
Silicon Labs - C8051F046-GQ Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Not For New Designs

Core Processor 8051

Core Size 8-Bit

Speed 25MHz

Connectivity CANbus, EBI/EMI, SMBus (2-Wire/I²C), SPI, UART/USART

Peripherals Brown-out Detect/Reset, POR, PWM, Temp Sensor, WDT

Number of I/O 64

Program Memory Size 32KB (32K x 8)

Program Memory Type FLASH

EEPROM Size -

RAM Size 4.25K x 8

Voltage - Supply (Vcc/Vdd) 2.7V ~ 3.6V

Data Converters A/D 13x10b

Oscillator Type Internal

Operating Temperature -40°C ~ 85°C (TA)

Mounting Type Surface Mount

Package / Case 100-TQFP

Supplier Device Package 100-TQFP (14x14)

Purchase URL https://www.e-xfl.com/product-detail/silicon-labs/c8051f046-gq

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/c8051f046-gq-4388738
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

C8051F040/1/2/3/4/5/6/7

1.3. JTAG Debug and Boundary Scan
The C8051F04x family has on-chip JTAG boundary scan and debug circuitry that provides non-intrusive,
full speed, in-circuit debugging using the production part installed in the end application, via the four-pin
JTAG interface. The JTAG port is fully compliant to IEEE 1149.1, providing full boundary scan for test and
manufacturing purposes.

Silicon Labs' debugging system supports inspection and modification of memory and registers, break-
points, watchpoints, a stack monitor, and single stepping. No additional target RAM, program memory, tim-
ers, or communications channels are required. All the digital and analog peripherals are functional and
work correctly while debugging. All the peripherals (except for the ADC and SMBus) are stalled when the
MCU is halted, during single stepping, or at a breakpoint in order to keep them synchronized with instruc-
tion execution.

The C8051F040DK development kit provides all the hardware and software necessary to develop applica-
tion code and perform in-circuit debugging with the C8051F04x MCUs. The development kit includes two
target boards and a cable to facilitate evaluating a simple CAN communication network. The kit also
includes software with a developer's studio and debugger, a target application board with the associated
MCU installed, and the required cables and wall-mount power supply. The Serial Adapter takes its power
from the application board; it requires roughly 20 mA at 2.7-3.6 V. For applications where there is not suffi-
cient power available from the target system, the provided power supply can be connected directly to the
Serial Adapter.

Silicon Labs’ debug environment is a vastly superior configuration for developing and debugging embed-
ded applications compared to standard MCU emulators, which use on-board "ICE Chips" and target cables
and require the MCU in the application board to be socketed. Silicon Labs' debug environment both
increases ease of use and preserves the performance of the precision, on-chip analog peripherals.

Figure 1.8. Development/In-System Debug Diagram
28 Rev. 1.6

C8051F040/1/2/3/4/5/6/7
 Figure 5.6. Temperature Sensor Transfer Function
Rev. 1.6 57

C8051F040/1/2/3/4/5/6/7
Given:
AMX0SL = 0x00, AMX0CF = 0x01, ADLJST = 0,
ADC0LTH:ADC0LTL = 0x0100,
ADC0GTH:ADC0GTL = 0xFFFF.
An ADC End of Conversion will cause an ADC
Window Compare Interrupt (ADWINT=1) if the
resulting ADC Data Word is < 0x0100 and
> 0xFFFF. (In two’s-complement math,
0xFFFF = -1.)
Given:

AMX0SL = 0x00, AMX0CF = 0x01, ADLJST = 0,
ADC0LTH:ADC0LTL = 0xFFFF,
ADC0GTH:ADC0GTL = 0x0100.
An ADC End of Conversion will cause an ADC
Window Compare Interrupt (ADWINT=1) if the
resulting ADC Data Word is < 0xFFFF or
> 0x0100. (In two’s-complement math,
0xFFFF = -1.)

Figure 6.9. 10-Bit ADC0 Window Interrupt Example:
Right Justified Differential Data
86 Rev. 1.6

C8051F040/1/2/3/4/5/6/7

7.3. ADC2 Programmable Window Detector
The ADC2 Programmable Window Detector continuously compares the ADC2 output to user-programmed
limits, and notifies the system when an out-of-bound condition is detected. This is especially effective in an
interrupt-driven system, saving code space and CPU bandwidth while delivering faster system response
times. The window detector interrupt flag (AD2WINT in ADC2CN) can also be used in polled mode. The
reference words are loaded into the ADC2 Greater-Than and ADC2 Less-Than registers (ADC2GT and
ADC2LT). Notice that the window detector flag can be asserted when the measured data is inside or out-
side the user-programmed limits, depending on the programming of the ADC2GT and ADC2LT registers.

SFR Definition 7.6. ADC2GT: ADC2 Greater-Than Data

Bits7-0: High byte of ADC2 Greater-Than Data Word.

R/W R/W R/W R/W R/W R/W R/W R/W Reset Value

11111111
Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

SFR Address:
SFR Page:

0xC4
2

SFR Definition 7.7. ADC2LT: ADC2 Less-Than Data

Bits7-0: Low byte of ADC2 Greater-Than Data Word.

