

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	8051
Core Size	8-Bit
Speed	25MHz
Connectivity	CANbus, EBI/EMI, SMBus (2-Wire/I ² C), SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, Temp Sensor, WDT
Number of I/O	32
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	4.25K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 3.6V
Data Converters	A/D 13x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/c8051f045

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

SFR Definition 24.7. PCA0CPHn: PCA0 Capture Module High Byte	. 318
JTAG Register Definition 25.1. IR: JTAG Instruction Register	. 319
JTAG Register Definition 25.2. DEVICEID: JTAG Device ID Register	. 322
JTAG Register Definition 25.3. FLASHCON: JTAG Flash Control Register	. 324
JTAG Register Definition 25.4. FLASHDAT: JTAG Flash Data	. 325
JTAG Register Definition 25.5. FLASHADR: JTAG Flash Address	. 325

1.8. 12/10-Bit Analog to Digital Converter

The C8051F040/1 devices have an on-chip 12-bit SAR ADC (ADC0) with a 9-channel input multiplexer and programmable gain amplifier. With a maximum throughput of 100 ksps, the ADC offers true 12-bit performance with an INL of ±1LSB. C8051F042/3/4/5/6/7 devices include a 10-bit SAR ADC with similar specifications and configuration options. The ADC0 voltage reference is selected between the DAC0 output and an external VREF pin. On C8051F040/2/4/6 devices, ADC0 has its own dedicated VREF0 input pin; on C8051F041/3/5/7 devices, the ADC0 uses the VREFA input pin and, on the C8051F041/3, shares it with the 8-bit ADC2. The on-chip 15 ppm/°C voltage reference may generate the voltage reference for the on-chip ADCs or other system components via the VREF output pin.

The ADC is under full control of the CIP-51 microcontroller via its associated Special Function Registers. One input channel is tied to an internal temperature sensor, while the other eight channels are available externally. Each pair of the eight external input channels can be configured as either two single-ended inputs or a single differential input. The system controller can also put the ADC into shutdown mode to save power.

A programmable gain amplifier follows the analog multiplexer. The gain can be set to 0.5, 1, 2, 4, 8, or 16 and is software programmable. The gain stage can be especially useful when different ADC input channels have widely varied input voltage signals, or when it is necessary to "zoom in" on a signal with a large dc offset (in differential mode, a DAC could be used to provide the dc offset).

Conversions can be started in four ways; a software command, an overflow of Timer 2, an overflow of Timer 3, or an external signal input. This flexibility allows the start of conversion to be triggered by software events, external HW signals, or a periodic timer overflow signal. Conversion completions are indicated by a status bit and an interrupt (if enabled). The resulting 10- or 12-bit data word is latched into two SFRs upon completion of a conversion. The data can be right or left justified in these registers under software control.

Window Compare registers for the ADC data can be configured to interrupt the controller when ADC data is within or outside of a specified range. The ADC can monitor a key voltage continuously in background mode, but not interrupt the controller unless the converted data is within the specified window.

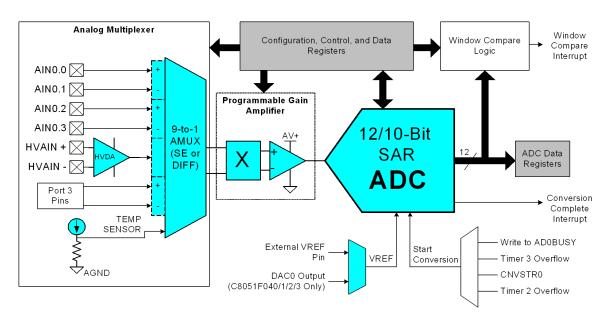
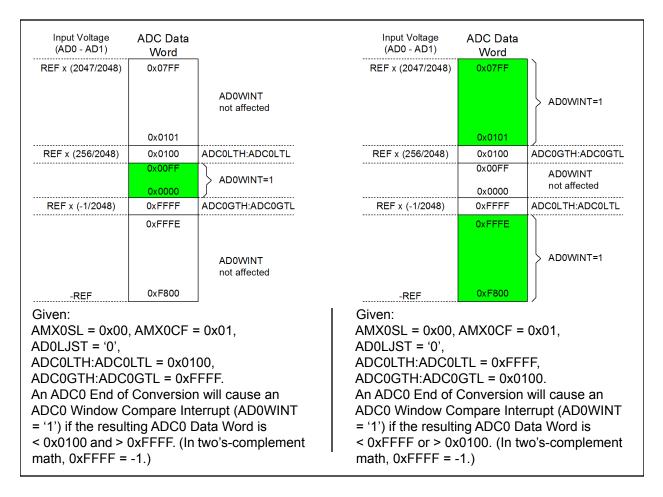


