
Silicon Labs - C8051F044-GQR Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Not For New Designs

Core Processor 8051

Core Size 8-Bit

Speed 25MHz

Connectivity CANbus, EBI/EMI, SMBus (2-Wire/I²C), SPI, UART/USART

Peripherals Brown-out Detect/Reset, POR, PWM, Temp Sensor, WDT

Number of I/O 64

Program Memory Size 64KB (64K x 8)

Program Memory Type FLASH

EEPROM Size -

RAM Size 4.25K x 8

Voltage - Supply (Vcc/Vdd) 2.7V ~ 3.6V

Data Converters A/D 13x10b

Oscillator Type Internal

Operating Temperature -40°C ~ 85°C (TA)

Mounting Type Surface Mount

Package / Case 100-TQFP

Supplier Device Package 100-TQFP (14x14)

Purchase URL https://www.e-xfl.com/product-detail/silicon-labs/c8051f044-gqr

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/c8051f044-gqr-4415581
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

C8051F040/1/2/3/4/5/6/7

1.4. Programmable Digital I/O and Crossbar
The standard 8051 Ports (0, 1, 2, and 3) are available on the MCUs. The C8051F040/2/4/6 have 4 addi-
tional 8-bit ports (4, 5, 6, and 7) for a total of 64 general-purpose I/O Ports. The Ports behave like the stan-
dard 8051 with a few enhancements.

Each port pin can be configured as either a push-pull or open-drain output. Also, the "weak pullups" which
are normally fixed on an 8051 can be globally disabled, providing additional power saving capabilities for
low-power applications.

Perhaps the most unique enhancement is the Digital Crossbar. This is essentially a large digital switching
network that allows mapping of internal digital system resources to Port I/O pins on P0, P1, P2, and P3
(See Figure 1.9). Unlike microcontrollers with standard multiplexed digital I/O ports, all combinations of
functions are supported with all package options offered.

The on-chip counter/timers, serial buses, HW interrupts, ADC Start of Conversion input, comparator out-
puts, and other digital signals in the controller can be configured to appear on the Port I/O pins specified in
the Crossbar Control registers. This allows the user to select the exact mix of general purpose Port I/O and
digital resources needed for the particular application.

Figure 1.9. Digital Crossbar Diagram
Rev. 1.6 29

C8051F040/1/2/3/4/5/6/7

2. Absolute Maximum Ratings

Table 2.1. Absolute Maximum Ratings*

*Note: Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the device.
This is a stress rating only and functional operation of the devices at those or any other conditions above those
indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for
extended periods may affect device reliability.

Due to special I/O design requirements of the High Voltage Difference Amplifier, undue electrical over-voltage
stress (i.e., ESD) experienced by these pads may result in impedance degradation of these inputs (HVAIN+
and HVAIN–). For this reason, care should be taken to ensure proper handling and use as typically required to
prevent ESD damage to electrostatically sensitive CMOS devices (e.g., static-free workstations, use of
grounding straps, over-voltage protection in end-applications, etc.)

Parameter Conditions Min Typ Max Units
Ambient temperature under bias –55 — 125 °C
Storage Temperature –65 — 150 °C
Voltage on any Pin (except VDD, Port I/O, and JTAG
pins) with respect to DGND

–0.3 — VDD +
0.3

V

Voltage on any Port I/O Pin, /RST, and JTAG pins with
respect to DGND

–0.3 — 5.8 V

Voltage on VDD with respect to DGND –0.3 — 4.2 V

Maximum Total current through VDD, AV+, DGND,
and AGND

— — 800 mA

Maximum output current sunk by any Port pin — — 100 mA
Maximum output current sunk by any other I/O pin — — 50 mA
Maximum output current sourced by any Port pin — — 100 mA
Maximum output current sourced by any other I/O pin — — 50 mA
Rev. 1.6 35

C8051F040/1/2/3/4/5/6/7
Table 5.1. AMUX Selection Chart (AMX0AD3–0 and AMX0CF3–0 bits)
AMX0AD3-0

0000 0001 0010 0011 0100 0101 0110 0111 1xxx

A
M

X0
C

F
B

its
 3

-0

0000 AIN0.0 AIN0.1 AIN0.2 AIN0.3 HVDA AGND P3EVEN P3ODD TEMP
SENSOR

0001 +(AIN0.0)
-(AIN0.1) AIN0.2 AIN0.3 HVDA AGND P3EVEN P3ODD TEMP

SENSOR

0010 AIN0.0 AIN0.1 +(AIN0.2)
-(AIN0.3) HVDA AGND P3EVEN P3ODD TEMP

SENSOR

0011 +(AIN0.0)
-(AIN0.1)

+(AIN0.2)
-(AIN0.3) HVDA AGND P3EVEN P3ODD TEMP

SENSOR

0100 AIN0.0 AIN0.1 AIN0.2 AIN0.3 +(HVDA)
-(HVREF) P3EVEN P3ODD TEMP

SENSOR

0101 +(AIN0.0)
-(AIN0.1) AIN0.2 AIN0.3 +(HVDA)

-(HVREF) P3EVEN P3ODD TEMP
SENSOR

0110 AIN0.0 AIN0.1 +(AIN0.2)
-(AIN0.3)

+(HVDA)
-(HVREF) P3EVEN P3ODD TEMP

SENSOR

0111 +(AIN0.0)
-(AIN0.1)

+(AIN0.2)
-(AIN0.3)