R/W R/W R/W R/W R/W R/W R/W R/W Reset Value

00000000
Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

SFR Address:
SFR Page:

0xC6
2

7.3.1. Window Detector in Single-Ended Mode
Figure 7.5 shows two example window comparisons for Single-ended mode, with ADC2LT = 0x20 and
ADC2GT = 0x10. In Single-ended mode, the codes vary from 0 to VREF x (255/256) and are represented
as 8-bit unsigned integers. In the left example, an AD2WINT interrupt will be generated if the ADC2 con-
version word (ADC2) is within the range defined by ADC2GT and ADC2LT (if 0x10  ADC2  0x20). In the
right example, and AD2WINT interrupt will be generated if ADC2 is outside of the range defined by
ADC2GT and ADC2LT (if ADC2  0x10 or ADC2  0x20).
100 Rev. 1.6

C8051F040/1/2/3/4/5/6/7

SFR Definition 8.3. DAC0CN: DAC0 Control

Bit7: DAC0EN: DAC0 Enable Bit.
0: DAC0 Disabled. DAC0 Output pin is disabled; DAC0 is in low-power shutdown mode.
1: DAC0 Enabled. DAC0 Output pin is active; DAC0 is operational.

Bits6-5: UNUSED. Read = 00b; Write = don’t care.
Bits4-3: DAC0MD1-0: DAC0 Mode Bits.

00: DAC output updates occur on a write to DAC0H.
01: DAC output updates occur on Timer 3 overflow.
10: DAC output updates occur on Timer 4 overflow.
11: DAC output updates occur on Timer 2 overflow.

Bits2-0: DAC0DF2-0: DAC0 Data Format Bits:

000: The most significant nibble of the DAC0 Data Word is in DAC0H[3:0], while the least
significant byte is in DAC0L.

001: The most significant 5-bits of the DAC0 Data Word is in DAC0H[4:0], while the least
significant 7-bits are in DAC0L[7:1].

010: The most significant 6-bits of the DAC0 Data Word is in DAC0H[5:0], while the least
significant 6-bits are in DAC0L[7:2].

011: The most significant 7-bits of the DAC0 Data Word is in DAC0H[6:0], while the least
significant 5-bits are in DAC0L[7:3].

1xx: The most significant 8-bits of the DAC0 Data Word is in DAC0H[7:0], while the least
significant 4-bits are in DAC0L[7:4].

R/W R R R/W R/W R/W R/W R/W Reset Value

DAC0EN - - DAC0MD1 DAC0MD0 DAC0DF2 DAC0DF1 DAC0DF0 00000000
Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

SFR Address:
SFR Page:

0xD4
0

DAC0H DAC0L
MSB LSB

DAC0H DAC0L
MSB LSB

DAC0H DAC0L
MSB LSB

DAC0H DAC0L
MSB LSB

DAC0H DAC0L
MSB LSB
108 Rev. 1.6

C8051F040/1/2/3/4/5/6/7

SFR Definition 12.3. SFR Next Register: SFRNEXT

Bits7-0: SFR page context is retained upon interrupts/return from interrupts in a 3 byte SFR Page
Stack: SFRPAGE is the first entry, SFRNEXT is the second, and SFRLAST is third entry.
The SFRPAGE, SFRSTACK, and SFRLAST bytes may be used alter the context in the SFR
Page Stack. Only interrupts and returns from interrupt service routines push and pop the
SFR Page Stack. (See Section 12.2.6.2 and Section 12.2.6.3 for further information.)

Write:
Sets the SFR Page contained in the second byte of the SFR Stack. This will cause the
SFRPAGE SFR to have this SFR page value upon a return from interrupt.

Read:
Returns the value of the SFR page contained in the second byte of the SFR stack. This is
the value that will go to the SFR Page register upon a return from interrupt.

R/W R/W R/W R/W R/W R/W R/W R/W Reset Value

00000000
Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

SFR Address:
SFR Page:

0x85
All Pages

SFR Definition 12.4. SFR Last Register: SFRLAST

Bits7-0: SFR page context is retained upon interrupts/return from interrupts in a 3 byte SFR Page
Stack: SFRPAGE is the first entry, SFRNEXT is the second, and SFRLAST is the third
entry. The SFR stack bytes may be used alter the context in the SFR Page Stack, and will
not cause the stack to ‘push’ or ‘pop’. Only interrupts and returns from the interrupt service
routine push and pop the SFR Page Stack.

Write:
Sets the SFR Page in the last entry of the SFR Stack. This will cause the SFRNEXT SFR to
have this SFR page value upon a return from interrupt.

Read:
Returns the value of the SFR page contained in the last entry of the SFR stack.