Figure 1.12. 10/12-Bit ADC Block Diagram

N	Pin Nu	Pin Numbers		Description
Name	F040/2/4/6	F041/3/5/7	Туре	Description
P1.0/AIN2.0/A8	36	29	A In D I/O	ADC1 Input Channel 0 (See ADC1 Specification for com- plete description). Bit 8 External Memory Address bus (Non-multiplexed mode) Port 1.0 See Port Input/Output section for complete description.
P1.1/AIN2.1/A9	35	28	A In D I/O	Port 1.1. See Port Input/Output section for complete description.
P1.2/AIN2.2/ A10	34	27	A In D I/O	Port 1.2. See Port Input/Output section for complete description.
P1.3/AIN2.3/ A11	33	26	A In D I/O	Port 1.3. See Port Input/Output section for complete description.
P1.4/AIN2.4/ A12	32	23	A In D I/O	Port 1.4. See Port Input/Output section for complete description.
P1.5/AIN2.5/ A13	31	22	A In D I/O	Port 1.5. See Port Input/Output section for complete description.
P1.6/AIN2.6/ A14	30	21	A In D I/O	Port 1.6. See Port Input/Output section for complete description.
P1.7/AIN2.7/ A15	29	20	A In D I/O	Port 1.7. See Port Input/Output section for complete description.
P2.0/A8m/A0	46	37	D I/O	Bit 8 External Memory Address bus (Multiplexed mode) Bit 0 External Memory Address bus (Non-multiplexed mode) Port 2.0 See Port Input/Output section for complete description.
P2.1/A9m/A1	45	36	D I/O	Port 2.1. See Port Input/Output section for complete description.
P2.2/A10m/A2	44	35	D I/O	Port 2.2. See Port Input/Output section for complete description.
P2.3/A11m/A3	43	34	D I/O	Port 2.3. See Port Input/Output section for complete description.
P2.4/A12m/A4	42	33	D I/O	Port 2.4. See Port Input/Output section for complete description.
P2.5/A13m/A5	41	32	D I/O	Port 2.5. See Port Input/Output section for complete description.
P2.6/A14m/A6	40	31	D I/O	Port 2.6. See Port Input/Output section for complete description.
P2.7/A15m/A7	39	30	D I/O	Port 2.7. See Port Input/Output section for complete description.


 Table 4.1. Pin Definitions (Continued)

SFR Definition 5.6. ADC0CN: ADC0 Control

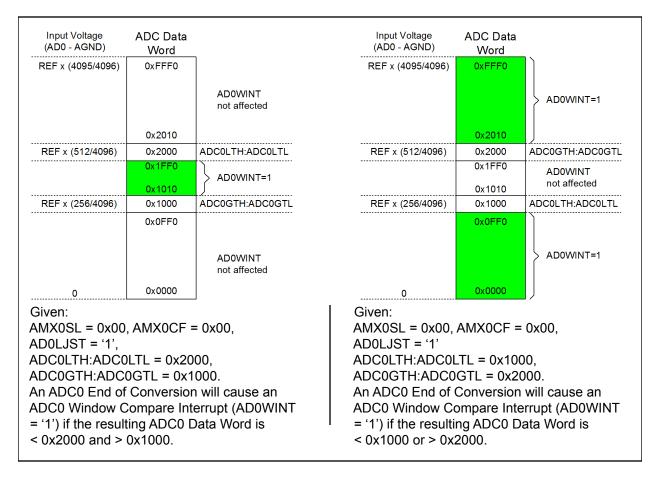

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Valu			
AD0EN	AD0TM	AD0INT	AD0BUSY	AD0CM1	AD0CM0	AD0WINT	AD0LJST				
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	Bit Addressab			
	SFR Address: 0xE8										
							SFR Page	e: 0			
Bit7:	AD0EN: AD	DC0 Enable	e Bit.								
	0: ADC0 D	isabled. AD	C0 is in low	-power shu	tdown.						
			C0 is active	and ready	for data con	versions.					
Bit6:	ADOTM: AD			ling in cont			ion io in nu				
			y AD0CM1-0	-	inuous unie:	ss a convers	ion is in pro	ocess			
Bit5:			rsion Comp		ot Flag.						
			red by softw								
	0: ADCO ha	as not com	oleted a data	a conversio	n since the	last time this	flag was cl	eared.			
		•	ed a data co	nversion.							
Bit4:	AD0BUSY:	ADC0 Bus	sy Bit.								
	Read:	onversion i	s complete (sion is not c	urrently in pr	oares AD				
			g edge of AE				Ugress. AD	01111 15 50			
			s in progres								
	Write:										
	0: No Effect										
			version if AD								
Bit3-2:	If AD0CM1-0		art of Convei	sion wode	Select.						
			initiated on	everv write	of '1' to AD(BUSY.					
			initiated on								
			initiated on			CNVSTR0.					
			initiated on o	overflow of	Timer 2.						
	If ADOTM =		h tha write a			lasta far 2 C	ND alaaka f	allowed by			
	conversion		in the write c	of 1 to ADU	BOSY and I	lasts for 3 SA	AR CIOCKS, I				
			v the overflo	w of Timer	3 and last fo	or 3 SAR clo	cks. followe	ed by con-			
	version.	9 010. 100. 0	,								
	10: ADC0 t	racks only	when CNVS	TR0 input	s logic low;	conversion s	starts on ris	ing			
	CNVSTR0										
		g started b	y the overflo	w of Timer	2 and last fo	or 3 SAR clo	cks, followe	ed by con-			
Bit1:			dow Compa	ra Interrunt	Flag						
51(1.			ed by softwa		r iag.						
					as not occur	red since this	s flag was la	ast cleared			
			nparison Dat				J				
Bit0:			Justify Selec								
	0: Data in A		COL register	o oro right	i i i i l						
			COL register	•							