+(HVDA)
-(HVREF) P3EVEN P3ODD TEMP

SENSOR

1000 AIN0.0 AIN0.1 AIN0.2 AIN0.3 HVDA AGND +P3EVEN
-P3ODD

TEMP
SENSOR

1001 +(AIN0.0)
-(AIN0.1) AIN0.2 AIN0.3 HVDA AGND +P3EVEN

-P3ODD
TEMP

SENSOR

1010 AIN0.0 AIN0.1 +(AIN0.2)
-(AIN0.3) HVDA AGND +P3EVEN

-P3ODD
TEMP

SENSOR

1011 +(AIN0.0)
-(AIN0.1)

+(AIN0.2)
-(AIN0.3) HVDA AGND +P3EVEN

-P3ODD
TEMP

SENSOR

1100 AIN0.0 AIN0.1 AIN0.2 AIN0.3 +(HVDA)
-(HVREF)

+P3EVEN
-P3ODD)

TEMP
SENSOR

1101 +(AIN0.0)
-(AIN0.1) AIN0.2 AIN0.3 +(HVDA)

-(HVREF)
+P3EVEN
-P3ODD

TEMP
SENSOR

1110 AIN0.0 AIN0.1 +(AIN0.2)
-(AIN0.3)

+(HVDA)
-(HVREF)

+P3EVEN
-P3ODD

TEMP
SENSOR

1111 +(AIN0.0)
-(AIN0.1)

+(AIN0.2)
-(AIN0.3)

+(HVDA)
-(HVREF)

+P3EVEN
-P3ODD

TEMP
SENSOR

Note: “P3EVEN” denotes even numbered and “P3ODD” odd numbered Port 3 pins selected in the AMX0PRT
register.
50 Rev. 1.6

C8051F040/1/2/3/4/5/6/7
Given:
AMX0SL = 0x00, AMX0CF = 0x00, ADLJST = 1,
ADC0LTH:ADC0LTL = 0x8000,
ADC0GTH:ADC0GTL = 0x4000.
An ADC End of Conversion will cause an ADC
Window Compare Interrupt (ADWINT=1) if the
resulting ADC Data Word is < 0x8000 and
> 0x4000.
Given:

AMX0SL = 0x00, AMX0CF = 0x00, ADLJST = 1,
ADC0LTH:ADC0LTL = 0x4000,
ADC0GTH:ADC0GTL = 0x8000.
An ADC End of Conversion will cause an ADC
Window Compare Interrupt (ADWINT=1) if the
resulting ADC Data Word is < 0x4000 or
> 0x8000.

Figure 6.10. 10-Bit ADC0 Window Interrupt Example:
Left Justified Single-Ended Data
Rev. 1.6 87

C8051F040/1/2/3/4/5/6/7
Table 7.2. ADC2 Electrical Characteristics
VDD = 3.0 V, AV+ = 3.0 V, VREF2 = 2.40 V (REFBE = 0), PGA2 = 1, –40 to +85 °C unless otherwise specified.

Parameter Conditions Min Typ Max Units
DC Accuracy
Resolution
Integral Nonlinearity
Differential Nonlinearity Guaranteed Monotonic
Offset Error
Full Scale Error Differential mode
Dynamic Performance (10 kHz sine-wave input, 0 to 1 dB below Full Scale, 500 ksps)
Signal-to-Noise Plus Distortion

Total Harmonic Distortion Up to the 5th harmonic
Spurious-Free Dynamic Range
Conversion Rate
SAR Conversion Clock
Frequency
Conversion Time in SAR Clocks
Track/Hold Acquisition Time
Throughput Rate
Analog Inputs
Input Voltage Range Single-ended
Common Mode Range
Input Capacitance
Power Specifications
Power Supply Current
(AV+ supplied to ADC2) Operating Mode, 500 ksps

Power Supply Rejection

8 bits
— — ±1 LSB
— — ±1 LSB
— 0.5±0.3 — LSB
— –1±0.2 — LSB

45 47 — dB
— –51 — dB

— 52 — dB

— — 6 MHz

8 — — clocks
300 — — ns
— — 500 ksps

0 — VREF V
0 — AV+ V
— 5 — pF

— 420 900 μA

— ±0.3 — mV/V
Rev. 1.6 103

C8051F040/1/2/3/4/5/6/7

MOV direct, #data Move immediate to direct byte 3 3
MOV @Ri, A Move A to indirect RAM 1 2
MOV @Ri, direct Move direct byte to indirect RAM 2 2
MOV @Ri, #data Move immediate to indirect RAM 2 2
MOV DPTR, #data16 Load DPTR with 16-bit constant 3 3
MOVC A, @A+DPTR Move code byte relative DPTR to A 1 3
MOVC A, @A+PC Move code byte relative PC to A 1 3
MOVX A, @Ri Move external data (8-bit address) to A 1 3
MOVX @Ri, A Move A to external data (8-bit address) 1 3
MOVX A, @DPTR Move external data (16-bit address) to A 1 3
MOVX @DPTR, A Move A to external data (16-bit address) 1 3
PUSH direct Push direct byte onto stack 2 2
POP direct Pop direct byte from stack 2 2
XCH A, Rn Exchange Register with A 1 1
XCH A, direct Exchange direct byte with A 2 2
XCH A, @Ri Exchange indirect RAM with A 1 2
XCHD A, @Ri Exchange low nibble of indirect RAM with A 1 2