R/W R/W R/W R/W R/W R/W R/W R/W Reset Value

00000000
Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

SFR Address:
SFR Page:

0x86
All Pages
Rev. 1.6 143

C8051F040/1/2/3/4/5/6/7

PCA0CPH4 0xEE 0 PCA Capture 4 High page 318
PCA0CPH5 0xE2 0 PCA Capture 5 High page 318
PCA0CPL0 0xFB 0 PCA Capture 0 Low page 318
PCA0CPL1 0xFD 0 PCA Capture 1 Low page 318
PCA0CPL2 0xE9 0 PCA Capture 2 Low page 318
PCA0CPL3 0xEB 0 PCA Capture 3 Low page 318
PCA0CPL4 0xED 0 PCA Capture 4 Low page 318
PCA0CPL5 0xE1 0 PCA Capture 5 Low page 318
PCA0CPM0 0xDA 0 PCA Module 0 Mode Register page 316
PCA0CPM1 0xDB 0 PCA Module 1 Mode Register page 316
PCA0CPM2 0xDC 0 PCA Module 2 Mode Register page 316
PCA0CPM3 0xDD 0 PCA Module 3 Mode Register page 316
PCA0CPM4 0xDE 0 PCA Module 4 Mode Register page 316
PCA0CPM5 0xDF 0 PCA Module 5 Mode Register page 316
PCA0H 0xFA 0 PCA Counter High page 317
PCA0L 0xF9 0 PCA Counter Low page 317
PCA0MD 0xD9 0 PCA Mode page 315
PCON 0x87 All Pages Power Control page 164
PSCTL 0x8F 0 Program Store R/W Control page 185
PSW 0xD0 All Pages Program Status Word page 151
RCAP2H 0xCB 0 Timer/Counter 2 Capture/Reload High page 303
RCAP2L 0xCA 0 Timer/Counter 2 Capture/Reload Low page 303
RCAP3H 0xCB 1 Timer/Counter 3 Capture/Reload High page 303
RCAP3L 0xCA 1 Timer/Counter 3 Capture/Reload Low page 303
RCAP4H 0xCB 2 Timer/Counter 4 Capture/Reload High page 303
RCAP4L 0xCA 2 Timer/Counter 4 Capture/Reload Low page 303
REF0CN 0xD1 0 Programmable Voltage Reference Control page 1144, page 1185

RSTSRC 0xEF 0 Reset Source Register page 170
SADDR0 0xA9 0 UART 0 Slave Address page 276
SADEN0 0xB9 0 UART 0 Slave Address Enable page 276
SBUF0 0x99 0 UART 0 Data Buffer page 276
SBUF1 0x99 1 UART 1 Data Buffer page 283
SCON0 0x98 0 UART 0 Control page 274
SCON1 0x98 1 UART 1 Control page 282
SFRPAGE 0x84 All Pages SFR Page Register page 142
SFRPGCN 0x96 F SFR Page Control Register page 142
SFRNEXT 0x85 All Pages SFR Next Page Stack Access Register page 143
SFRLAST 0x86 All Pages SFR Last Page Stack Access Register page 143
SMB0ADR 0xC3 0 SMBus Slave Address page 250
SMB0CN 0xC0 0 SMBus Control page 247
SMB0CR 0xCF 0 SMBus Clock Rate page 248
SMB0DAT 0xC2 0 SMBus Data page 249
SMB0STA 0xC1 0 SMBus Status page 251
SP 0x81 All Pages Stack Pointer page 150

Table 12.3. Special Function Registers (Continued)
SFRs are listed in alphabetical order. All undefined SFR locations are reserved.

Register Address SFR Page Description Page No.
148 Rev. 1.6

C8051F040/1/2/3/4/5/6/7

SFR Definition 12.15. EIP1: Extended Interrupt Priority 1

Bit7: Reserved.
Bit6: PCP2: Comparator2 (CP2) Interrupt Priority Control.

This bit sets the priority of the CP2 interrupt.
0: CP2 interrupt set to low priority level.
1: CP2 interrupt set to high priority level.

Bit5: PCP1: Comparator1 (CP1) Interrupt Priority Control.
This bit sets the priority of the CP1 interrupt.
0: CP1 interrupt set to low priority level.
1: CP1 interrupt set to high priority level.

Bit4: PCP0: Comparator0 (CP0) Interrupt Priority Control.
This bit sets the priority of the CP0 interrupt.
0: CP0 interrupt set to low priority level.
1: CP0 interrupt set to high priority level.

Bit3: PPCA0: Programmable Counter Array (PCA0) Interrupt Priority Control.
This bit sets the priority of the PCA0 interrupt.
0: PCA0 interrupt set to low priority level.
1: PCA0 interrupt set to high priority level.

Bit2: PWADC0: ADC0 Window Comparator Interrupt Priority Control.
This bit sets the priority of the ADC0 Window interrupt.
0: ADC0 Window interrupt set to low priority level.
1: ADC0 Window interrupt set to high priority level.

Bit1: PSMB0: System Management Bus (SMBus0) Interrupt Priority Control.
This bit sets the priority of the SMBus0 interrupt.
0: SMBus interrupt set to low priority level.
1: SMBus interrupt set to high priority level.

Bit0: PSPI0: Serial Peripheral Interface (SPI0) Interrupt Priority Control.
This bit sets the priority of the SPI0 interrupt.
0: SPI0 interrupt set to low priority level.
1: SPI0 interrupt set to high priority level.

R/W R/W R/W R/W R/W R/W R/W R/W Reset Value

- PCP2 PCP1 PCP0 PPCA0 PWADC0 PSMB0 PSPI0 00000000
Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

SFR Address:
SFR Page:

0xF6
All Pages
Rev. 1.6 161

C8051F040/1/2/3/4/5/6/7
Flash Read Lock Byte
Bits7-0: Each bit locks a corresponding block of memory. (Bit7 is MSB).

0: Read operations are locked (disabled) for corresponding block across the JTAG interface.
1: Read operations are unlocked (enabled) for corresponding block across the JTAG inter-
face.