Figure 5.9. 12-Bit ADC0 Window Interrupt Example: Right Justified Differential Data

Figure 5.10. 12-Bit ADC0 Window Interrupt Example: Left Justified Single-Ended Data

					A	MX0AD3-	0			
		0000	0001	0010	0011	0100	0101	0110	0111	1xxx
	0000	AIN0.0	AIN0.1	AIN0.2	AIN0.3	HVDA	AGND	P3EVEN	P3ODD	TEMP SENSOR
	0001	+(AIN0.0) -(AIN0.1)		AIN0.2	AIN0.3	HVDA	AGND	P3EVEN	P3ODD	TEMP SENSOR
	0010	AIN0.0	AIN0.1	+(AIN0.2) -(AIN0.3)		HVDA	AGND	P3EVEN	P3ODD	TEMP SENSOR
	0011	+(AIN0.0) -(AIN0.1)		+(AIN0.2) -(AIN0.3)		HVDA	AGND	P3EVEN	P3ODD	TEMP SENSOR
	0100	AIN0.0	AIN0.1	AIN0.2	AIN0.3	+(HVDA) -(HVREF)		P3EVEN	P3ODD	TEMP SENSOR
	0101	+(AIN0.0) -(AIN0.1)		AIN0.2	AIN0.3	+(HVDA) -(HVREF)		P3EVEN	P3ODD	TEMP SENSOR
3-0	0110	AIN0.0	AIN0.1	+(AIN0.2) -(AIN0.3)		+(HVDA) -(HVREF)		P3EVEN	P3ODD	TEMP SENSOR
Bits	0111	+(AIN0.0) -(AIN0.1)		+(AIN0.2) -(AIN0.3)		+(HVDA) -(HVREF)		P3EVEN	P3ODD	TEMP SENSOR
AMX0CF	1000	AIN0.0	AIN0.1	AIN0.2	AIN0.3	HVDA	AGND	+P3EVEN -P3ODD		TEMP SENSOR
AM	1001	+(AIN0.0) -(AIN0.1)		AIN0.2	AIN0.3	HVDA	AGND	+P3EVEN -P3ODD		TEMP SENSOR
	1010	AIN0.0	AIN0.1	+(AIN0.2) -(AIN0.3)		HVDA	AGND	+P3EVEN -P3ODD		TEMP SENSOR
	1011	+(AIN0.0) -(AIN0.1)		+(AIN0.2) -(AIN0.3)		HVDA	AGND	+P3EVEN -P3ODD		TEMP SENSOR
	1100	AIN0.0	AIN0.1	AIN0.2	AIN0.3	+(HVDA) -(HVREF)		+P3EVEN -P3ODD)		TEMP SENSOR
	1101	+(AIN0.0) -(AIN0.1)		AIN0.2	AIN0.3	+(HVDA) -(HVREF)		+P3EVEN -P3ODD		TEMP SENSOR
	1110	AIN0.0	AIN0.1	+(AIN0.2) -(AIN0.3)		+(HVDA) -(HVREF)		+P3EVEN -P3ODD		TEMP SENSOR
	1111	+(AIN0.0) -(AIN0.1)		+(AIN0.2) -(AIN0.3)		+(HVDA) -(HVREF)		+P3EVEN -P3ODD		TEMP SENSOR

Table 6.1. AMUX Selection Chart (AMX0AD3-0 and AMX0CF3-0 bits)

Note: "P3EVEN" denotes even numbered and "P3ODD" odd numbered Port 3 pins selected in the AMX0PRT register.