Boolean Manipulation
CLR C Clear Carry 1 1
CLR bit Clear direct bit 2 2
SETB C Set Carry 1 1
SETB bit Set direct bit 2 2
CPL C Complement Carry 1 1
CPL bit Complement direct bit 2 2
ANL C, bit AND direct bit to Carry 2 2
ANL C, /bit AND complement of direct bit to Carry 2 2
ORL C, bit OR direct bit to carry 2 2
ORL C, /bit OR complement of direct bit to Carry 2 2
MOV C, bit Move direct bit to Carry 2 2
MOV bit, C Move Carry to direct bit 2 2
JC rel Jump if Carry is set 2 2/3
JNC rel Jump if Carry is not set 2 2/3
JB bit, rel Jump if direct bit is set 3 3/4
JNB bit, rel Jump if direct bit is not set 3 3/4
JBC bit, rel Jump if direct bit is set and clear bit 3 3/4

Program Branching
ACALL addr11 Absolute subroutine call 2 3
LCALL addr16 Long subroutine call 3 4
RET Return from subroutine 1 5
RETI Return from interrupt 1 5
AJMP addr11 Absolute jump 2 3
LJMP addr16 Long jump 3 4
SJMP rel Short jump (relative address) 2 3
JMP @A+DPTR Jump indirect relative to DPTR 1 3
JZ rel Jump if A equals zero 2 2/3

Table 12.1. CIP-51 Instruction Set Summary (Continued)

Mnemonic Description Bytes Clock
Cycles
Rev. 1.6 131

C8051F040/1/2/3/4/5/6/7

SFR Definition 12.12. IP: Interrupt Priority

Bits7-6: UNUSED. Read = 11b, Write = don't care.
Bit5: PT2: Timer 2 Interrupt Priority Control.

This bit sets the priority of the Timer 2 interrupt.
0: Timer 2 interrupt priority set to low priority level.
1: Timer 2 interrupts set to high priority level.

Bit4: PS0: UART0 Interrupt Priority Control.
This bit sets the priority of the UART0 interrupt.
0: UART0 interrupt priority set to low priority level.
1: UART0 interrupts set to high priority level.

Bit3: PT1: Timer 1 Interrupt Priority Control.
This bit sets the priority of the Timer 1 interrupt.
0: Timer 1 interrupt priority set to low priority level.
1: Timer 1 interrupts set to high priority level.

Bit2: PX1: External Interrupt 1 Priority Control.
This bit sets the priority of the External Interrupt 1 interrupt.
0: External Interrupt 1 priority set to low priority level.
1: External Interrupt 1 set to high priority level.

Bit1: PT0: Timer 0 Interrupt Priority Control.
This bit sets the priority of the Timer 0 interrupt.
0: Timer 0 interrupt priority set to low priority level.
1: Timer 0 interrupt set to high priority level.

Bit0: PX0: External Interrupt 0 Priority Control.
This bit sets the priority of the External Interrupt 0 interrupt.
0: External Interrupt 0 priority set to low priority level.
1: External Interrupt 0 set to high priority level.

R/W R/W R/W R/W R/W R/W R/W R/W Reset Value

- - PT2 PS0 PT1 PX1 PT0 PX0 11000000

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 Bit
Addressable

SFR Address:
SFR Page:

0xB8
All Pages
158 Rev. 1.6

C8051F040/1/2/3/4/5/6/7

14.4. External Crystal Example



If a crystal or ceramic resonator is used as an external oscillator source for the MCU, the circuit should be
configured as shown in Figure 14.1, Option 1. The External Oscillator Frequency Control value (XFCN)
should be chosen from the Crystal column of the table in SFR Definition 14.4 (OSCXCN register). For
example, an 11.0592 MHz crystal requires an XFCN setting of 111b.

When the crystal oscillator is enabled, the oscillator amplitude detection circuit requires a settle time to
achieve proper bias. Introducing a delay of at least 1 ms between enabling the oscillator and checking the
XTLVLD bit will prevent a premature switch to the external oscillator as the system clock. Switching to the
external oscillator before the crystal oscillator has stabilized can result in unpredictable behavior. The rec-
ommended procedure is:

Step 1. Enable the external oscillator in crystal oscillator mode.
Step 2. Wait at least 1 ms.
Step 3. Poll for XTLVLD => '1'.
Step 4. Switch the system clock to the external oscillator.

Note: Tuning-fork crystals may require additional settling time before XTLVLD returns a valid result.

The capacitors shown in the external crystal configuration provide the load capacitance required by the
crystal for correct oscillation. These capacitors are "in series" as seen by the crystal and "in parallel" with
the stray capacitance of the XTAL1 and XTAL2 pins.

Note: The load capacitance depends upon the crystal and the manufacturer. Please refer to the crystal
data sheet when completing these calculations.

For example, a tuning-fork crystal of 32.768 kHz with a recommended load capacitance of 12.5 pF should
use the configuration shown in Figure 14.1, Option 1. The total value of the capacitors and the stray capac-
itance of the XTAL pins should equal 25 pF. With a stray capacitance of 3 pF per pin, the 22 pF capacitors
yield an equivalent capacitance of 12.5 pF across the crystal, as shown in Figure 14.2.

Figure 14.2. 32.768 kHz External Crystal Example

Important Note on External Crystals: Crystal oscillator circuits are quite sensitive to PCB layout. The
crystal should be placed as close as possible to the XTAL pins on the device. The traces should be as
short as possible and shielded with ground plane from any other traces which could introduce noise or
interference.
Rev. 1.6 177

C8051F040/1/2/3/4/5/6/7
Table 15.1. Flash Electrical Characteristics
VDD = 2.7 to 3.6 V; Ta = –40 to +85 °C

Flash Size1 C8051F040/1/2/3/4/5
C8051F046/7

Endurance
Erase Cycle Time
Write Cycle Time
Notes:

1. Includes 128-byte scratchpad.
2. 512 bytes at locations 0xFE00 to 0xFFFF are reserved.

3/4/5) and all locations above 0x8000 (C8051F046/7) are reserved. Flash writes and erases targeting the
reserved area should be avoided.