Flash Write/Erase Lock Byte
Bits7-0: Each bit locks a corresponding block of memory.

0: Write/Erase operations are locked (disabled) for corresponding block across the JTAG
interface.
1: Write/Erase operations are unlocked (enabled) for corresponding block across the JTAG
interface.
NOTE: When the highest block is locked, the security bytes may be written but not erased.

Flash access Limit Register (FLACL)
The content of this register is used as the high byte of the 16-bit Software Read Limit
address. This 16-bit read limit address value is calculated as 0xNN00 where NN is replaced
by content of this register on reset. Software running at or above this address is prohibited
from using the MOVX and MOVC instructions to read, write, or erase Flash locations below
this address. Any attempts to read locations below this limit will return the value 0x00.

Figure 15.1. Flash Program Memory Map and Security Bytes
Rev. 1.6 181

C8051F040/1/2/3/4/5/6/7

16.5.3. Split Mode with Bank Select
When EMI0CF.[3:2] are set to ‘10’, the XRAM memory map is split into two areas, on-chip space and off-
chip space.

• Effective addresses below the 4k boundary will access on-chip XRAM space.
• Effective addresses above the 4k boundary will access off-chip space.
• 8-bit MOVX operations use the contents of EMI0CN to determine whether the memory access is on-

chip or off-chip. The upper 8-bits of the Address Bus A[15:8] are determined by EMI0CN, and the lower
8-bits of the Address Bus A[7:0] are determined by R0 or R1. All 16-bits of the Address Bus A[15:0] are
driven in “Bank Select” mode.

• 16-bit MOVX operations use the contents of DPTR to determine whether the memory access is on-
chip or off-chip, and the full 16-bits of the Address Bus A[15:0] are driven during the off-chip transac-
tion.

16.5.4. External Only
When EMI0CF[3:2] are set to ‘11’, all MOVX operations are directed to off-chip space. On-chip XRAM is
not visible to the CPU. This mode is useful for accessing off-chip memory located between 0x0000 and the
4k boundary.

• 8-bit MOVX operations ignore the contents of EMI0CN. The upper Address bits A[15:8] are not driven
(identical behavior to an off-chip access in “Split Mode without Bank Select” described above). This
allows the user to manipulate the upper address bits at will by setting the Port state directly. The lower
8-bits of the effective address A[7:0] are determined by the contents of R0 or R1.

• 16-bit MOVX operations use the contents of DPTR to determine the effective address A[15:0]. The full
16-bits of the Address Bus A[15:0] are driven during the off-chip transaction.

16.6. Timing
The timing parameters of the External Memory Interface can be configured to enable connection to
devices having different setup and hold time requirements. The Address Setup time, Address Hold time, /
RD and
/WR strobe widths, and in multiplexed mode, the width of the ALE pulse are all programmable in units of
SYSCLK periods through EMI0TC, shown in SFR Definition 16.3, and EMI0CF[1:0].

The timing for an off-chip MOVX instruction can be calculated by adding 4 SYSCLK cycles to the timing
parameters defined by the EMI0TC register. Assuming non-multiplexed operation, the minimum execution
time for an off-chip XRAM operation is 5 SYSCLK cycles (1 SYSCLK for /RD or /WR pulse + 4 SYSCLKs).
For multiplexed operations, the Address Latch Enable signal will require a minimum of 2 additional
SYSCLK cycles. Therefore, the minimum execution time of an off-chip XRAM operation in multiplexed
mode is 7 SYSCLK cycles (2 SYSCLKs for /ALE, 1 for /RD or /WR + 4 SYSCLKs). The programmable
setup and hold times default to the maximum delay settings after a reset.

Table 16.1 lists the AC parameters for the External Memory Interface, and Figure 16.4 through Figure 16.9
show the timing diagrams for the different External Memory Interface modes and MOVX operations.
194 Rev. 1.6

C8051F040/1/2/3/4/5/6/7

16.6.1. Non-multiplexed Mode
16.6.1.1.16-bit MOVX: EMI0CF[4:2] = ‘101’, ‘110’, or ‘111’.

Figure 16.4. Non-multiplexed 16-bit MOVX Timing
196 Rev. 1.6

C8051F040/1/2/3/4/5/6/7

16.6.2.2.8-bit MOVX without Bank Select: EMI0CF[4:2] = ‘001’ or ‘011’.

Figure 16.8. Multiplexed 8-bit MOVX without Bank Select Timing
200 Rev. 1.6

C8051F040/1/2/3/4/5/6/7

17.1.7. Crossbar Pin Assignment Example
In this example (Figure 17.6), we configure the Crossbar to allocate Port pins for UART0, the SMBus,
UART1, /INT0, and /INT1 (8 pins total). Additionally, we configure the External Memory Interface to oper-
ate in Multiplexed mode and to appear on the Low ports. Further, we configure P1.2, P1.3, and P1.4 for
Analog Input mode so that the voltages at these pins can be measured by ADC2. The configuration steps
are as follows:

1. XBR0, XBR1, and XBR2 are set such that UART0EN = 1, SMB0EN = 1, INT0E = 1, INT1E =
1, and EMIFLE = 1. Thus: XBR0 = 0x05, XBR1 = 0x14, and XBR2 = 0x02.