Mnemonic Description		Bytes	Clock Cycles
JNZ rel	Jump if A does not equal zero	2	2/3
CJNE A, direct, rel	Compare direct byte to A and jump if not equal	3	3/4
CJNE A, #data, rel	Compare immediate to A and jump if not equal	3	3/4
CJNE Rn, #data, rel	Compare immediate to Register and jump if not equal	3	3/4
CJNE @Ri, #data, rel	Compare immediate to indirect and jump if not equal	3	4/5
DJNZ Rn, rel	Decrement Register and jump if not zero	2	2/3
DJNZ direct, rel	Decrement direct byte and jump if not zero	3	3/4
NOP	No operation	1	1

Table 12.1. CIP-51 Instruction Set Summary (Continued)

Notes on Registers, Operands and Addressing Modes:

Rn - Register R0-R7 of the currently selected register bank.

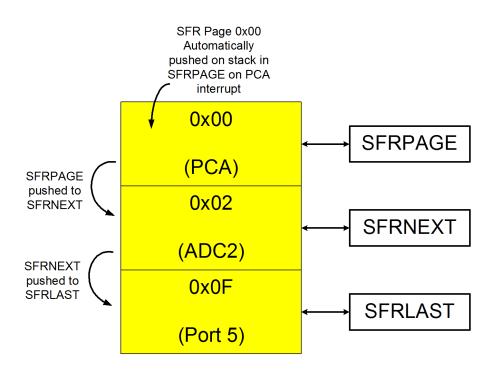
@Ri - Data RAM location addressed indirectly through R0 or R1.

rel - 8-bit, signed (two's complement) offset relative to the first byte of the following instruction. Used by SJMP and all conditional jumps.

direct - 8-bit internal data location's address. This could be a direct-access Data RAM location (0x00-0x7F) or an SFR (0x80-0xFF).

#data - 8-bit constant

#data16 - 16-bit constant


bit - Direct-accessed bit in Data RAM or SFR

addr11 - 11-bit destination address used by ACALL and AJMP. The destination must be within the same 2K-byte page of program memory as the first byte of the following instruction.

addr16 - 16-bit destination address used by LCALL and LJMP. The destination may be anywhere within the 64 kB program memory space.

There is one unused opcode (0xA5) that performs the same function as NOP. All mnemonics copyrighted © Intel Corporation 1980.

Figure 12.6. SFR Page Stack Upon PCA Interrupt Occurring During an ADC2 ISR

On exit from the PCA interrupt service routine, the CIP-51 will return to the ADC2 Window Comparator ISR. On execution of the RETI instruction, SFR Page 0x00 used to access the PCA registers will be automatically popped off of the SFR Page Stack, and the contents of the SFRNEXT register will be moved to the SFRPAGE register. Software in the ADC2 ISR can continue to access SFR's as it did prior to the PCA interrupt. Likewise, the contents of SFRLAST are moved to the SFRNEXT register. Recall this was the SFR Page value 0x0F being used to access Port 5 before the ADC2 interrupt occurred. See Figure 12.7 below.

Table 12.3. Special Function Registers (Continued)

SFRs are listed in alphabetical order. All undefined SFR locations are reserved.

Register	Register Address		Description	Page No.
SPI0CFG	0x9A	0	SPI Configuration	page 261
SPI0CKR	0x9D	0	SPI Clock Rate Control	page 263
SPIOCN	0xF8	0	SPI Control	page 262
SPI0DAT	0x9B	0	SPI Data	page 264
SSTA0	0x91	0	UART0 Status and Clock Selection	page 275
TCON	0x88	0	Timer/Counter Control	page 293
TH0	0x8C	0	Timer/Counter 0 High	page 296
TH1	0x8D	0	Timer/Counter 1 High	page 296
TL0	0x8A	0	Timer/Counter 0 Low	page 295
TL1	0x8B	0	Timer/Counter 1 Low	page 296
TMOD	0x89	0	Timer/Counter Mode	page 294
TMR2CF	0xC9	0	Timer/Counter 2 Configuration	page 302
TMR2CN	0xC8	0	Timer/Counter 2 Control	page 301
TMR2H	0xCD	0	Timer/Counter 2 High	page 304
TMR2L	0xCC	0	Timer/Counter 2 Low	page 303
TMR3CF	0xC9	1	Timer/Counter 3 Configuration	page 302
TMR3CN	0xC8	1	Timer 3 Control	page 301
TMR3H	0xCD	1	Timer/Counter 3 High	page 304
TMR3L	0xCC	1	Timer/Counter 3 Low	page 303
TMR4CF	0xC9	2	Timer/Counter 4 Configuration	page 302
TMR4CN	0xC8	2	Timer/Counter 4 Control	page 301
TMR4H	0xCD	2	Timer/Counter 4 High	page 304
TMR4L	0xCC	2	Timer/Counter 4 Low	page 303
WDTCN	0xFF	All Pages	Watchdog Timer Control	page 169
XBR0	0xE1	F	Port I/O Crossbar Control 0	page 212
XBR1	0xE2	F	Port I/O Crossbar Control 1	page 213
XBR2	0xE3	F	Port I/O Crossbar Control 2	page 214
XBR3	0xE4	F	Port I/O Crossbar Control 3	page 215
0x97, 0xA2, 0xCE, 0xDF	0xB3, 0xB4,		Reserved	