15.2. Non-volatile Data Storage
The Flash memory can be used for non-volatile data storage as well as program code. This allows data
such as calibration coefficients to be calculated and stored at run time. Data is written using the MOVX
write instruction (as described in the previous section) and read using the MOVC instruction.

An additional 128-byte sector of Flash memory is included for non-volatile data storage. Its smaller sector
size makes it particularly well suited as general purpose, non-volatile scratchpad memory. Even though
Flash memory can be written a single byte at a time, an entire sector must be erased first. In order to
change a single byte of a multi-byte data set, the data must be moved to temporary storage. The 128-byte
sector-size facilitates updating data without wasting program memory or RAM space. The 128-byte sector
is double-mapped over the 64k byte Flash memory; its address ranges from 0x00 to 0x7F (see
Figure 15.1). To access this 128-byte sector, the SFLE bit in PSCTL must be set to logic 1. Code execution
from this 128-byte scratchpad sector is not permitted.

15.3. Security Options
The CIP-51 provides security options to protect the Flash memory from inadvertent modification by soft-
ware as well as prevent the viewing of proprietary program code and constants. The Program Store Write
Enable (PSCTL.0) and the Program Store Erase Enable (PSCTL.1) bits protect the Flash memory from
accidental modification by software. These bits must be explicitly set to logic 1 before software can write or
erase the Flash memory. Additional security features prevent proprietary program code and data constants
from being read or altered across the JTAG interface or by software running on the system controller.

A set of security lock bytes stored at 0xFDFE and 0xFDFF (C8051F040/1/2/3/4/5) and at 0x7FFE and
0x7FFF (C8051F046/7) protect the Flash program memory from being read or altered across the JTAG
interface. Each bit in a security lock-byte protects one 8k-byte block of memory. Clearing a bit to logic 0 in
a Read Lock Byte prevents the corresponding block of Flash memory from being read across the JTAG
interface. Clearing a bit in the Write/Erase Lock Byte protects the block from JTAG erasures and/or writes.

The Read Lock Byte is at locations 0xFDFF (C8051F040/1/2/3/4/5) and 0x7FFF (C8051F046/7). The
Write/Erase Lock Byte is located at 0xFDFE (C8051F040/1/2/3/4/5) and 0x7FFE (C8051F046/7).
Figure 15.1 shows the location and bit definitions of the security bytes. The 512-byte sector containing
the lock bytes can be written to, but not erased by software. An attempted read of a read-locked byte
returns undefined data. Debugging code in a read-locked sector is not possible through the JTAG inter-
face.

Parameter Conditions Min Typ Max Units
656642

32896
Bytes

20 k 100 k — Erase/Write
10 12 14 ms
40 50 60 μs
180 Rev. 1.6

C8051F040/1/2/3/4/5/6/7

SFR Definition 15.3. PSCTL: Program Store Read/Write Control

Bits7-3: UNUSED. Read = 00000b, Write = don't care.
Bit2: SFLE: Scratchpad Flash Memory Access Enable

When this bit is set, Flash reads and writes from user software are directed to the 128-byte
Scratchpad Flash sector. When SFLE is set to logic 1, Flash accesses out of the address
range 0x00-0x7F should not be attempted. Reads/Writes out of this range will yield unde-
fined results.
0: Flash access from user software directed to the Program/Data Flash sector.
1: Flash access from user software directed to the 128 byte Scratchpad sector.

Bit1: PSEE: Program Store Erase Enable.
Setting this bit allows an entire page of the Flash program memory to be erased provided
the PSWE bit is also set. After setting this bit, a write to Flash memory using the MOVX
instruction will erase the entire page that contains the location addressed by the MOVX
instruction. The value of the data byte written does not matter. Note: The Flash page con-
taining the Read Lock Byte and Write/Erase Lock Bytes cannot be erased by soft-
ware.
0: Flash program memory erasure disabled.
1: Flash program memory erasure enabled.

Bit0: PSWE: Program Store Write Enable.
Setting this bit allows writing a byte of data to the Flash program memory using the MOVX
write instruction. The location must be erased prior to writing data.
0: Write to Flash program memory disabled. MOVX write operations target External RAM.
1: Write to Flash program memory enabled. MOVX write operations target Flash memory.

R/W R/W R/W R/W R/W R/W R/W R/W Reset Value

- - - - - SFLE PSEE PSWE 00000000
Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 SFR Address:

SFR Address:
SFR Page:

0x8F
0

Rev. 1.6 185

C8051F040/1/2/3/4/5/6/7

16.5. Memory Mode Selection
The external data memory space can be configured in one of four modes, shown in Figure 16.3, based on
the EMIF Mode bits in the EMI0CF register (SFR Definition 16.2). These modes are summarized below.
More information about the different modes can be found in Section “16.6. Timing” on page 194.

16.5.1. Internal XRAM Only
When EMI0CF.[3:2] are set to ‘00’, all MOVX instructions will target the internal XRAM space on the
device. Memory accesses to addresses beyond the populated space will wrap on 4k boundaries. As an
example, the addresses 0x1000 and 0x2000 both evaluate to address 0x0000 in on-chip XRAM space.

• 8-bit MOVX operations use the contents of EMI0CN to determine the high-byte of the effective address
and R0 or R1 to determine the low-byte of the effective address.

• 16-bit MOVX operations use the contents of the 16-bit DPTR to determine the effective address.

