: Serial Port 1 Control

Oscillator									
	Frequency: 18.432 MHz								
Target Baud Rate (bps)	Baud Rate % Error	Oscillator Divide Factor	Timer Clock Source	SCA1-SCA0 (pre-scale select) [*]	T1M*	Timer 1 Reload Value (hex)			
230400	0.00%	80	SYSCLK	XX	1	0xD8			
115200	0.00%	160	SYSCLK	XX	1	0xB0			
57600	0.00%	320	SYSCLK	XX	1	0x60			
28800	0.00%	640	SYSCLK / 4	01	0	0xB0			
14400	0.00%	1280	SYSCLK/4	01	0	0x60			
9600	0.00%	1920	SYSCLK / 12	00	0	0xB0			
2400	0.00%	7680	SYSCLK / 48	10	0	0xB0			
1200	0.00%	15360	SYSCLK / 48	10	0	0x60			
230400	0.00%	80	EXTCLK / 8	11	0	0xFB			
115200	0.00%	160	EXTCLK / 8	11	0	0xF6			
57600	0.00%	320	EXTCLK / 8	11	0	0xEC			
28800	0.00%	640	EXTCLK / 8	11	0	0xD8			
14400	0.00%	1280	EXTCLK / 8	11	0	0xB0			
9600	0.00%	1920	EXTCLK / 8	11	0	0x88			
X = Dop't care									

Table 22.4. Timer Settings for Standard Baud Rates Using an External 18.432 MHz Oscillator

X = Don't care

*Note: SCA1-SCA0 and T1M bit definitions can be found in Section 23.1.

Oscillator									
Frequency: 3.6864 MHz									
 Target Baud Rate (bps)	Baud Rate % Error	Oscillator Divide Factor	Timer Clock Source	SCA1-SCA0 (pre-scale select) [*]	T1M [*]	Timer 1 Reload Value (hex)			
230400	0.00%	16	SYSCLK	XX	1	0xF8			
115200	0.00%	32	SYSCLK	XX	1	0xF0			
57600	0.00%	64	SYSCLK	XX	1	0xE0			
28800	0.00%	128	SYSCLK	XX	1	0xC0			
14400	0.00%	256	SYSCLK	XX	1	0x80			
9600	0.00%	384	SYSCLK	XX	1	0x40			
2400	0.00%	1536	SYSCLK / 12	00	0	0xC0			
1200	0.00%	3072	SYSCLK / 12	00	0	0x80			
230400	0.00%	16	EXTCLK/8	11	0	0xFF			
115200	0.00%	32	EXTCLK / 8	11	0	0xFE			
57600	0.00%	64	EXTCLK / 8	11	0	0xFC			
28800	0.00%	128	EXTCLK / 8	11	0	0xF8			
14400	0.00%	256	EXTCLK / 8	11	0	0xF0			
9600	0.00%	384	EXTCLK / 8	11	0	0xE8			
	V - Don't cor								

Table 22.6. Timer Settings for Standard Baud Rates Using an External 3.6864 MHzOscillator

X = Don't care

*Note: SCA1-SCA0 and T1M bit definitions can be found in Section 23.1.

Rev. 1.6

DOCUMENT CHANGE LIST

Revision 1.5 to Revision 1.6

Updated Port Input/Output Chapter (17.1.5): P2.0 and P2.1 are not skipped when configured to Analog Input mode.

Revision 1.4 to Revision 1.5

- High Voltage Difference Amplifier Electrical Characteristics Tables: Corrected Common Mode Rejection Ratio MIN and TYP specifications.
- Flash Memory Chapter: Corrected text reference to "C8051F12x and C8051F13x"; Changed to "C8051F04x".
- 10 and 12-bit ADC0 Track and Conversion Example Timing Figures: Corrected bit name text from "AD0STM" to "AD0CM".
- ADC0 Chapters (10 and 12-bit): Updated analog multiplexer figure to represent correct connection of HVREF to AIN- in differential HVDA configuration.
- ADC0 Chapters (10 and 12-bit): Updated HVDA section text to clarify usage of HVREF pin.
- ADC0 Chapters (10 and 12-bit): Added differential HVDA options to AMUX Selection Chart Table.
- Product Selection Guide Table: Added RoHS-compliant ordering information.
- Global DC Electrical Characteristics Table: Corrected units for "Analog Supply Current with Analog Subsystems Inactive" to "µA".
- Pin Definitions Table: Corrected HVAIN- pin description to "High Voltage Difference Amplifier Negative Signal Input."
- Interrupt Summary Table: Added "SFRPAGE" column and SFRPAGE value for each interrupt source.
- Interrupt Summary Table: Corrected "T4CON" to "TMR4CN".
- Interrupt Summary Table: Corrected "T2CON" to "TMR2CN".
- Interrupt Summary Table: Corrected "ADWINT" to "AD0WINT".
- SFR Memory Map Table: Corrected SFR Page for ADC2CN from page 1 to page 2.
- Oscillators Chapter: Corrected steps for enabling external crystal oscillator.
- PCA0CPHn SFR Definition: Corrected SFR address of PCA0CPH1 from "0xFD" to "0xFE".