2. We configure the External Memory Interface to use Multiplexed mode and to appear on the
Low ports. PRTSEL = 0, EMD2 = 0.

3. We configure the desired Port 1 pins to Analog Input mode by setting P1MDIN to 0xE3 (P1.4,
P1.3, and P1.2 are Analog Inputs, so their associated P1MDIN bits are set to logic 0).

4. We enable the Crossbar by setting XBARE = 1: XBR2 = 0x42.
- UART0 has the highest priority, so P0.0 is assigned to TX0, and P0.1 is assigned to RX0.
- The SMBus is next in priority order, so P0.2 is assigned to SDA, and P0.3 is assigned to

SCL.
- UART1 is next in priority order, so P0.4 is assigned to TX1. Because the External Memory

Interface is selected on the lower Ports, EMIFLE = 1, which causes the Crossbar to skip
P0.6 (/RD) and P0.7 (/WR). Because the External Memory Interface is configured in Multi-
plexed mode, the Crossbar will also skip P0.5 (ALE). RX1 is assigned to the next non-
skipped pin, which in this case is P1.0.

- /INT0 is next in priority order, so it is assigned to P1.1.
- P1MDIN is set to 0xE3, which configures P1.2, P1.3, and P1.4 as Analog Inputs, causing

the Crossbar to skip these pins.
- /INT1 is next in priority order, so it is assigned to the next non-skipped pin, which is P1.5.
- The External Memory Interface will drive Ports 2 and 3 (denoted by red dots in

Figure 17.6) during the execution of an off-chip MOVX instruction.
5. We set the UART0 TX pin (TX0, P0.0) and UART1 TX pin (TX1, P0.4) outputs to Push-Pull by

setting P0MDOUT = 0x11.
6. We configure all EMIF-controlled pins to push-pull output mode by setting P0MDOUT |= 0xE0;

P2MDOUT = 0xFF; P3MDOUT = 0xFF.
7. We explicitly disable the output drivers on the 3 Analog Input pins by setting P1MDOUT =

0x00 (configure outputs to Open-Drain) and P1 = 0xFF (a logic 1 selects the high-impedance
state).
210 Rev. 1.6

C8051F040/1/2/3/4/5/6/7

18.2.3. Message Handler Registers
The Message Handler Registers are read only registers. Their flags can be read via the indexed access
method with CAN0ADR, CAN0DATH, and CAN0DATL. The message handler registers provide interrupt,
error, transmit/receive requests, and new data information.

Please refer to the Bosch CAN User’s Guide for information on the function and use of the Message Han-
dler Registers.

18.2.4. CIP-51 MCU Special Function Registers
C8051F04x family peripherals are modified, monitored, and controlled using Special Function Registers
(SFR’s). Only three of the CAN Controller’s registers may be accessed directly with SFR’s. However, all
CAN Controller registers can be accessed indirectly using three CIP-51 MCU SFR’s: the CAN Data Regis-
ters (CAN0DATH and CAN0DATL) and CAN Address Register (CAN0ADR).

18.2.5. Using CAN0ADR, CAN0DATH, and CANDATL to Access CAN Registers
Each CAN Controller Register has an index number (see Table 18.2). The CAN register address space is
128 words (256 bytes). A CAN register is accessed via the CAN Data Registers (CAN0DATH and CAN0-
DATL) when a CAN register’s index number is placed into the CAN Address Register (CAN0ADR). For
example, if the Bit Timing Register is to be configured with a new value, CAN0ADR is loaded with 0x03.
The low byte of the desired value is accessed using CAN0DATL and the high byte of the bit timing register
is accessed using CAN0DATH. CAN0DATL is bit addressable for convenience. To load the value 0x2304
into the Bit Timing Register:

CAN0ADR = 0x03; // Load Bit Timing Register’s index (Table 18.1)
CAN0DATH = 0x23; // Move the upper byte into data reg high byte
CAN0DATL = 0x04; // Move the lower byte into data reg low byte

Note: CAN0CN, CAN0STA, and CAN0TST may be accessed either by using the index method, or by direct
access with the CIP-51 MCU SFR’s. CAN0CN is located at SFR location 0xF8/SFR page 1 (SFR Definition
18.3), CAN0TST at 0xDB/SFR page 1 (SFR Definition 18.4), and CAN0STA at 0xC0/SFR page 1 (SFR
Definition 18.5).

18.2.6. CAN0ADR Autoincrement Feature
For ease of programming message objects, CAN0ADR features autoincrementing for the index ranges
0x08 to 0x12 (Interface Registers 1) and 0x20 to 0x2A (Interface Registers 2). When the CAN0ADR regis-
ter has an index in these ranges, the CAN0ADR will autoincrement by 1 to point to the next CAN reg-
ister 16-bit word upon a read/write of CAN0DATL. This speeds programming of the frequently-
accessed interface registers when configuring message objects.