Notes:

1. Refers to a register in the C8051F040 only.

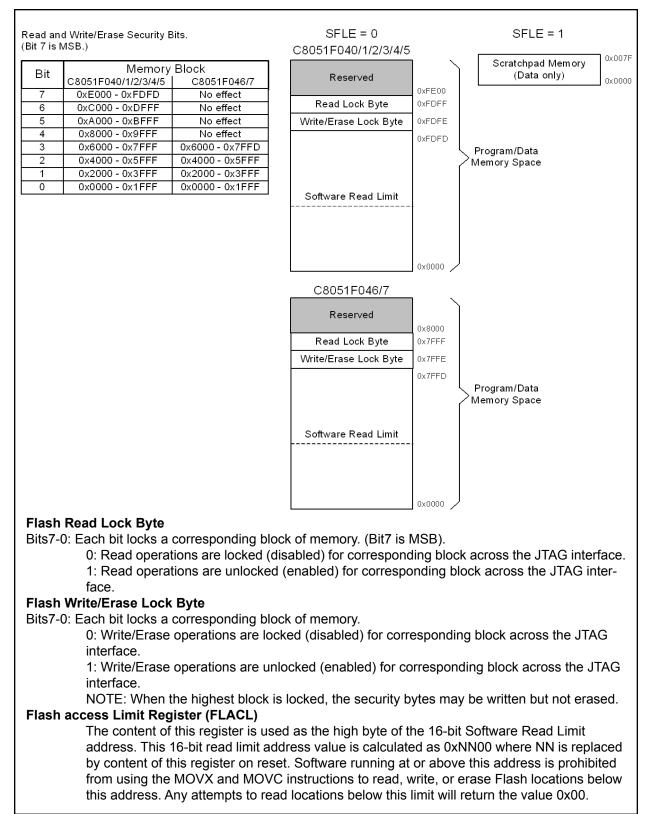
2. Refers to a register in the C8051F041 only.

3. Refers to a register in C8051F040/1/2/3 only.

4. Refers to a register in the C8051F040/2/4/6 only.

5. Refers to a register in the C8051F041/3/5/7 only.

SFR Definition 12	.11. IE: Int	errupt Enable
-------------------	--------------	---------------


R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value				
EA	IEGF0	ET2	ES0	ET1	EX1	ET0	EX0	0000000				
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	Bit Addressabl				
							SFR Addres SFR Pag					
Bit7:	EA: Enable A	All Interrupt	s.									
	This bit globally enables/disables all interrupts. It overrides the individual interrupt mask set-											
	tings.											
	0: Disable all											
5.10	1: Enable ea			to its indivi	dual mask s	setting.						
Bit6:	IEGF0: Gene		•		.	hand						
Bit5:	This is a gen			se under so	onware con	Irol.						
םווט.	ET2: Enable This bit sets		•	or 2 intorru	unt							
	0: Disable Ti		•		ipi.							
	1: Enable int		•	ited hy the	TF2 flag							
Bit4:	ES0: Enable		•		n 2 nag.							
			•	RT0 interru	ıpt.							
	This bit sets the masking of the UART0 interrupt. 0: Disable UART0 interrupt.											
	1: Enable UA		•									
Bit3:	ET1: Enable	Timer 1 In	terrupt.									
	This bit sets			er 1 interru	ıpt.							
	0: Disable all Timer 1 interrupt.											
	1: Enable inter			ited by the	TF1 flag.							
Bit2:	EX1: Enable		•									
	This bit sets		•	al interrupt	1.							
	0: Disable external interrupt 1.1: Enable interrupt requests generated by the /INT1 pin.											
Bit1:			•	ited by the	/INTT pin.							
DILI.	ET0: Enable This bit sets			or 0 intorru	unt							
	0: Disable all		•		ipt.							
	1: Enable int			ited by the	TE0 flag							
Bit0:	EX0: Enable		•		n o nag.							
	This bit sets			l interrupt	0.							
	0: Disable ex				-							