16.5.2. Split Mode without Bank Select
When EMI0CF.[3:2] are set to ‘01’, the XRAM memory map is split into two areas, on-chip space and off-
chip space.

• Effective addresses below the 4k boundary will access on-chip XRAM space.
• Effective addresses above the 4k boundary will access off-chip space.
• 8-bit MOVX operations use the contents of EMI0CN to determine whether the memory access is on-

chip or off-chip. However, in the “No Bank Select” mode, an 8-bit MOVX operation will not drive the
upper 8-bits A[15:8] of the Address Bus during an off-chip access. This allows the user to manipulate
the upper address bits at will by setting the Port state directly via the port latches. This behavior is in
contrast with “Split Mode with Bank Select” described below. The lower 8-bits of the Address Bus
A[7:0] are driven, determined by R0 or R1.

• 16-bit MOVX operations use the contents of DPTR to determine whether the memory access is on-
chip or off-chip, and unlike 8-bit MOVX operations, the full 16-bits of the Address Bus A[15:0] are
driven during the off-chip transaction.

Figure 16.3. EMIF Operating Modes
Rev. 1.6 193

C8051F040/1/2/3/4/5/6/7

a digital input by setting P3MDOUT.7 to a logic 0, which selects open-drain output mode, and P3.7 to a
logic 1, which disables the low-side output driver.

If the Port pin has been assigned to a digital peripheral by the Crossbar and that pin functions as an input
(for example RX0, the UART0 receive pin), then the output drivers on that pin are automatically disabled.

17.1.4. Weak Pullups
By default, each Port pin has an internal weak pullup device enabled which provides a resistive connection
(about 100 k) between the pin and VDD. The weak pullup devices can be globally disabled by writing a
logic 1 to the Weak Pullup Disable bit, (WEAKPUD, XBR2.7). The weak pullup is automatically deactivated
on any pin that is driving a logic 0; that is, an output pin will not contend with its own pullup device. The
weak pullup device can also be explicitly disabled on Ports 1, 2, and 3 pin by configuring the pin as an
Analog Input, as described below.

17.1.5. Configuring Port 1, 2, and 3 Pins as Analog Inputs
The pins on Port 1 can serve as analog inputs to the ADC2 analog MUX (C8051F040/1/2/3 only), the pins
on Port 2 can serve as analog inputs to the Comparators, and the pins on Port 3 can serve as inputs to
ADC0. A Port pin is configured as an Analog Input by writing a logic 0 to the associated bit in the PnMDIN
registers. All Port pins default to a Digital Input mode. Configuring a Port pin as an analog input:

1. Disables the digital input path from the pin. This prevents additional power supply current from
being drawn when the voltage at the pin is near VDD / 2. A read of the Port Data bit will return
a logic 0 regardless of the voltage at the Port pin.

2. Disables the weak pullup device on the pin.
3. Causes the Crossbar to “skip over” the pin when allocating Port pins for digital peripherals,

except for P2.0-P2.1.

Note that the output drivers on a pin configured as an Analog Input are not explicitly disabled. Therefore,
the associated PnMDOUT bits of pins configured as Analog Inputs should explicitly be set to logic 0
(Open-Drain output mode), and the associated Port Data bits should be set to logic 1 (high-impedance).
Also note that it is not required to configure a Port pin as an Analog Input in order to use it as an input to
the ADC’s or Comparators; however, it is strongly recommended. See the analog peripheral’s correspond-
ing section in this datasheet for further information.
Rev. 1.6 207

C8051F040/1/2/3/4/5/6/7
PIN I/O 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7
TX0

RX0

SCK

MISO

MOSI

NSS NSS is not assigned to a port pin when the SPI is placed in 3-wire mode
SDA

SCL

TX1

RX1

CEX0

CEX1

CEX2

CEX3

CEX4

CEX5

ECI ECI0E: XBR0.6

CP0 CP0E: XBR0.7

CP1 CP1E: XBR1.0

CP2 CP2E: XBR3.3

T0 T0E: XBR1.1

/INT0 INT0E: XBR1.2

T1 T1E: XBR1.3

/INT1 INT1E: XBR1.4

T2 T2E: XBR1.5

T2EX T2EXE: XBR1.6

T3 T3E: XBR3.0

T3EX T3EXE: XBR3.1

T4 T4E: XBR2.3

T4EX T4EXE: XBR2.4

/SYSCLK SYSCKE: XBR1.7

CNVSTR0 CNVSTE0: XBR2.0

CNVSTR2 CNVSTE2: XBR3.2

A
LE

/R
D

/W
R

A
IN

1.
0/

A
8

A
IN

1.
1/

A
9

A
IN

1.
2/

A
10

A
IN

1.
3/

A
11

A
IN

1.
4/

A
12

A
IN

1.
5/

A
13

A
IN

1.
6/

A
14

A
IN

1.
7/

A
15

A
8m

/A
0

A
9m

/A
1

A
10

m
/A

2

A
11

m
/A

3

A
12

m
/A

4

A
13

m
/A

5

A
14

m
/A

6

A
15

m
/A

7

A
D

0/
D

0

A
D

1/
D

1

A
D

2/
D

2

A
D

3/
D

3

A
D

4/
D

4

A
D

5/
D

5

A
D

6/
D

6

A
D

7/
D

7

XBR2.2

XBR0.[5:3]

UART0EN:

SPI0EN:

Crossbar Register Bits

XBR0.2

XBR0.1

XBR0.0SMB0EN:

AIN1 Inputs/Non-muxed Addr H Muxed Addr H/Non-muxed Addr L Muxed Data/Non-muxed Data

UART1EN:

PCA0ME:

P0 P1 P2 P3

17.1.6. External Memory Interface Pin Assignments
If the External Memory Interface (EMIF) is enabled on the Low ports (Ports 0 through 3), EMIFLE (XBR2.5)
should be set to a logic 1 so that the Crossbar will not assign peripherals to P0.7 (/WR), P0.6 (/RD), and, if
the External Memory Interface is in Multiplexed mode, P0.5 (ALE). Figure 17.4 shows an example Cross-
bar Decode Table with EMIFLE=1 and the EMIF in Multiplexed mode. Figure 17.5 shows an example
Crossbar Decode Table with EMIFLE=1 and the EMIF in Non-multiplexed mode.