NOTE: Table 18.2 below supersedes Figure 5 in Section 3, “Programmer’s Model” of the Bosch CAN
User’s Guide.
232 Rev. 1.6

C8051F040/1/2/3/4/5/6/7

Table 18.2. CAN Register Index and Reset Values
CAN Register

Index Register Name Reset
Value Notes

0x00 CAN Control Register 0x0001 Accessible in CIP-51 SFR Map
0x01 Status Register 0x0000 Accessible in CIP-51 SFR Map
0x02 Error Register 0x0000 Read Only
0x03 Bit Timing Register 0x2301 Write Enabled by CCE Bit in CAN0CN
0x04 Interrupt Register 0x0000 Read Only
0x05 Test Register 0x0000 Bit 7 (RX) is determined by CAN bus
0x06 BRP Extension Register 0x0000 Write Enabled by TEST bit in CAN0CN

0x08 IF1 Command Request 0x0001 CAN0ADR autoincrements in IF1 index space
(0x08 - 0x12) upon write to CAN0DATL

0x09 IF1 Command Mask 0x0000 CAN0ADR autoincrement upon write to
CAN0DATL

0x0A IF1 Mask 1 0xFFFF CAN0ADR autoincrement upon write to
CAN0DATL

0x0B IF1 Mask 2 0xFFFF CAN0ADR autoincrement upon write to
CAN0DATL

0x0C IF1 Arbitration 1 0x0000 CAN0ADR autoincrement upon write to
CAN0DATL

0x0D IF1 Arbitration 2 0x0000 CAN0ADR autoincrement upon write to
CAN0DATL

0x0E IF1 Message Control 0x0000 CAN0ADR autoincrement upon write to
CAN0DATL

0x0F IF1 Data A1 0x0000 CAN0ADR autoincrement upon write to
CAN0DATL

0x10 IF1 Data A2 0x0000 CAN0ADR autoincrement upon write to
CAN0DATL

0x11 IF1 Data B1 0x0000 CAN0ADR autoincrement upon write to
CAN0DATL

0x12 IF1 Data B2 0x0000 CAN0ADR autoincrement upon write to
CAN0DATL

0x20 IF2 Command Request 0x0001 CAN0ADR autoincrements in IF2 index space
(0x20 - 0x2A) upon write to CAN0DATL

0x21 IF2 Command Mask 0x0000 CAN0ADR autoincrement upon write to
CAN0DATL

0x22 IF2 Mask 1 0xFFFF CAN0ADR autoincrement upon write to
CAN0DATL

0x23 IF2 Mask 2 0xFFFF CAN0ADR autoincrement upon write to
CAN0DATL

0x24 IF2 Arbitration 1 0x0000 CAN0ADR autoincrement upon write to
CAN0DATL

0x25 IF2 Arbitration 2 0x0000 CAN0ADR autoincrement upon write to
CAN0DATL
Rev. 1.6 233

C8051F040/1/2/3/4/5/6/7

SFR Definition 19.1. SMB0CN: SMBus0 Control

Bit7: BUSY: Busy Status Flag.
0: SMBus0 is free
1: SMBus0 is busy

Bit6: ENSMB: SMBus Enable.
This bit enables/disables the SMBus serial interface.
0: SMBus0 disabled.
1: SMBus0 enabled.

Bit5: STA: SMBus Start Flag.
0: No START condition is transmitted.
1: When operating as a master, a START condition is transmitted if the bus is free. (If the
bus is not free, the START is transmitted after a STOP is received.) If STA is set after one or
more bytes have been transmitted or received and before a STOP is received, a repeated
START condition is transmitted.

Bit4: STO: SMBus Stop Flag.
0: No STOP condition is transmitted.
1: Setting STO to logic 1 causes a STOP condition to be transmitted. When a STOP condi-
tion is received, hardware clears STO to logic 0. If both STA and STO are set, a STOP con-
dition is transmitted followed by a START condition. In slave mode, setting the STO flag
causes SMBus to behave as if a STOP condition was received.

Bit3: SI: SMBus Serial Interrupt Flag.
This bit is set by hardware when one of 27 possible SMBus0 states is entered. (Status code
0xF8 does not cause SI to be set.) When the SI interrupt is enabled, setting this bit causes
the CPU to vector to the SMBus interrupt service routine. This bit is not automatically
cleared by hardware and must be cleared by software.

Bit2: AA: SMBus Assert Acknowledge Flag.
This bit defines the type of acknowledge returned during the acknowledge cycle on the SCL
line.
0: A "not acknowledge" (high level on SDA) is returned during the acknowledge cycle.
1: An "acknowledge" (low level on SDA) is returned during the acknowledge cycle.

Bit1: FTE: SMBus Free Timer Enable Bit
0: No timeout when SCL is high
1: Timeout when SCL high time exceeds limit specified by the SMB0CR value.

Bit0: TOE: SMBus Timeout Enable Bit
0: No timeout when SCL is low.
1: Timeout when SCL low time exceeds limit specified by Timer 4, if enabled.

R R/W R/W R/W R/W R/W R/W R/W Reset Value

BUSY ENSMB STA STO SI AA FTE TOE 00000000

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 Bit
Addressable

SFR Address:
SFR Page:

0xC0
0

Rev. 1.6 247

C8051F040/1/2/3/4/5/6/7

20.2. SPI0 Master Mode Operation
A SPI master device initiates all data transfers on a SPI bus. SPI0 is placed in master mode by setting the
Master Enable flag (MSTEN, SPI0CN.6). Writing a byte of data to the SPI0 data register (SPI0DAT) when
in master mode writes to the transmit buffer. If the SPI shift register is empty, the byte in the transmit buffer
is moved to the shift register, and a data transfer begins. The SPI0 master immediately shifts out the data
serially on the MOSI line while providing the serial clock on SCK. The SPIF (SPI0CN.7) flag is set to logic
1 at the end of the transfer. If interrupts are enabled, an interrupt request is generated when the SPIF flag
is set. While the SPI0 master transfers data to a slave on the MOSI line, the addressed SPI slave device
simultaneously transfers the contents of its shift register to the SPI master on the MISO line in a full-duplex
operation. Therefore, the SPIF flag serves as both a transmit-complete and receive-data-ready flag. The
data byte received from the slave is transferred MSB-first into the master's shift register. When a byte is
fully shifted into the register, it is moved to the receive buffer where it can be read by the processor by
reading SPI0DAT.