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value
-	-	PT2	PS0	PT1	PX1	PT0	PX0	1100000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	Bit Addressable
							SFR Addres SFR Pag	s: 0xB8 je: All Pages
Bits7-6:	UNUSED. R	ead = 11b,	Write = don	l't care.				
Bit5:	PT2: Timer 2	Interrupt F	Priority Cont	rol.				
	This bit sets	the priority	of the Time	r 2 interrup	t.			
	0: Timer 2 int				evel.			
	1: Timer 2 int		0 1					
Bit4:	PS0: UART0	•						
	This bit sets							
	0: UART0 int				evel.			
D:10.	1: UART0 int		• •					
Bit3:	PT1: Timer 1							
	This bit sets 0: Timer 1 int			•				
	1: Timer 1 inf				evel.			
Bit2:	PX1: Externa	•	• •					
	This bit sets				ot 1 interrup	t		
	0: External Ir							
	1: External Ir							
Bit1:	PT0: Timer 0							
	This bit sets	the priority	of the Time	r 0 interrup	t.			
	0: Timer 0 int	terrupt prio	rity set to lo	w priority le	evel.			
	1: Timer 0 int	•	• •					
Bit0:	PX0: Externa							
	This bit sets					t.		
	0: External Ir			•				
	1: External Ir	nterrupt 0 s	et to hiah p	riority level.				

SFR Definition 12.12. IP: Interrupt Priority

Figure 15.1. Flash Program Memory Map and Security Bytes

18.1.1. CAN Controller Timing

The CAN controller's system clock (f_{sys}) is derived from the CIP-51 system clock (SYSCLK). Note that an external oscillator (such as a quartz crystal) is typically required due to the high accuracy requirements for CAN communication. Refer to Section "4.10.4 Oscillator Tolerance Range" in the Bosch CAN User's Guide for further information regarding this topic.

18.1.2. Example Timing Calculation for 1 Mbit/Sec Communication

This example shows how to configure the CAN contoller timing parameters for a 1 Mbit/Sec bit rate. Table 18.1 shows timing-related system parameters needed for the calculation.

Parameter	Value	Description
CIP-51 system clock (SYSCLK)	22.1184 MHz	External oscillator in 'Crystal Oscillator Mode'. A 22.1184 MHz quartz crystal is connected between XTAL1 and XTAL2.
CAN Controller system clock (f _{sys})	22.1184 MHz	Derived from SYSCLK.
CAN clock period (t _{sys})	45.211 ns	Derived from 1/f _{sys} .
CAN time quantum (t _q)	45.211 ns	Derived from t _{sys} x BRP ^{1,2}
CAN bus length	10 m	5 ns/m signal delay between CAN nodes.
Propagation delay time ³	400 ns	2 x (transceiver loop delay + bus line delay)

Table 18.1. Background System Information

Notes:

1. The CAN time quantum (t_q) is the smallest unit of time recognized by the CAN contoller. Bit timing parameters are often specified in integer multiples of the time quantum.

2. The Baud Rate Prescaler (BRP) is defined as the value of the BRP Extension Register plus 1. The BRP Extension Register has a reset value of 0x0000; the Baud Rate Prescaler has a reset value of 1.

3. Based on an ISO-11898 compliant transceiver. CAN does not specify a physical layer.

Each bit transmitted on a CAN network has 4 segments (Sync_Seg, Prop_Seg, Phase_Seg1, and Phase_Seg2), as shown in Figure 18.3. The sum of these segments determines the CAN bit time (1/bit rate). In this example, the desired bit rate is 1 Mbit/sec; therefore, the desired bit time is 1000 ns.

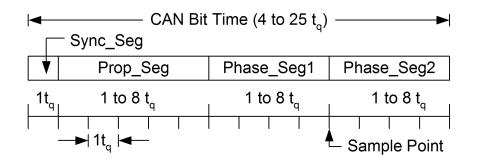
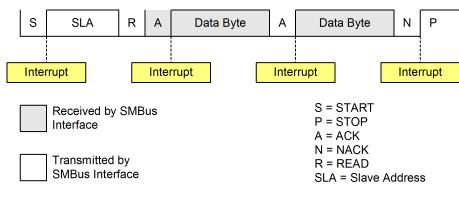



Figure 18.3. Four Segments of a CAN Bit Time

19.3.2. Master Receiver Mode

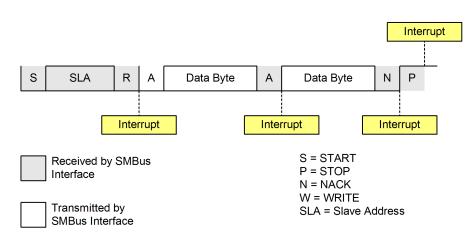

Serial data is received on SDA while the serial clock is output on SCL. The SMBus0 interface generates a START followed by the first data byte containing the address of the target slave and the data direction bit. In this case the data direction bit (R/W) will be logic 1 to indicate a "READ" operation. The SMBus0 interface receives serial data from the slave and generates the clock on SCL. After each byte is received, SMBus0 generates an ACK or NACK depending on the state of the AA bit in register SMB0CN. SMBus0 generates a STOP condition to indicate the end of the serial transfer.