If the External Memory Interface is enabled on the Low ports and an off-chip MOVX operation occurs, the
External Memory Interface will control the output states (logic 1 or logic 0) of the affected Port pins during
the execution phase of the MOVX instruction, regardless of the settings of the Crossbar registers or the
Port Data registers. The output configuration (push-pull or open-drain) of the Port pins is not affected by
the EMIF operation, except that Read operations will explicitly disable the output drivers on the Data Bus.
In most cases, GPIO pins used in EMIF operations (especially the /WR and /RD lines) should be
configured as push-pull and ‘parked’ at a logic 1 state. See Section “16. External Data Memory
Interface and On-Chip XRAM” on page 187 for more information about the External Memory Interface.

Figure 17.4. Priority Crossbar Decode Table
(EMIFLE = 1; EMIF in Multiplexed Mode; P1MDIN = 0xFF)
208 Rev. 1.6

C8051F040/1/2/3/4/5/6/7

19.4. SMBus Special Function Registers
The SMBus0 serial interface is accessed and controlled through five SFRs: SMB0CN Control Register,
SMB0CR Clock Rate Register, SMB0ADR Address Register, SMB0DAT Data Register and SMB0STA Sta-
tus Register. The five special function registers related to the operation of the SMBus0 interface are
described in the following sections.

19.4.1. Control Register
The SMBus0 Control register SMB0CN is used to configure and control the SMBus0 interface. All of the
bits in the register can be read or written by software. Two of the control bits are also affected by the
SMBus0 hardware. The Serial Interrupt flag (SI, SMB0CN.3) is set to logic 1 by the hardware when a valid
serial interrupt condition occurs. It can only be cleared by software. The Stop flag (STO, SMB0CN.4) is set
to logic 1 by software. It is cleared to logic 0 by hardware when a STOP condition is detected on the bus.

Setting the ENSMB flag to logic 1 enables the SMBus0 interface. Clearing the ENSMB flag to logic 0 dis-
ables the SMBus0 interface and removes it from the bus. Momentarily clearing the ENSMB flag and then
resetting it to logic 1 will reset SMBus0 communication. However, ENSMB should not be used to tempo-
rarily remove a device from the bus since the bus state information will be lost. Instead, the Assert
Acknowledge (AA) flag should be used to temporarily remove the device from the bus (see description of
AA flag below).

Setting the Start flag (STA, SMB0CN.5) to logic 1 will put SMBus0 in a master mode. If the bus is free,
SMBus0 will generate a START condition. If the bus is not free, SMBus0 waits for a STOP condition to free
the bus and then generates a START condition after a 5 μs delay per the SMB0CR value (In accordance
with the SMBus protocol, the SMBus0 interface also considers the bus free if the bus is idle for 50 μs and
no STOP condition was recognized). If STA is set to logic 1 while SMBus0 is in master mode and one or
more bytes have been transferred, a repeated START condition will be generated.

When the Stop flag (STO, SMB0CN.4) is set to logic 1 while the SMBus0 interface is in master mode, the
interface generates a STOP condition. In a slave mode, the STO flag may be used to recover from an error
condition. In this case, a STOP condition is not generated on the bus, but the SMBus hardware behaves
as if a STOP condition has been received and enters the "not addressed" slave receiver mode. Note that
this simulated STOP will not cause the bus to appear free to SMBus0. The bus will remain occupied until a
STOP appears on the bus or a Bus Free Timeout occurs. Hardware automatically clears the STO flag to
logic 0 when a STOP condition is detected on the bus.

The Serial Interrupt flag (SI, SMB0CN.3) is set to logic 1 by hardware when the SMBus0 interface enters
any one of the 28 possible states except the Idle state. If interrupts are enabled for the SMBus0 interface,
an interrupt request is generated when the SI flag is set. The SI flag must be cleared by software.

Important Note: If SI is set to logic 1 while the SCL line is low, the clock-low period of the serial clock will
be stretched and the serial transfer is suspended until SI is cleared to logic 0. A high level on SCL is not
affected by the setting of the SI flag.

The Assert Acknowledge flag (AA, SMB0CN.2) is used to set the level of the SDA line during the acknowl-
edge clock cycle on the SCL line. Setting the AA flag to logic 1 will cause an ACK (low level on SDA) to be
sent during the acknowledge cycle if the device has been addressed. Setting the AA flag to logic 0 will
cause a NACK (high level on SDA) to be sent during acknowledge cycle. After the transmission of a byte in
slave mode, the slave can be temporarily removed from the bus by clearing the AA flag. The slave's own
address and general call address will be ignored. To resume operation on the bus, the AA flag must be
reset to logic 1 to allow the slave's address to be recognized.
Rev. 1.6 245

C8051F040/1/2/3/4/5/6/7

SFR Definition 19.4. SMB0ADR: SMBus0 Address

Bits7-1: SLV6-SLV0: SMBus0 Slave Address.
These bits are loaded with the 7-bit slave address to which SMBus0 will respond when oper-
ating as a slave transmitter or slave receiver. SLV6 is the most significant bit of the address
and corresponds to the first bit of the address byte received.