When configured as a master, SPI0 can operate in one of three different modes: multi-master mode, 3-wire
single-master mode, and 4-wire single-master mode. The default, multi-master mode is active when NSS-
MD1 (SPI0CN.3) = 0 and NSSMD0 (SPI0CN.2) = 1. In this mode, NSS is an input to the device, and is
used to disable the master SPI0 when another master is accessing the bus. When NSS is pulled low in this
mode, MSTEN (SPI0CN.6) and SPIEN (SPI0CN.0) are set to 0 to disable the SPI master device, and a
Mode Fault is generated (MODF, SPI0CN.5 = 1). Mode Fault will generate an interrupt if enabled. SPI0
must be manually re-enabled in software under these circumstances. In multi-master systems, devices will
typically default to being slave devices while they are not acting as the system master device. In multi-mas-
ter mode, slave devices can be addressed individually (if needed) using general-purpose I/O pins.
Figure 20.2 shows a connection diagram between two master devices in multiple-master mode.

3-wire single-master mode is active when NSSMD1 (SPI0CN.3) = 0 and NSSMD0 (SPI0CN.2) = 0. In this
mode, NSS is not used, and does not get mapped to an external port pin through the crossbar. Any slave
devices that must be addressed in this mode should be selected using general-purpose I/O pins.
Figure 20.3 shows a connection diagram between a master device in 3-wire master mode and a slave
device.

4-wire single-master mode is active when NSSMD1 (SPI0CN.3) = 1. In this mode, NSS is configured as an
output pin, and can be used as a slave-select signal for a single SPI device. In this mode, the output value
of NSS is controlled (in software) with the bit NSSMD0 (SPI0CN.2). Additional slave devices can be
addressed using general-purpose I/O pins. Figure 20.4 shows a connection diagram for a master device in
4-wire master mode and two slave devices.
Rev. 1.6 257

C8051F040/1/2/3/4/5/6/7

20.3. SPI0 Slave Mode Operation
When SPI0 is enabled and not configured as a master, it will operate as a SPI slave. As a slave, bytes are
shifted in through the MOSI pin and out through the MISO pin by a master device controlling the SCK sig-
nal. A bit counter in the SPI0 logic counts SCK edges. When 8 bits have been shifted through the shift reg-
ister, the SPIF flag is set to logic 1, and the byte is copied into the receive buffer. Data is read from the
receive buffer by reading SPI0DAT. A slave device cannot initiate transfers. Data to be transferred to the
master device is pre-loaded into the shift register by writing to SPI0DAT. Writes to SPI0DAT are double-
buffered, and are placed in the transmit buffer first. If the shift register is empty, the contents of the transmit
buffer will immediately be transferred into the shift register. When the shift register already contains data,
the SPI will wait until the byte is transferred before loading it with the transmit buffer’s contents.

When configured as a slave, SPI0 can be configured for 4-wire or 3-wire operation. The default, 4-wire
slave mode, is active when NSSMD1 (SPI0CN.3) = 0 and NSSMD0 (SPI0CN.2) = 1. In 4-wire mode, the
NSS signal is routed to a port pin and configured as a digital input. SPI0 is enabled when NSS is logic 0,
and disabled when NSS is logic 1. The bit counter is reset on a falling edge of NSS. Note that the NSS sig-
nal must be driven low at least 2 system clocks before the first active edge of SCK for each byte transfer.
Figure 20.4 shows a connection diagram between two slave devices in 4-wire slave mode and a master
device.

3-wire slave mode is active when NSSMD1 (SPI0CN.3) = 0 and NSSMD0 (SPI0CN.2) = 0. NSS is not
used in this mode, and does not get mapped to an external port pin through the crossbar. Since there is no
way of uniquely addressing the device in 3-wire slave mode, SPI0 must be the only slave device present
on the bus. It is important to note that in 3-wire slave mode there is no external means of resetting the bit
counter that determines when a full byte has been received. The bit counter can only be reset by disabling
and re-enabling SPI0 with the SPIEN bit. Figure 20.3 shows a connection diagram between a slave device
in 3-wire slave mode and a master device.

20.4. SPI0 Interrupt Sources
When SPI0 interrupts are enabled, the following four flags will generate an interrupt when they are set to
logic 1:

Note: All of the following interrupt bits must be cleared by software.

1. The SPI Interrupt Flag, SPIF (SPI0CN.7) is set to logic 1 at the end of each byte transfer. This
flag can occur in all SPI0 modes.