Figure 19.5. Typical Master Receiver Sequence

19.3.3. Slave Transmitter Mode

Serial data is transmitted on SDA while the serial clock is received on SCL. The SMBus0 interface receives a START followed by data byte containing the slave address and direction bit. If the received slave address matches the address held in register SMB0ADR, the SMBus0 interface generates an ACK. SMBus0 will also ACK if the general call address (0x00) is received and the General Call Address Enable bit (SMB0ADR.0) is set to logic 1. In this case the data direction bit (R/W) will be logic 1 to indicate a "READ" operation. The SMBus0 interface receives the clock on SCL and transmits one or more bytes of serial data, waiting for an ACK from the master after each byte. SMBus0 exits slave mode after receiving a STOP condition from the master.

Figure 19.6. Typical Slave Transmitter Sequence

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value			
SLV6	SLV5	SLV4	SLV3	SLV2	SLV1	SLV0	GC	00000000			
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0				
							SFR Address: SFR Page:				
Bits7-1: SLV6-SLV0: SMBus0 Slave Address. These bits are loaded with the 7-bit slave address to which SMBus0 will respond when oper- ating as a slave transmitter or slave receiver. SLV6 is the most significant bit of the address and corresponds to the first bit of the address byte received.											
Bit0:	GC: General This bit is us 0: General c 1: General c	ed to enabl all address	e general c is ignored.		(0x00) recc	ognition.					

SFR Definition 19.4. SMB0ADR: SMBus0 Address

19.4.5. Status Register

The SMB0STA Status register holds an 8-bit status code indicating the current state of the SMBus0 interface. There are 28 possible SMBus0 states, each with a corresponding unique status code. The five most significant bits of the status code vary while the three least-significant bits of a valid status code are fixed at zero when SI = '1'. Therefore, all possible status codes are multiples of eight. This facilitates the use of status codes in software as an index used to branch to appropriate service routines (allowing 8 bytes of code to service the state or jump to a more extensive service routine).

For the purposes of user software, the contents of the SMB0STA register is only defined when the SI flag is logic 1. Software should never write to the SMB0STA register; doing so will yield indeterminate results. The 28 SMBus0 states, along with their corresponding status codes, are given in Table 19.1.

22.1. Enhanced Baud Rate Generation

The UART1 baud rate is generated by Timer 1 in 8-bit auto-reload mode. The TX clock is generated by TL1; the RX clock is generated by a copy of TL1 (shown as RX Timer in Figure 22.2), which is not useraccessible. Both TX and RX Timer overflows are divided by two to generate the TX and RX baud rates. The RX Timer runs when Timer 1 is enabled, and uses the same reload value (TH1). However, an RX Timer reload is forced when a START condition is detected on the RX pin. This allows a receive to begin any time a START is detected, independent of the TX Timer state.



Figure 22.2. UART1 Baud Rate Logic

Timer 1 should be configured for Mode 2, 8-bit auto-reload (see Section "23.1.3. Mode 2: 8-bit Counter/ Timer with Auto-Reload" on page 291). The Timer 1 reload value should be set so that overflows will occur at two times the desired baud rate. Note that Timer 1 may be clocked by one of five sources: SYSCLK, SYSCLK / 4, SYSCLK / 12, SYSCLK / 48, or the external oscillator clock / 8. For any given Timer 1 clock source, the UART1 baud rate is determined by Equation 22.1, where $T1_{CLK}$ is the frequency of the clock supplied to Timer 1, and *TH1* is the high byte of Timer 1 (reload value).

$$UartBaudRate = \frac{T1_{CLK}}{(256 - TH1)} \times \frac{1}{2}$$

Timer 1 clock frequency is selected as described in **Section "23.1. Timer 0 and Timer 1" on page 289**. A quick reference for typical baud rates and system clock frequencies is given in Table 22.1 through Table 22.6. Note that the internal oscillator may still generate the system clock when the external oscillator is driving Timer 1 (see Section "23.1. Timer 0 and Timer 1" on page 289 for more details).

Frequency: 22.1184 MHz Target Baud Rate (bps) Baud Rate % Error Oscillator Divide Factor Timer Clock Source Factor SCA1-SCA0 (pre-scale select)* T1N	1* Timer 1
Baud Rate (bps) % Error Factor Divide Source Factor Source (pre-scale select)*	Timer 1
	Reload Value (hex)
230400 0.00% 96 SYSCLK XX 1	0xD0
115200 0.00% 192 SYSCLK XX 1	0xA0
57600 0.00% 384 SYSCLK XX 1	0x40
28800 0.00% 768 SYSCLK / 12 00 0	0xE0
14400 0.00% 1536 SYSCLK / 12 00 0	0xC0
9600 0.00% 2304 SYSCLK / 12 00 0	0xA0
2400 0.00% 9216 SYSCLK / 48 10 0	0xA0
1200 0.00% 18432 SYSCLK / 48 10 0	0x40
230400 0.00% 96 EXTCLK / 8 11 0	0xFA
115200 0.00% 192 EXTCLK / 8 11 0	0xF4
57600 0.00% 384 EXTCLK / 8 11 0	0xE8
28800 0.00% 768 EXTCLK / 8 11 0	0xD0
14400 0.00% 1536 EXTCLK / 8 11 0	0xA0
9600 0.00% 2304 EXTCLK / 8 11 0	0x70

Table 22.3. Timer Settings for Standard Baud Rates Using an External22.1184 MHz Oscillator

X = Don't care

*Note: SCA1-SCA0 and T1M bit definitions can be found in Section 23.1.