Bit0: GC: General Call Address Enable.
This bit is used to enable general call address (0x00) recognition.
0: General call address is ignored.
1: General call address is recognized.

R/W R/W R/W R/W R/W R/W R/W R/W Reset Value

SLV6 SLV5 SLV4 SLV3 SLV2 SLV1 SLV0 GC 00000000
Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

SFR Address:
SFR Page:

0xC3
0

19.4.5. Status Register
The SMB0STA Status register holds an 8-bit status code indicating the current state of the SMBus0 inter-
face. There are 28 possible SMBus0 states, each with a corresponding unique status code. The five most
significant bits of the status code vary while the three least-significant bits of a valid status code are fixed at
zero when SI = ‘1’. Therefore, all possible status codes are multiples of eight. This facilitates the use of sta-
tus codes in software as an index used to branch to appropriate service routines (allowing 8 bytes of code
to service the state or jump to a more extensive service routine).

For the purposes of user software, the contents of the SMB0STA register is only defined when the SI flag is
logic 1. Software should never write to the SMB0STA register; doing so will yield indeterminate results. The
28 SMBus0 states, along with their corresponding status codes, are given in Table 19.1.
250 Rev. 1.6

C8051F040/1/2/3/4/5/6/7

21.3. Configuration of a Masked Address
The UART0 address is configured via two SFRs: SADDR0 (Serial Address) and SADEN0 (Serial Address
Enable). SADEN0 sets the bit mask for the address held in SADDR0: bits set to logic 1 in SADEN0 corre-
spond to bits in SADDR0 that are checked against the received address byte; bits set to logic 0 in SADEN0
correspond to “don’t care” bits in SADDR0.

Setting the SM20 bit (SCON0.5) configures UART0 such that when a stop bit is received, UART0 will gen-
erate an interrupt only if the ninth bit is logic 1 (RB80 = ‘1’) and the received data byte matches the UART0
slave address. Following the received address interrupt, the slave will clear its SM20 bit to enable inter-
rupts on the reception of the following data byte(s). Once the entire message is received, the addressed
slave resets its SM20 bit to ignore all transmissions until it receives the next address byte. While SM20 is
logic 1, UART0 ignores all bytes that do not match the UART0 address and include a ninth bit that is logic
1.

21.4. Broadcast Addressing
Multiple addresses can be assigned to a single slave and/or a single address can be assigned to multiple
slaves, thereby enabling "broadcast" transmissions to more than one slave simultaneously. The broadcast
address is the logical OR of registers SADDR0 and SADEN0, and ‘0’s of the result are treated as “don’t
cares”. Typically a broadcast address of 0xFF (hexadecimal) is acknowledged by all slaves, assuming
“don’t care” bits as ‘1’s. The master processor can be configured to receive all transmissions or a protocol
can be implemented such that the master/slave role is temporarily reversed to enable half-duplex trans-
mission between the original master and slave(s).

Note in the above examples 4, 5, and 6, each slave would recognize as “valid” an address of 0xFF as a
broadcast address. Also note that examples 4, 5, and 6 uses the same SADDR0 and SADEN0 register
values as shown in the examples 1, 2, and 3 respectively (slaves #1, 2, and 3). Thus, a master could
address each slave device individually using a masked address, and also broadcast to all three slave
devices. For example, if a Master were to send an address “11110101”, only slave #1 would recognize the
address as valid. If a master were to then send an address of “11111111”, all three slave devices would rec-
ognize the address as a valid broadcast address.

Example 1, SLAVE #1 Example 2, SLAVE #2 Example 3, SLAVE #3
SADDR0 = 00110101 SADDR0 = 00110101 SADDR0 = 00110101
SADEN0 = 00001111 SADEN0 = 11110011 SADEN0 = 11000000

UART0 Address = xxxx0101 UART0 Address = 0011xx01 UART0 Address = 00xxxxxx

Example 4, SLAVE #1 Example 5, SLAVE #2 Example 6, SLAVE #3
SADDR0 = 00110101 SADDR0 = 00110101 SADDR0 = 00110101
SADEN0 = 00001111 SADEN0 = 11110011 SADEN0 = 11000000

Broadcast Address = 00111111 Broadcast Address = 11110111 Broadcast Address = 11110101
Where all ZEROES in the Broadcast address are don’t cares.
Rev. 1.6 271

C8051F040/1/2/3/4/5/6/7

22.2. Operational Modes
UART1 provides standard asynchronous, full duplex communication. The UART mode (8-bit or 9-bit) is
selected by the S1MODE bit (SCON1.7). Typical UART connection options are shown below.

Figure 22.3. UART Interconnect Diagram

22.2.1. 8-Bit UART
8-Bit UART mode uses a total of 10 bits per data byte: one start bit, eight data bits (LSB first), and one stop
bit. Data are transmitted LSB first from the TX1 pin and received at the RX1 pin. On receive, the eight data
bits are stored in SBUF1 and the stop bit goes into RB81 (SCON1.2).

Data transmission begins when software writes a data byte to the SBUF1 register. The TI1 Transmit Inter-
rupt Flag (SCON1.1) is set at the end of the transmission (the beginning of the stop-bit time). Data recep-
tion can begin any time after the REN1 Receive Enable bit (SCON1.4) is set to logic 1. After the stop bit is
received, the data byte will be loaded into the SBUF1 receive register if the following conditions are met:
RI1 must be logic 0, and if MCE1 is logic 1, the stop bit must be logic 1. In the event of a receive data over-
run, the first received 8 bits are latched into the SBUF1 receive register and the following overrun data bits
are lost.