2. The Write Collision Flag, WCOL (SPI0CN.6) is set to logic 1 if a write to SPI0DAT is attempted
when the transmit buffer has not been emptied to the SPI shift register. When this occurs, the
write to SPI0DAT will be ignored, and the transmit buffer will not be written.This flag can occur
in all SPI0 modes.

3. The Mode Fault Flag MODF (SPI0CN.5) is set to logic 1 when SPI0 is configured as a master,
and for multi-master mode and the NSS pin is pulled low. When a Mode Fault occurs, the
MSTEN and SPIEN bits in SPI0CN are set to logic 0 to disable SPI0 and allow another master
device to access the bus.

4. The Receive Overrun Flag RXOVRN (SPI0CN.4) is set to logic 1 when configured as a slave,
and a transfer is completed and the receive buffer still holds an unread byte from a previous
transfer. The new byte is not transferred to the receive buffer, allowing the previously received
data byte to be read. The data byte which caused the overrun is lost.
Rev. 1.6 259

C8051F040/1/2/3/4/5/6/7

22.2.2. 9-Bit UART
9-bit UART mode uses a total of eleven bits per data byte: a start bit, 8 data bits (LSB first), a programma-
ble ninth data bit, and a stop bit. The state of the ninth transmit data bit is determined by the value in TB81
(SCON1.3), which is assigned by user software. It can be assigned the value of the parity flag (bit P in reg-
ister PSW) for error detection, or used in multiprocessor communications. On receive, the ninth data bit
goes into RB81 (SCON1.2) and the stop bit is ignored.

Data transmission begins when an instruction writes a data byte to the SBUF1 register. The TI1 Transmit
Interrupt Flag (SCON1.1) is set at the end of the transmission (the beginning of the stop-bit time). Data
reception can begin any time after the REN1 Receive Enable bit (SCON1.4) is set to ‘1’. After the stop bit
is received, the data byte will be loaded into the SBUF1 receive register if the following conditions are met:
(1) RI1 must be logic 0, and (2) if MCE1 is logic 1, the 9th bit must be logic 1 (when MCE1 is logic 0, the
state of the ninth data bit is unimportant). If these conditions are met, the eight bits of data are stored in
SBUF1, the ninth bit is stored in RB81, and the RI1 flag is set to ‘1’. If the above conditions are not met,
SBUF1 and RB81 will not be loaded and the RI1 flag will not be set to ‘1’. A UART1 interrupt will occur if
enabled when either TI1 or RI1 is set to ‘1’.

Figure 22.5. 9-Bit UART Timing Diagram
280 Rev. 1.6

C8051F040/1/2/3/4/5/6/7

SFR Definition 23.8. TMRnCN: Timer n Control

Bit7: TFn: Timer n Overflow/Underflow Flag.
Set by hardware when either the Timer overflows from 0xFFFF to 0x0000, underflows from
the value placed in RCAPnH:RCAPnL to 0xFFFF (in Auto-reload Mode), or underflows from
0x0000 to 0xFFFF (in Capture Mode). When the Timer interrupt is enabled, setting this bit
causes the CPU to vector to the Timer interrupt service routine. This bit is not automatically
cleared by hardware and must be cleared by software.

Bit6: EXFn: Timer 2, 3, or 4 External Flag.
Set by hardware when either a capture or reload is caused by a high-to-low transition on the
TnEX input pin and EXENn is logic 1. When the Timer interrupt is enabled, setting this bit
causes the CPU to vector to the Timer Interrupt service routine. This bit is not automatically
cleared by hardware and must be cleared by software.

Bit5-4: Reserved.
Bit3: EXENn: Timer n External Enable.

Enables high-to-low transitions on TnEX to trigger captures, reloads, and control the direc-
tion of the timer/counter (up or down count). If DECEN = 1, TnEX will determine if the timer
counts up or down when in Auto-reload Mode. If EXENn = 1, TnEX should be configured as
a digital input.
0: Transitions on the TnEX pin are ignored.
1: Transitions on the TnEX pin cause capture, reload, or control the direction of timer count
(up or down) as follows:
Capture Mode: ‘1’-to-’0’ Transition on TnEX pin causes RCAPnH:RCAPnL to capture timer
value.
Auto-Reload Mode:

DCEN = 0: ‘1’-to-’0’ transition causes reload of timer and sets the EXFn Flag.
DCEN = 1: TnEX logic level controls direction of timer (up or down).

Bit2: TRn: Timer n Run Control.
This bit enables/disables the respective Timer.
0: Timer disabled.
1: Timer enabled and running/counting.

Bit1: C/Tn: Counter/Timer Select.
0: Timer Function: Timer incremented by clock defined by TnM1:TnM0
(TMRnCF.4:TMRnCF.3).
1: Counter Function: Timer incremented by high-to-low transitions on external input pin.

Bit0: CP/RLn: Capture/Reload Select.
This bit selects whether the Timer functions in capture or auto-reload mode.
0: Timer is in Auto-Reload Mode.
1: Timer is in Capture Mode.

R/W R/W R/W R/W R/W R/W R/W R/W Reset Value

TFn EXFn - - EXENn TRn C/Tn CP/RLn 00000000

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 Bit
Addressable

SFR Address: TMR2CN:0xC8;TMR3CN:0xC8;TMR4CN:0xC8
SFR Page: TMR2CN: page 0;TMR3CN: page 1;TMR4CN: page 2
Rev. 1.6 301