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Valu
TF1	TR1	TF0	TR0	IE1	IT1	IE0	IT0	0000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	Bit Addressabl
							SFR Addres SFR Pag	
it7:	TF1: Timer 1 Set by hardw matically clea 0: No Timer 1: Timer 1 ha	vare when ared when 1 overflow (Timer 1 ove the CPU ve detected.					
it6:	TR1: Timer 1 0: Timer 1 di 1: Timer 1 er	Run Conti Run Conti						
it5:	 TF0: Timer 0 Overflow Flag. Set by hardware when Timer 0 overflows. This flag can be cleared by software but is automatically cleared when the CPU vectors to the Timer 0 interrupt service routine. 0: No Timer 0 overflow detected. 1: Timer 0 has overflowed. 							
it4:	TR0: Timer 0 di 0: Timer 0 di 1: Timer 0 er) Run Conti sabled.						
it3:	IE1: External Interrupt 1. This flag is set by hardware when an edge/level of type defined by IT1 is detected. It can be cleared by software but is automatically cleared when the CPU vectors to the External Inter rupt 1 service routine if IT1 = 1. This flag is the inverse of the /INT1 signal.							
it2:	IT1: Interrupt This bit select active-low. 0: /INT1 is le	vel triggere	the configued, active-lo	W.	nterrupt will	be falling-e	edge sensi	tive or
iit1:	1: /INT1 is ed IE0: External This flag is so cleared by so rupt 0 service	I Interrupt 0 et by hardw oftware but). vare when a is automation	n edge/leve cally cleare	d when the	CPU vector	rs to the Ex	
itO:	ITO: Interrupt This bit select active-low. 0: /INT0 is le	t 0 Type Se cts whether	lect. the configu	ired /INT0 i			-	tive or

25.2. Flash Programming Commands

The Flash memory can be programmed directly over the JTAG interface using the Flash Control, Flash Data, Flash Address, and Flash Scale registers. These Indirect Data Registers are accessed via the JTAG Instruction Register. Read and write operations on indirect data registers are performed by first setting the appropriate DR address in the IR register. Each read or write is then initiated by writing the appropriate Indirect Operation Code (IndOpCode) to the selected data register. Incoming commands to this register have the following format:

19:18	17:0
IndOpCode	WriteData

IndOpCode: These bit set the operation to perform according to the following table:

IndOpCode	Operation
0x	Poll
10	Read
11	Write

The Poll operation is used to check the Busy bit as described below. Although a Capture-DR is performed, no Update-DR is allowed for the Poll operation. Since updates are disabled, polling can be accomplished by shifting in/out a single bit.

The Read operation initiates a read from the register addressed by the DRAddress. Reads can be initiated by shifting only 2 bits into the indirect register. After the read operation is initiated, polling of the Busy bit must be performed to determine when the operation is complete.

The write operation initiates a write of WriteData to the register addressed by DRAddress. Registers of any width up to 18 bits can be written. If the register to be written contains fewer than 18 bits, the data in Write-Data should be left-justified, i.e. its MSB should occupy bit 17 above. This allows shorter registers to be written in fewer JTAG clock cycles. For example, an 8-bit register could be written by shifting only 10 bits. After a Write is initiated, the Busy bit should be polled to determine when the next operation can be initiated. The contents of the Instruction Register should not be altered while either a read or write operation is busy.

Outgoing data from the indirect Data Register has the following format:

19	18:1	0	
0	ReadData	Busy	

The Busy bit indicates that the current operation is not complete. It goes high when an operation is initiated and returns low when complete. Read and Write commands are ignored while Busy is high. In fact, if polling for Busy to be low will be followed by another read or write operation, JTAG writes of the next operation can be made while checking for Busy to be low. They will be ignored until Busy is read low, at which time the new operation will initiate. This bit is placed ate bit 0 to allow polling by single-bit shifts. When waiting for a Read to complete and Busy is 0, the following 18 bits can be shifted out to obtain the resulting data. ReadData is always right-justified. This allows registers shorter than 18 bits to be read using a reduced number of shifts. For example, the results from a byte-read requires 9 bit shifts (Busy + 8 bits).