If these conditions are met, the eight bits of data is stored in SBUF1, the stop bit is stored in RB81 and the
RI1 flag is set. If these conditions are not met, SBUF1 and RB81 will not be loaded and the RI1 flag will not
be set. An interrupt will occur if enabled when either TI1 or RI1 is set.

Figure 22.4. 8-Bit UART Timing Diagram
Rev. 1.6 279

C8051F040/1/2/3/4/5/6/7

22.3. Multiprocessor Communications
9-Bit UART mode supports multiprocessor communication between a master processor and one or more
slave processors by special use of the ninth data bit. When a master processor wants to transmit to one or
more slaves, it first sends an address byte to select the target(s). An address byte differs from a data byte
in that its ninth bit is logic 1; in a data byte, the ninth bit is always set to logic 0.

Setting the MCE1 bit (SCON1.5) of a slave processor configures its UART such that when a stop bit is
received, the UART will generate an interrupt only if the ninth bit is logic one (RB81 = 1) signifying an
address byte has been received. In the UART interrupt handler, software should compare the received
address with the slave's own assigned 8-bit address. If the addresses match, the slave should clear its
MCE1 bit to enable interrupts on the reception of the following data byte(s). Slaves that weren't addressed
leave their MCE1 bits set and do not generate interrupts on the reception of the following data bytes,
thereby ignoring the data. Once the entire message is received, the addressed slave should reset its
MCE1 bit to ignore all transmissions until it receives the next address byte.

Multiple addresses can be assigned to a single slave and/or a single address can be assigned to multiple
slaves, thereby enabling "broadcast" transmissions to more than one slave simultaneously. The master
processor can be configured to receive all transmissions or a protocol can be implemented such that the
master/slave role is temporarily reversed to enable half-duplex transmission between the original master
and slave(s).

Figure 22.6. UART Multi-Processor Mode Interconnect Diagram
Rev. 1.6 281

C8051F040/1/2/3/4/5/6/7

24.2.2. Software Timer (Compare) Mode
In Software Timer mode, the PCA0 counter/timer is compared to the module's 16-bit capture/compare reg-
ister (PCA0CPHn and PCA0CPLn). When a match occurs, the Capture/Compare Flag (CCFn) in PCA0CN
is set to logic 1 and an interrupt request is generated if CCF interrupts are enabled. The CCFn bit is not
automatically cleared by hardware when the CPU vectors to the interrupt service routine, and must be
cleared by software. Setting the ECOMn and MATn bits in the PCA0CPMn register enables Software
Timer mode.

Important Note About Capture/Compare Registers: When writing a 16-bit value to the PCA0 Capture/
Compare registers, the low byte should always be written first. Writing to PCA0CPLn clears the ECOMn bit
to '0'; writing to PCA0CPHn sets ECOMn to '1'.

Figure 24.5. PCA Software Timer Mode Diagram
Rev. 1.6 309

C8051F040/1/2/3/4/5/6/7

25.1. Boundary Scan
The DR in the Boundary Scan path is an 134-bit shift register. The Boundary DR provides control and
observability of all the device pins as well as the SFR bus and Weak Pullup feature via the EXTEST and
SAMPLE commands.

Table 25.1. Boundary Data Register Bit Definitions
EXTEST provides access to both capture and update actions, while Sample only performs a capture.
Bit Action Target
0 Capture Reset Enable from MCU

Update Reset Enable to /RST pin
1 Capture Reset input from /RST pin

Update Reset output to /RST pin
2 Capture Reset Enable from MCU

Update Reset Enable to /RST pin
3 Capture Reset input from /RST pin

Update Reset output to /RST pin
4 Capture CANRX output enable to pin

Update CANRX output enable to pin
5 Capture CANRX input from pin

Update CANRX output to pin
6 Capture CANTX output enable to pin

Update CANTX output enable to pin
7 Capture CANTX input from pin

Update CANTX output to pin
8 Capture External Clock from XTAL1 pin

Update Not used
9 Capture Weak pullup enable from MCU

Update Weak pullup enable to Port Pins
10, 12, 14, 16, 18,
20, 22, 24

Capture P0.n output enable from MCU (e.g. Bit6=P0.0, Bit8=P0.1, etc.)
Update P0.n output enable to pin (e.g. Bit6=P0.0oe, Bit8=P0.1oe, etc.)

11, 13, 15, 17, 19,
21, 23, 25

Capture P0.n input from pin (e.g. Bit7=P0.0, Bit9=P0.1, etc.)
Update P0.n output to pin (e.g. Bit7=P0.0, Bit9=P0.1, etc.)

26, 28, 30, 32, 34,
36, 38, 40

Capture P1.n output enable from MCU
Update P1.n output enable to pin

27, 29, 31, 33, 35,
37, 39, 41

Capture P1.n input from pin
Update P1.n output to pin

42, 44, 46, 48, 50,
52, 54, 56

Capture P2.n output enable from MCU
Update P2.n output enable to pin

43, 45, 47, 49, 51,
53, 55, 57

Capture P2.n input from pin
Update P2.n output to pin

58, 60, 62, 64, 66,
68, 70, 72

Capture P3.n output enable from MCU
Update P3.n output enable to pin

59, 61, 63, 65, 67,
69, 71, 73

Capture P3.n input from pin
Update P3.n output to pin

74, 76, 78, 80, 82,
84, 86, 88

Capture P4.n output enable from MCU
Update P4.n output enable to pin
320 Rev. 1.6

